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Abstract
In slope stability projects, in order to better investigate the site, the boreholes are distributed between different parts of 
the site. In this paper, the location of their known data is considered by conditional spatial variability of soil properties by 
coupling the geostatistical and finite element methods. For this purpose, a real site with fifteen boreholes is considered. The 
reliability index of the global safety factor and maximum horizontal displacement safety factor of the slope was determined. 
In addition, the system reliability index of these components was calculated. This study shows that considering the condi-
tional spatial variability of soil properties, the reliability indices are different for the global safety factor and the maximum 
horizontal displacement safety factor. Also, the system reliability index was smaller than all other indices, which indicates that 
the analyses without considering the location of the known data give a higher-confidence reliability index than real values.

Keywords Slope stability · Stochastic analysis · Conditional spatial variability · Geostatistical · Finite element method · 
Borehole

1 Introduction

It is well known that the inherent spatial variability of prop-
erties of soil layers can significantly influence the reliabil-
ity analysis of slope stability (Cho 2007; Jiang et al. 2014; 
Xiao et al. 2016; Li et al. 2017a, b). Thus, researchers have 
exerted increasing effort to investigate the reliability of 
slopes in the spatial variable of soil layers in recent years 
(Griffiths et al. 2009; Cho 2010; Javankhoshdel et al. 2017; 
Qi and Li 2018; Nguyen et al. 2019; Jiang et al. 2020a, b; 
Jiang et al. 2022).

In the stochastic analysis, the conditional and uncondi-
tional simulation methods are employed in the slope stability 
(Griffiths and Fenton 2004; Li et al. 2016a, b, c, d; Li et al. 
2016a, b, c, d; Li et al. 2017a, b; Cheng et al. 2018; Jiang 
et al. 2020a, 2020b; Shadabfar et al. 2020; Ou-Yang et al. 
2021).

In a stochastic analysis by the RFEM, the effects of the 
known data locations are not implemented. In other words, 
the extracted data from the boreholes are used in stochastic 
slope stability analysis without considering their known data 
location. This is while in the application of the conditional 
simulation method (CSM), three steps should be taken by 
geostatistical methods (Webster and Oliver 2007). First, 
the soil parameters at each specified depth are interpolated 
based on known other boreholes at the same level. In the 
second step, the soil properties at each depth are predicted 
in the section of analysis based on the known data location 
of the boreholes. In the third step, the soil properties are 
predicted from the data obtained in the previous step for all 
elements in the specified section of analysis.

There are limited studies that have been made to apply 
CSM for stochastic analysis of slope. Liu et al. (2017) evalu-
ated the reliability analysis of a cohesive-frictional slope 
using a conditional random field (based on the Cholesky 
decomposition technique and kriging method) and consid-
ered the spatial variability of soil properties in the analysis. 
The numerical simulation showed that the autocorrelation 
and sample distances are effective in the conditional random 
fields. Yang et al. (2017) investigated conditional random 
fields of modeling the spatial variability of soils taking into 
account the actual site-specific data obtained. The results 
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showed that the inclusion of this data could be an essential 
factor in determining slope reliability. Huang et al. (2019) 
considered the influence of rotated anisotropy in the reli-
ability analysis of slope stability by conditional random 
field. They represented that when the sampling points are 
distributed along with the base orientation, the probability 
of failure (Pf) is high. Li et al. (2016a, b, c, d) obtained 
the uncertainty in the Factor of Safety (FS) and Pf of a 
slope considering the geological uncertainty via borehole 
data. The results showed that the borehole within the zone 
of influence of slope has the most effect on the stochastic 
analysis of slope. Deng et al. (2017) assessed the reliability 
analysis of slope considering soil parameters variability and 
geological uncertainty by coupling the Markov chain.

On the other hand, in the system reliability analysis, con-
siderable research has been done (Zai et al. 2021). Johari and 
Kalantari (2020) investigated the system reliability analysis 
of a soldier-piled excavation in unsaturated soil using ran-
dom finite element and sequential compounding methods. 
The result showed that the unsaturated state's reliability 
analysis increases the mean value and decreases the standard 
deviation (std.) value of the Peng et al. (2020) investigated 
the reinforced slope failure probability using system reliabil-
ity analysis. The global probability of the reinforced slope 
was determined by system analysis between local reinforce-
ment and conditional failures of a slope. Liu et al. (2020) 
applied the system reliability analysis of slope stability by 
limit equilibrium and adaptive Monte Carlo Simulation 
(MCS) methods and considered a large number of circular 
and non-circular slip surfaces. Liu et al. (2018) assessed 
the system reliability analysis of the c–ϕ slope using the 
Multiple Response Surface Method (MRSM) and MCS. The 
results indicate that the spatial variability of soil properties 
has a variation in the results of the system reliability analysis 
of slope.

The soil structure is such that the spatial variation and 
shear resistance parameters of the soil properties should be 
considered. If these soil characteristics are considered cor-
rectly, the output of the model and the answers are more 
accurate. Generally, considering a section in a site (two-
dimensional) cannot consider the spatial diversity of all 
directions. In fact, in a two-dimensional slope stability anal-
ysis because of borehole scattering, certain cross-sectional 
areas cannot lead to a reliable answer. The various sections 
of analysis can be considered as system components to 
achieve more realistic solutions. The main objective of this 
study is to assess the effectiveness of the conditional spatial 
variability of soil properties in stochastic slope stability anal-
ysis. For this purpose, the real slope has been divided into 14 
sections with equal distances. In each section, according to 

the location of known data, the soil parameters are predicted 
by geostatistical methods from the real boreholes into the 
mapped ones and at every mesh element. Then, the stochas-
tic analysis of the sections are carried out using the finite ele-
ment method (FEM). Finally, to obtain the global reliability 
index of the slope, the reliability indices of the sections will 
be combined as a series of system components.

2  Geostatistical Analysis

Geostatistics developed originally in the mining industry 
(Lee 1978), is now being applied widely in geotechni-
cal projects (Kring and Chatterjee 2020). It is based on a 
model of spatially correlated random variation, and esti-
mating the spatial autocorrelation is the first step in the 
geostatistical analysis.

Estimation of the semivariogram is the first step in the 
geostatistical analysis, and the sample semivariogram can 
be represented by several curves corresponding to several 
directions. The semivariogram shows how the dissimilarity 
between Z(x) and Z(x + h) evolves with the separation h.

As mentioned earlier, the first step in the geostatistical 
approach is the variogram analysis. To draw a variogram, 
an experimental semivariogram must be drawn relative to 
their distance. The choice of the distance between two pairs 
of points is expressed based on the direction between them. 
These directions are 0°, 45°, 90°, and 135° with a tolerance 
of 22.5°. In fact, Z(x) is the first data value of the first point 
pair in the desired direction and Z(x + h) is the second data 
in the second point pair. For this purpose, the experimental 
semivariogram for a set of data Z(xi), i = 1,2,… in the krig-
ing method is calculated as follows (Journel and Huijbregts 
1978; Wackernagel 2003; Davison 2013):

where N(h) is the number of pairs of data points separated 
by the particular lag vector h, which is the backbone of any 
geostatistical estimation, which shows how the dissimilar-
ity between Z(x) and Z(x + h) evolves with the separation h.

In the multivariate geostatistical analysis, the spatial 
structure of a pair of cross-correlated variables can be 
described by the cross-semivariogram. The experimental 
cross-semivariogram for random functions Zj(x) and Zk(x) 
is computed using the following equation (Journel and 
Huijbregts 1978; Wackernagel 2003; Davison et al. 2013):

(1)�(h) =
1

2N(h)

N∑
i=1

{[
Z(Xi) − Z(Xi + h)

]2}
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where γjk(h) is the experimental cross-semivariogram, and 
N(h) is the number of pairs of data points, separated by h, 
which have measured values of both random functions Zj(x) 
and Zk(x).

The experimental semivariograms are replaced by a fit-
ted mathematical function as a model or approximation to 
the theoretical model to have a physical meaning. Gener-
ally, the choice of the type of semivariogram functions 
(linear, Gaussian, exponential, and spherical) depends on 
the Residual Sums of Squares (RSS) and the coefficient of 
determination (R2) values; So, a function is selected based 
on the maximum value of the RSS and the minimum value 
of the  R2. With more meaning, the lag distances indicate the 
distance between pairs of points. These pairs of points are 
selected based on the direction between them (0 °, 45°, 90°, 
and 135°). On the other hand, The lag distance at which the 
semivariogram reaches the sill value. Presumably, autocor-
relation is essentially zero beyond the range. Generally, to 
estimate the data of a point, the characteristics of all points 
around it should be used. In general, to be able to use the 
features of the entire environment, semivariograms must be 
used in all directions. In fact, an omnidirectional semivari-
ogram is more effective in estimating unknown data than 
reality.

2.1  Kriging Analysis

The kriging method was developed during the 1960s and 
1970s and has been acknowledged as a good univariate 
geostatistical interpolator tool for interpolation between 
known borehole data (Matheron 1963; Isaaks and Srivas-
tava 1989; Der Kiureghian 2005; Ang and Tang 2007). In 
this paper, it was assumed that the global means of vari-
ables are unknown. Generally, the mean value (Z*(x0)) as 
the linear unbiased estimator and the standard deviation 
value (σok) of the ordinary kriging estimator are defined as 
follows (Matheron 1963; Isaaks and Srivastava 1989; Der 
Kiureghian 2005; Ang and Tang 2007; Webster and Oliver 
2007):

(2)

�(x) =
1

2N(h)

N∑
i=1

[{
Zu(x) − Zu(x + h)

}{
Zv(x) − Zv(x + h)

}]

(3)Z∗(x0) =

N∑
i=1

�iZ(xi)

(4)�2
OK

= �OK − �(xi, xj) +

N∑
i=1

�i�(xi, x0)

where Z (xi), i = 1,2,…, N, is the known data,  x0 is the 
unknown field point and λ is the ordinary Kriging coeffi-
cient, respectively. γ(xi, xj) and γ(x0, xi), i = 1,2,…, N are 
the semivariogram between known points and the semivari-
ogram between known points and unknown points, respec-
tively (Matheron 1963; Isaaks and Srivastava 1989; Der 
Kiureghian 2005; Ang and Tang 2007; Webster and Oliver 
2007). Overall, continue the parameters of the equations in 
the kriging method which are defined in Appendix 2.

2.2  Cokriging Analysis

Cokriging is the multivariate extension of kriging to several 
correlated variables whereby several variables are estimated 
jointly utilizing a best linear unbiased estimator. Between V 
correlated variables, the linear ordinary cokriging estimator 
for variable u at an unknown field point  x0 is (Matheron 1963; 
Isaaks and Srivastava 1989; Der Kiureghian 2005; Ang and 
Tang 2007; Webster and Oliver 2007):

where Z* and Z are, respectively, denoted the estimated and 
measured values of the considered variable. The subscript i 
refers to the  nl locations, of which the variable l is measured. 
The λil are cokriging weights. The minimized cokriging esti-
mation variance is (Matheron 1963; Isaaks and Srivastava 
1989; Der Kiureghian 2005; Ang and Tang 2007; Webster 
and Oliver 2007):

where βu is Lagrange multipliers, and γuu is the direct semi-
variogram. Generally, continue the parameters of the equa-
tions in cokriging method which are defined in Appendix 2.

3  Strength Reduction Technique in Slope 
Stability Analysis

The FEM with the Mohr–Coulomb failure criterion is a 
model for the simulations and solves many problems. In the 
present study, according to the Mohr–Coulomb criterion, 
the soil behavior is modeled as elastic perfectly plastic and 
used as the strength reduction method to solve the problem 
(Matsui and San 1992; Nian et al. 2012; Tschuchnigg et al. 
2015; Arvin et al. 2019). In this method, the soil shear 
strength parameters (effective cohesion and effective fric-
tion angle) decrease at each stage of analysis. The cohesion 

(5)Z∗
u
(x0) =

V∑
l=1

nl∑
i=1

�ilZi(xi)

(6)�2
CK

=

V∑
l=1

nl∑
j=1

�jl�(xj, x0) + �u − �uu(x0, x0)
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and friction angle of the strength reduction technique are 
defined as follows:

where c′ and ϕ′ are effective cohesion and effective fric-
tion angle (shear strength parameters) of soil; the SRF is the 
strength reduction factor. In fact, the value of SRF is usually 
set to a reasonably low value and then increases in each step 
of analysis until slope failure occurs, and this failure value 
is assumed as the FS of the slope.

4  Development and Verification of a Coded 
Program

No software is a combination of FEM and geostatistics; 
therefore, in this research, a finite element-based pro-
gram was coded in MATLAB for deterministic analysis 
of the slope and then extended for stochastic analysis 
by geostatistics. The program was provided for the two-
dimensional, plane strain condition using eight-node 
quadrilateral elements of elastic viscoplastic soil with 
the Mohr–Coulomb failure criterion and a non-associated 
flow rule. The coded program was verified with the pre-
sented model by Smith et al. (2013). The model consisted 
of 355 elements, each having eight nodes and each of 
which with two degrees of freedom in the horizontal and 
vertical directions. The boundary conditions are defined 
by fully restraining the bottom side and horizontally 
restraining the left and right sides of the soil domain. The 
finite element discretization of the slope with boundary 
conditions is presented in Fig. 1. The soil parameters are 

(7)c
r
=

c
�

SRF

(8)�r = arctan

(
tan��

SRF

)

selected by Smith et al. (2013) and were used for verifi-
cation of the coded program. These parameters are sum-
marized in Table 1. The maximum shear strain of the soil 
in the assessed slope by the proposed model and FLAC 
is shown in Figs. 2 and 3, respectively. In this study, an 
example from Smith et al. (2013) has been selected to 

Fig. 1  The finite element discretization and boundary conditions of 
the assessed slope

Table 1  The selected soil parameters for coded program verification 
(Smith et al. 2013)

Soil parameters (Smith et al. 2013) Value

Cohesion (kN/m2) 15
Angle of friction (°) 20
Unit weight (kN/m3) 20
Young’s modulus (kN/m2) 1 ×  105

Poisson ratio 0.30

Fig. 2  The maximum shear strain of the slope

0 10 20 30 40 6050

0

-5

-10

-15

Fig. 3  The maximum shear strain of the slope by FLAC

Table 2  Comparison of the results

Models of analysis FS

Proposed model 1.598
Smith et al. (Smith et al. 2013) ≃ 1.600
FLAC 1.600
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verify the validity of the program. Once this example was 
done using the program coded by MATLAB and another 
time using FLAC software. In the end, the simulation 
results of Smith et al. (2013), the code, and the FLAC soft 
program were compared with each other.

Also, the comparison of the safety factor of slope stability 
for the three models is presented in Table 2. It can be seen 
that the obtained results by the proposed model are close to 
the results of Smith et al. (2013).

5  Procedure for Slope Stability Reliability 
Analysis of the Site

In the previous sections, the methodologies for implement-
ing the geostatistical method to interpolate soil properties 
from sparse sampling points into continuous surfaces were 
described. The main target of this section is to present the 
procedure for the performance of the CSM in slope sta-
bility reliability analysis of a real site (Johari and Fooladi 
2020, 2022). The methodology is shown in Fig. 4. The 
procedure includes two parts to soil parameter predic-
tion (i.e., geostatistical estimations and stochastic analy-
sis), which are repeated by the application of the MCS 
(Malkawi et al. 2001; Tang et al. 2020) and are analyzed 
by FEM. Finally, the safety factor reliability index of the 
global stability and maximum horizontal displacement 
is determined, and the system reliability index of these 
components is calculated. For this purpose, a computer 
program in MATLAB has been developed for combining 
the FEM with the geostatistical method.

6  Characteristic and Geotechnical 
Parameters of the Site 

For evaluating the reliability index of the CSM in slope 
stability stochastic analysis, a site with real data, which 
is located in the Shiraz City of Iran, is considered (Johari 
and Fooladi 2020, 2022). The satellite overview of the site 
is shown in Fig. 5. To investigate the subsurface layer's 
properties, fifteen boreholes were drilled to a depth of 
approximately 25.0 m from the ground surface. In Fig. 5, 
the locations of boreholes and locations of the upper 
and lower lines of the slope are demonstrated. Also, the 
depth and characteristics of the boreholes are expressed in 
Table 6 (Appendix 1). On the other hand, for each bore-
hole, several tests such as grain size, direct shear, and unit 
weight were performed. Based on Table 6, the soil types 
are mainly fine grain size, and a significant part of the 
soil's site is composed of lean clay and silty clay.

On the other hand, the boundary conditions are defined 
by fully restraining the bottom and horizontally restrain-
ing the left and the right sides of the soil domain. Figure 6 
shows the finite element discretization of the real slope 
with boundary conditions.

7  Stochastic Analysis

To compare the slope stability reliability index by CSM, a 
stochastic analysis based on the same soil properties was 
performed (Li et al. 2016a, b, c, d; Xiao et al. 2017). The 
unit weight, cohesion, and friction angle were considered 
stochastic parameters, and the Poisson's ratio and modu-
lus of elasticity were considered deterministic parameters. 
The model consisted of 1080 elements (Fig. 6), each hav-
ing eight nodes and each of which with two degrees of 
freedom in the horizontal and vertical directions. The 
details of a stochastic analysis by the mentioned method 
are presented in the next subsections.

7.1  Stochastic analysis of the slope using the CSM

• In situ experiments can supply soil parameters at the 
location where the experiments are executed, but una-
voidable uncertainty remains at locations that are not 
examined. As a solution, geostatistical approaches are 
employed for considering the effect of uncertainties 
in soil parameter estimation (Johari and Gholampour 
2018a, b). The main purpose of using the geostatisti-
cal technique is to provide the best estimate of the soil 
properties between known data. For stochastic analysis 
by the CSM, the soil parameters are predicted by the 
geostatistical method in the following three steps.

• First, the soil parameters of each specified depth are 
interpolated based on known data from other boreholes 
at the same level. This procedure is shown in Fig. 7 for 
typical BH3. The results of this step are summarized 
in Table 6 of Appendix 1.

• In the second step, the soil properties at each depth are 
predicted in the selected section of analysis based on 
the known data locations of the boreholes. For exam-
ple, based on Fig. 8 for the prediction of the friction 
angle of the soil in the depth of 2.0 m in BH9, all real 
and predicted friction angles in BH1 to BH15 at depth 
2.0 m are utilized.

• In the third step, the soil properties are predicted from 
the data obtained in the second step for all elements in 
the section of analysis. Figure 9 shows a typical proce-
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Fig. 4  Flowchart of the system reliability analysis of slope by the CSM
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dure for the prediction of the soil parameters based on 
the borehole’s data in Sections 5–5. For this purpose, 
only a certain number of near neighbors' known data 
are used for estimation. These neighbors need to be 
within a region (e.g., circular or elliptical) around the 
estimation location.

For geostatistical analysis, four anisotropic models (i.e., 
linear, spherical, exponential, and Gaussian) were exam-
ined to obtain the best fitting of semivariograms. For this 
purpose, two statistical formulations, RSS and  R2 were 
determined to aid the interpolation of model output. Based 
on these statistics formulations, the exponential model was 
selected for cohesion and friction angle, and the linear 
model was selected for unit weight because of its accuracy. 
It should be noted that semivariogram analysis makes it 
possible to estimate the spatial dependence between sam-
ples in horizontal, vertical, and oblique directions. For 
instance, the semivariogram model parameters for cohe-
sion, friction angle, and unit weight are given in Table 3.

Fig. 5  The satellite overview of the site and boreholes arrangement

Fig. 6  Finite element discretization and boundary conditions

Fig. 7  Prediction of unknown soil parameters in each depth of an 
arbitrary borehole, BH3 (first step)

Fig. 8  Prediction of soil parameters in an arbitrary Section  5–5 for 
virtual boreholes, BH’9 (second step)
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In the next step, the geostatistical methods were used 
for the prediction of the mean values of the uncertainties 
parameters (the cohesion, friction angle, and unit weight). 
The results of the three mentioned steps are illustrated in 
Figs. 10, 11, 12 for typical Sections 5–5. Figures 10 and 
12 illustrate the variation of estimated cohesion and angle 
of friction. These figures indicate that the cohesion and 
friction angle values are the stand-in inverse relationship 
to each other.

8  Slope Stability Reliability Analysis

For reliability analysis of the slope stability, the Probabil-
ity Density Function (PDF) of the global safety factor and 
maximum horizontal displacement must be determined. 
To obtain the PDFs, the developed coded program was 
extended for iterative calculations based on MCS. In this 
way, 2000 generations were used. In the MCS, the more 

Fig. 9  Typical elliptical region 
for prediction of soil parameters 
in elements from predicted data 
of the second step parameters in 
an arbitrary Section 5–5 (third 
step)

Table 3  The semivariogram parameters of different models for c, ϕ, 
and γ

Soil param-
eters

Model type Nugget (CO) Sill (CO + C) Range (a)

Cohesion 
(kN/m2)

Exponential 45.60 154.66 75.63

Angle of fric-
tion (°)

Exponential 14.97 87.14 28.45

Unit weight 
(kN/m3)

Linear 0.48 3.42 34.62

Fig. 10  The predicted mean value of the cohesion in an arbitrary Sec-
tion 5–5 by the CSM (kN/m2)

Fig. 11  The predicted mean value of the friction angle in an arbitrary 
Section 5–5 by the CSM ("°")

Fig. 12  The predicted mean value of the unit weight in an arbitrary 
Section 5–5 by the CSM (kN/m3)



3751Iranian Journal of Science and Technology, Transactions of Civil Engineering (2023) 47:3743–3761 

1 3

the number of simulations, the more accurate the statis-
tical output. In solving geotechnical problems based on 
the limit equilibrium method, due to the simplicity of 
the solution, the number of simulations can be increased 
up to 1,000,000. But in solutions based on finite element 
methods, due to the complexity of the solution and the 
length of the output determination process, the number of 
simulations cannot be large. For this reason, it is tried to 
cover a smaller number of simulations with proper fitting 

on the outputs. Of course, in this way, methods with fewer 
simulations such as subset simulation can be used.

On the other hand, since the position of the section analy-
sis affects the results of stochastic analysis by the CSM, 14 
sections (including Sections 1–1 to 14–14) for stochastic 
analysis and determination of PDF were considered. Fig-
ure 13 shows the locations of these sections.

Figure 14 shows the PDFs of the global safety factor 
(FS) for all sections. The PDFs were obtained by fitting a 
log–normal function based on the computed values of the 
mean and standard deviation. In this study, based on the 
obtained data from the boreholes, some values of cohesion 
are close to zero, and since these data have been used for 
geostatistical analysis, therefore, in some elements, the aver-
age value for cohesion is predicted to be close to zero. On 
the other hand, because in the normal distribution to cover 
the range of the data, the data should be considered up to 
four times the standard deviation on both sides of the mean, 
cohesion less than zero was included in the calculations, 
which is not geotechnically correct. Therefore, in this study, 
log-normal distribution is utilized for all random variables. 
Since the log-normal distributions were considered for sto-
chastic soil parameters, it seems sensible to suppose that 
the PDFs of the global safety factor also have a log-normal 
distribution.

8.1  Maximum Horizontal Displacement Safety 
Factor

To determine the system reliability index of the slope, 
the FS of maximum horizontal displacements must be 
obtained. For this purpose, for the different methods, using 
the critical (allowable) maximum horizontal displacements 

Fig. 13  The locations of the different sections in the analysis by the 
CSM

Fig. 14  The PDFs of the global safety factor

Fig. 15  The PDFs of the maximum horizontal displacement safety 
factor
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(0.002H = 2.40  cm (Schlosser et  al. 1991)), the values 
of maximum horizontal displacements were changed to 
maximum horizontal displacements safety factor based on 
Eq. (9). Also,

Figure 15 shows the PDFs of the maximum horizontal 
displacement safety factor for all sections. The PDFs were 
obtained by fitting a log–normal function based on the com-
puted values of the mean and standard deviation. Since the 
log-normal distributions were considered for stochastic soil 
parameters, it seems sensible to suppose that the PDFs of the 
maximum horizontal displacement safety factor also have a 
log-normal distribution.

Based on the importance of the project, the value of the 
critical safety factor is 1.25  (FScritical = 1.25). In fact, the crit-
ical safety factor indicates that a slope is on the boundary 
between stability and instability in this project. The reliabil-
ity index (β) is an alternative measure of safety, or reliability, 
which is uniquely related to the Pf. This parameter can be 
determined from the log-normal distribution of the safety 
factor’s PDF as follows:

(9)FSmax . hor. disp =
Allowablehorizontaldisplacement

Maximumhorizontaldisplacement

(10)
� =

ln

�
1.25 −

�FS√
1+COV2

FS

�

�
ln
�
1 + COV2

FS

�

Generally, the statistical results of the global and maxi-
mum horizontal displacement safety factors are determined 
and summarized in Table 4.

Figure 16 shows the reliability index by the CSM for dif-
ferent sections, respectively. The figure indicates that, due 
to the heterogeneity of the site soil, the reliability index sec-
tions of the analysis do not obey any harmonic trend.

Table 4  The statistical 
parameters of global safety 
factor and a maximum 
horizontal displacement safety 
factor by the CSM

Method of analysis Global safety factor Maximum horizontal displacement 
safety factor

Mean Std Reliability index Mean Std Reliability index

Conditional simulation method (CSM)
Sec. 1–1 1.593 0.123 3.106 1.486 0.057 4.491
Sec. 2–2 1.629 0.124 3.446 1.584 0.047 7.968
Sec. 3–3 1.637 0.131 3.336 1.591 0.040 9.583
Sec. 4–4 1.657 0.124 3.734 1.607 0.038 10.619
Sec. 5–5 1.643 0.126 3.532 1.605 0.042 9.541
Sec. 6–6 1.604 0.128 3.089 1.536 0.064 4.926
Sec. 7–7 1.582 0.132 2.786 1.467 0.068 3.432
Sec. 8–8 1.558 0.138 2.447 1.432 0.076 2.536
Sec. 9–9 1.511 0.129 2.183 1.402 0.049 3.267
Sec. 10–10 1.506 0.125 2.207 1.383 0.052 2.671
Sec. 11–11 1.569 0.133 2.644 1.439 0.064 3.145
Sec. 12–12 1.536 0.141 2.203 1.404 0.051 3.181
Sec. 13–13 1.555 0.151 2.205 1.417 0.060 2.942
Sec. 14–14 1.609 0.14 2.864 1.563 0.051 6.834

Fig. 16  The comparison of the reliability index for the global and 
maximum horizontal displacement safety factors of the analysis sec-
tions
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8.2  System Reliability Analysis of Slope Stability 
Using the SCM

The SCM combines system components two by two, and in 
this way, the complexity of the combination is reduced and 
it will be able to solve big problems in a shorter time. In 
order to determine the overall stability of the site, the sys-
tem reliability index must be determined. For this purpose, 
the reliability index (β) of the global and maximum hori-
zontal displacement safety factors, which are summarized 
in Table 4, must be compounded with each other. In this 
research, the sequential compounding method (SCM) (Kang 
and Song (2010); Zhang et al. 2017; Peng et al. 2020; Johari 
and Lari 2020) was utilized for jointing the components and 
determining the system reliability index. In this way, the 
system was taken as a series system, and correlation coef-
ficients between the section (components) were determined 
using their PDF data.

For compounding a series system consisting of several 
components (E1, E2, E3…) with reliability indices (β1, β2, 
β3…), the reliability index (β1or2) of the compound event 
E1or2 = E1 ∪ E2 must be determined firstly by univariate nor-
mal integration of P(E1 ∪ E2) as follows (Kang and Song 
(2010); Thoft-Christensen and Murotsu 2012; Johari and 
Lari 2020):

(11)

�1or2 = − Φ−1
�
P(E1UE2)

�
= −Φ−1

�
1 − Φ2(�1, �2;�1,2)

�

= − Φ−1

⎡⎢⎢⎣
Φ(�1) + Φ(�2) +

�1,2

∫
0

�2(�1, �2;�)d�

⎤⎥⎥⎦

It is noteworthy that, in a series system, the failure of any 
component causes the failure of the system, and in joining 
the components (random variables), correlation specifies the 
association between two random variables. In another case, 
the correlation coefficient between the new compound event 
 E1or2 and other components events (ρ(1or2),k) in the system 
is obtained. The mentioned steps must be repeated for all 
components to determine the reliability index of the system. 
Figure 17 shows an arbitrary example for obtaining a cor-
relation between the global safety factor for Sections 1–1 
and 4–4. In the same way, Fig. 18 indicates the correlation 
between maximum horizontal displacement safety factors 
for Sections 1–1 and 3–3. In fact, these correlations are ana-
lyzed based on MCS and are used for the system reliability 
analysis.

Generally, the correlation matrix of the global and maxi-
mum horizontal displacement safety factor between each 
section based on Table 4 is shown in Fig. 19.

The stepwise procedure for combining the global safety 
factor of sections by SCM is shown in Fig. 20. It can be seen, 
after the combination, the system reliability index of the 
global safety factor is equal to βsys = 1.551. The same as the 
global safety factor, the stepwise procedure for combining 
the maximum horizontal displacement safety factor of sec-
tions by SCM is shown in Fig. 21. This figure shows, after 
combining the components, the system reliability index of 
the maximum horizontal displacement safety factor is equal 
to βsys = 2.238. 

(12)Φ(�) =

�

∫
−∞

1√
2�

e
−

1

2
x2dx

Fig. 17  Typical of the correlation coefficient between Sections  1–1 
and 5–5 of The global safety factor

Fig. 18  Typical of the correlation coefficient between Sections  1–1 
and 4–4 of the maximum horizontal displacement safety factor
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Using the global and maximum horizontal displace-
ment safety factor, the system reliability index of the CSM 
was calculated and is shown in Table 5. Furthermore, the 
exertion of borehole characteristics (location of the known 
data) gives near-realistic safety factors and reliability 
indices.

9  Conclusions

Slope stability analysis is a branch of geotechnical engineer-
ing that is highly amenable to probabilistic treatments. The 
reliability analysis of slope stability has received consider-
able attention in the past few years. In this field, there have 
been limited studies carried out in the literature implement-
ing the effects of the conditional spatial variability of soil 

properties. This paper proposed a practical approach for 
obtaining a reliability index of slope stability considering 
the location of the known data. For this purpose, computer 
programing was developed in MATLAB for combining 
the FEM with the geostatistical approach and random field 
theory. To account for the practical aspect of the research, a 
real site with fifteen boreholes was considered, and the slope 
was analyzed by the CSM.

To implement the effect of the conditional spatial vari-
ability of soil properties, the real slope was divided into 14 
sections with equal distances. In each section, according to 
its location, soil parameters were predicted by geostatistical 
methods from the actual boreholes based on the hypotheses 
boreholes and, finally, in the cross-sectional mesh elements. 
In the next stage of the research, to obtain the global reliabil-
ity index of the slope, the reliability indices of the sections 

Fig. 19  The correlation matrix (a) Global safety factor and (b) Maximum horizontal Displacement safety factor for the system reliability analy-
sis
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were combined with each other as a serial component of 
the system.

Due to the importance of the maximum horizontal 
displacement control of slope, the global and maximum 
horizontal displacement safety factors were determined, 
and the system reliability index was calculated. Results 
show that considering the effect of the conditional spatial 
variability of soil properties causes the different reliability 

indices of the global safety factor and maximum horizon-
tal displacement in selected sections. In other words, the 
analyses without considering the location of the known 
data give a higher-confidence reliability index than real 
values. Furthermore, the exertion of the location of the 
known boreholes data gives near-realistic safety factors 
and reliability indices.

Fig. 20  Determination stages of the system reliability index for the global safety factor
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Appendix 1

The depth and coordinates of boreholes and the result of the 
first step estimation by the geostatistic method are shown 
in Table 6.

Appendix 2

The general equation of the geostatistical estimation in the 
kriging and cokriging methods is defined as follows:

Kriging Method
 

(13)ΛΓ = �

(14)Γ =

⎡
⎢⎢⎢⎢⎢⎣

�1
�1
⋮

�N
�OK

⎤⎥⎥⎥⎥⎥⎦

Fig. 21  Determination stages of the system reliability index for the maximum horizontal displacement safety factor

Table 5  System reliability 
indices of the site

Method of analysis CSM

Global safety factor 1.551
Maximum horizontal 

displacement safety 
factor

2.238

System reliability index 1.459
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Table 6  The results of the first-step prediction by the geostatistical method for analysis by the CSM

BH1 X = 46 m Y = 71.00 m BH2 X = 89.00 m Y = 60.00 m

Depth (m) Classification γ (kN/m3) ϕ (°) c (kN/m2) Depth (m) Classification γ (kN/m3) ϕ (°) c (kN/m2)

2 CL-ML 17.40 24.89 18.00 2 CL-ML 17.30 19.00 22.00
4 CL-ML 17.30 25.00 10.00 4 ML 16.80 31.00 4.00
6 CL 17.20 25.00 14.00 6 CL-ML 17.70 19.40 18.28
8 CL-ML 16.90 21.04 20.80 8 CL-ML 17.80 21.52 24.13
10 CL 17.20 24.00 13.00 10 ML 16.90 25.61 13.00
12 CL-ML 17.30 23.52 12.01 12 ML 17.00 23.00 15.00
14 ML 16.80 21.65 21.10 14 ML 17.10 21.00 24.21
16 ML 16.90 32.00 10.00 16 ML 17.10 26.23 21.63
18 CL-ML 17.40 21.96 14.97 18 ML 17.20 23.00 14.57
20 CL-ML 17.30 24.55 17.94 20 ML 17.20 24.82 19.50
22 ML 17.00 29.00 11.00 22 CL-ML 17.30 23.99 14.95
24 SP-SM 20.10 38.00 2.00 24 ML 17.10 32.69 17.00
26 GP 20.50 38.00 3.00 26 ML 19.10 36.97 2.89

BH3 X = 91.00 m Y = 122.00 m BH4 X = 64.00 m Y = 132.00 m

2 GP 20.40 35.10 7.86 2 GM 20.20 37.00 7.00
4 GP 20.40 33.98 1.00 4 ML 16.70 33.71 2.02
6 CL 17.20 12.73 23.42 6 CL-ML 17.60 13.96 22.24
8 GP-GM 17.20 18.64 15.33 8 ML 16.80 19.00 17.00
10 GM 17.40 26.31 19.00 10 CL-ML 17.10 26.54 16.63
12 GP 17.50 22.81 14.89 12 CL-ML 17.00 23.00 15.00
14 CL 17.10 24.00 15.00 14 CL-ML 17.00 24.12 15.70
16 CL-ML 17.40 24.64 22.31 16 CL 16.90 23.00 30.00
18 CL 17.20 29.00 11.00 18 CL 16.90 24.24 14.84
20 CL-ML 17.40 24.98 18.76 20 CL 17.00 24.98 18.57
23 CL-ML 17.50 21.00 30.00 23 CL 17.00 22.7 20.61
25 CL 17.10 27.00 1.84 25 CL-ML 17.20 37.46 1.63

BH5 X = 85.00 m Y = 132.00 m BH6 X = 52.00 m Y = 112.00 m

2 GP-GM 20.10 36.07 7.98 2 GM 20.2 38.00 3.00
4 CL 17.10 34.26 2.22 4 ML 16.80 34.14 1.98
6 CL 16.90 12.00 24.00 6 CL-ML 17.70 17.35 18.63
8 CL 17.00 18.83 15.60 8 ML 17.00 19.00 13.00
10 CL 17.20 27.00 19.00 10 CL 16.90 25.94 14.02
12 SC 19.80 22.41 14.72 12 CL 16.80 22.71 14.98
14 CL 17.20 25.00 17.00 14 CL 16.90 23.05 16.09
16 CL 17.20 24.32 22.49 16 CL 16.90 26.53 22.8
18 CL-ML 17.40 24.00 10.00 18 CL 17.00 23.00 27.00
20 CL 17.10 24.83 19.00 20 CL-ML 17.20 24.97 18.31
22 CL 17.10 25.00 19.00 23 ML 17.20 24.00 13.00
24 CL 16.90 26.49 17.00 25 CL 17.40 25.00 1.59
26 CL 19.90 38.00 2.85 – – – – –

BH7 X = 42.00 m Y = 91.00 m BH8 X = 58.00 m Y = 41.00 m

2 CL 17.10 28.00 18.00 2 CL-ML 17.70 17.00 20.00
4 CL 17.00 33.43 1.92 4 CL 17.30 29.66 5.67
6 CL 17.40 22.00 15.00 6 CL 17.60 21.36 17.68
8 CL 17.50 19.72 14.33 8 CL 17.70 21.00 30.00
10 CL-ML 17.40 27.00 11.00 10 CL 16.90 22.75 14.99
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Table 6  (continued)

BH7 X = 42.00 m Y = 91.00 m BH8 X = 58.00 m Y = 41.00 m

12 CL-ML 17.40 22.87 15.00 12 ML 17.10 24.08 12.50
14 CL 17.20 22.00 15.00 14 CL-ML 17.10 20.12 27.51
16 CL 17.10 28.77 16.09 16 CL-ML 17.20 25.77 19.56
18 CL 17.10 20.00 12.00 18 ML 16.90 23.00 15.00
20 SC 20.00 24.97 17.99 20 ML 16.90 24.58 19.08
22 CL 17.20 25.74 14.76 23 CL-ML 17.30 23.00 15.00
24 GC 20.60 34.15 5.28 25 CL-ML 17.40 26.13 1.83
26 GM 20.40 37.49 3.00 – – – – –

BH9 X = 11.00 m Y = 37.00 m BH10 X = 15.00 m Y = 12.00 m

2 CL-ML 17.30 24.00 10.00 2 CL 17.50 23.76 21.34
4 GP 20.30 29.00 6.50 4 SM 19.80 33.00 3.00
6 CL 17.10 15.94 21.41 6 CL-ML 17.70 13.00 24.00
8 CL 17.40 22.10 20.05 8 CL 16.90 23.00 12.00
10 CL-ML 17.40 23.68 13.63 10 CL 16.80 23.11 14.32
12 ML 16.90 24.00 9.00 12 ML 17.10 24.00 14.00
14 CL 17.30 20.53 24.47 14 ML 17.20 20.41 24.89
16 CL 17.30 35.00 3.00 16 ML 17.20 30.89 3.00
18 GC 17.40 22.81 15.22 18 CL 17.00 22.18 16.08
20 CL-ML 17.50 25.00 9.00 20 CL 17.10 23.00 30.00
22 CL-ML 17.50 13.00 25.00 23 CL 17.10 25.03 12.75
24 CL-ML 17.40 32.00 3.00 25 CL 17.20 26.01 1.76
26 GP 20.50 36.91 2.4.00 – – – – –

BH11 X = 37.00 m Y = 16.50 m BH12 X = 55.00 m Y = 16.50 m

2 CL 17.20 22.55 24.61 2 CL 17.20 18.00 32.00
4 CL-ML 17.40 25.00 10.00 4 CL 17.10 29.67 5.67
6 CL 17.20 15.86 22.25 6 CL 17.20 19.35 20.58
8 CL 17.30 21.93 20.93 8 CL 17.20 21.82 21.75
10 CL 17.30 25.00 14.00 10 CL-ML 17.10 20.00 17.00
12 CL 17.30 24.34 11.67 12 CL 16.90 24.52 12.39
14 CL-ML 17.70 20.04 25.13 14 CL 16.90 20.87 25.32
16 CL 17.40 29.04 15.45 16 CL 16.80 26.5 21.14
18 CL 16.90 23.00 14.00 18 ML 17.10 22.61 14.83
20 CL 16.90 24.62 16.64 20 SM 19.70 26.00 4.00
22 CL 17.10 20.46 16.64 23 CL 17.10 27.00 11.00
24 CL 17.10 33.53 3.06 25 GM 20.40 37.00 3.00
26 GP 20.60 37.00 2.00 – – – – –

BH13 X = 80.00 m Y = 6.00 m BH14 X = 72.00 m Y = 33.00 m

2 CL-ML 17.40 23.00 13.00 2 CL 17.20 18.00 30.00
4 SM 20.00 31.00 4.00 4 CL 17.10 28.00 7.00
6 CL 16.90 22.00 20.00 6 CL 17.10 20.91 18.82
8 ML 17.00 21.57 23.52 8 CL 16.80 21.00 27.00
10 CL-ML 17.40 21.83 16.58 10 CL 16.80 22.48 15.71
12 CL-ML 17.40 25.00 12.00 12 CL 16.90 24.14 13.5
14 ML 16.90 20.68 25.04 14 CL 16.90 20.42 26.61
16 ML 16.90 25.80 18.71 16 CL 17.10 20.00 17.52
18 ML 17.10 22.50 15.16 18 CL 16.90 22.46 14.7
20 CL 17.30 24.71 17.51 20 CL 17.10 24.00 29.00
22 CL-ML 17.40 22.00 10.00 23 CL 17.10 24.25 13.38
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 where Γ and γ are the vector of the ordinary kriging coef-
ficient and the semivariogram between known points and 
unknown points, respectively. In fact, γ(x0, xi) is a linear 
function in the geostatistical estimation for unit weight in 
this study. Λ is the matrix of the semivariogram between 
known points. c0 and c are nugget and structural variance, 
respectively. ‘h’ and ‘a’ are the distance between two points 
and ranges, respectively. A1 and A2 are the larger effective 
length and smaller effective length, respectively. θ and φ 
are the angles corresponding to the maximum parameter 
changes and the angles between pairs of points relative to 
the vertical direction, respectively.

(14)γ =

⎡
⎢⎢⎢⎢⎢⎣

γ(x0,x1)
γ(x0,x2)
⋮

γ(x0,xN )
1

⎤⎥⎥⎥⎥⎥⎦
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⋮ ⋮ ⋱ ⋮ ⋮
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Cokriging Method
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Table 6  (continued)

BH13 X = 80.00 m Y = 6.00 m BH14 X = 72.00 m Y = 33.00 m

24 CL-ML 17.40 32.00 3.64 25 CL 17.10 26.01 1.48
26 GM 20.30 35.00 4.00 – – – – –

BH15 X = 79.00 m Y = 33.00 m

2 CL 17.10 22.00 18.00
4 CL 16.90 29.67 5.67
6 CL 17.10 19.69 19.17
8 CL 17.10 23.00 12.00
10 CL 17.10 22.94 15.07
12 CL-ML 17.40 24.08 12.5
14 CL 16.80 21.00 30.00
16 CL 16.90 26.96 17.16
18 CL 16.90 22.74 14.90
20 CL 17.00 24.76 16.48
23 CL 17.00 24.35 13.34
25 GM 20.50 38.00 0.00
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where Γuv is the semivariogram matrix between two adjacent 
points. buu and buv the semivariogram vectors for variables u 
and cross-variograms, respectively. λ vector is the ordinary 
cokriging coefficient.
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