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Abstract
Increases in greenhouse gas emissions have encouraged the replacement of fossil fuels with renewable energy sources. This 
paper investigates the potential of wind energy as a renewable resource for producing agricultural water. For this subject, a 
multivariate joint function was developed to estimate the wind speed and duration in different return periods. The maximum 
likelihood estimator, Bayesian information criterion, and Akaike information criterion were used to determine probabilistic 
fit priorities. Furthermore, a multi-objective framework was examined to highlight the importance of incorporating wind 
energy consideration into risk-based irrigation planning. Non-dominated sorting theory and a water cycle algorithm were 
combined to find the optimal strategies for maximization of water productivity and minimization of energy consumption. 
Miandoab plain in the Urmia Lake basin was conducted as a case study to simulate the cropping pattern based on the pro-
posed probabilistic analysis framework for the characterization and optimization of water allocation in agricultural lands. The 
field data and conceptual model were evaluated from October 2021 to September 2022. The results showed that the Frank 
joint function was the best option for multivariate analysis of wind variables with a maximum likelihood estimator of 11.2. 
Specifically, the application of wind energy to withdraw irrigation increases agricultural water productivity by about 0.38%.
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1  Introduction

Water resource analysis with a simulation–optimization 
framework to determine the water and energy relationship 
and its limitations is a major component of the decision-
making process (Buenoa and Carta 2006; Celik and Kolhe 
2013; Guo et al. 2021; Hou et al. 2021). Many optimization 
problems have been developed and applied in agricultural 
water management, such as reservoir operation (Wang et al. 
2021), cropping pattern (Lalehzari and Kerachian 2020, 
2021), irrigation scheduling (Lalehzari et al. 2016; Li et al. 
2021), water distribution networks (Wang et al. 2022), and 
climate consideration (Huang et al. 2021). Water exploita-
tion for agricultural activities requires electrical energy. A 
pumping system uses about 0.6 MWh to lift 1000 m3 of 

water a distance of 50 m. The amount of energy required to 
extract 1000 m3 of groundwater for irrigation was recorded 
in the range of 0.43 to 1.78 MWh (Brahmi and Chaabene 
2012). Guerrero et al. (2020) provided a range of estimates 
of 0.5 to 2 MWh for similarly extracted groundwater. The 
applied electrical energy values are often the largest com-
ponent of irrigation cost in a water supply system, which are 
expended to lift water from an aquifer to the ground surface, 
overcome friction in pipes and pumps, and pressurize the 
water for introduction into irrigation systems (Fallah-Meh-
dipour et al. 2012; Sun et al. 2021).

The application of wind energy for water resource man-
agement can provide a major component for achieving sus-
tainable strategies. Wind energy was commonly used to 
provide mechanical power for pumping water and grinding 
grain until the early twentieth century. The emergence of 
fossil fuels was synchronous with the decline in wind as a 
power source for the remainder of the twentieth century (Ma 
et al. 2021). Increasing concerns with the adverse impacts of 
fossil fuels on the environment has encouraged the develop-
ment of clean, renewable energy sources, wind among them, 
over the last decade. Although wind energy was used for 
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elementary applications in the past, it is currently a clean 
resource for electricity production or energy supply in agri-
culture and other activities in rural areas and has not been 
given due consideration in previous water resource investi-
gations (Fallah-Mehdipour et al. 2013; Bolouri-Yazdeli et al. 
2014; Ashofteh et al. 2015).

Parikh and Bhattacharya (2003) discussed the possibility 
of using windmills for lifting irrigation water. For the wind 
velocity pattern considered in their study, it was found that 
1.214 ha of wheat and mustard could be irrigated during 
winter if the daytime pumped volume of water was used for 
irrigation. If nighttime discharge was also utilized, a mini-
mum cropping area of 1.94 ha was possible. Panda et al. 
(1998) determined the investment per unit of water supplied 
and the levels of daily irrigation demand satisfied by the 
most economic windmill irrigation system at various levels 
of risk. Kumar and Kandpal (2007) estimated and compared 
the utilization potential of different renewable energy-based 
pumps for irrigation water pumping in India. Results showed 
that solar photovoltaic (SPV) pumps have the greatest utili-
zation potential in India, followed by windmill pumps.

Carta et al. (2008) developed a flexible joint probability 
function for use in wind energy analysis. A normal–Weibull 
mixture distribution and a finite mixture of von Mises func-
tion were used to predict wind speed and direction. The pro-
posed model was applied to wind speed and direction data 
recorded at several weather stations located in the Canary 
Islands (Spain). The proposed method showed the correla-
tion between wind speed and direction. Wang and Liu (2021) 
proposed an assessment method for wind energy using finite 
mixture statistical distributions based on wind speed, direc-
tion and power data, and model parameters of null or low 
wind speed and multimodal wind speed data were estimated 
based on an expectation–maximization algorithm. A two-
component three-parameter Weibull mixture distribution 
was chosen for modeling the distribution of wind power 
density. Moreover, a von Mises mixture distribution with 
nine and six parameters was considered as the wind direction 
model. The proposed method was judged by the coefficient 
of determination, histogram plot, root-mean-square error, 
and wind rose diagram. Wang and Wu (2022) developed 
a statistical analysis framework to jointly evaluate wind 
duration, direction, and speed. The wind data were used to 
analyze the probabilistic duration from a refined hurricane 
track model. In the proposed model, the wind duration is 
measured with the over-threshold method based on numeri-
cally generated wind data.

A review of previous studies suggests the need for a sus-
tainable decision-making system to determine the role of 
energy in the food production cycle. Rising greenhouse gas 
concentrations and global warming have led researchers 
to seek ways to replace fossil fuels with renewable energy 
sources. Therefore, wind energy as a source of renewable 

energy can be considered in extracting water needed by the 
agricultural sector. Integrated management of this inter-
connected structure requires the development of a compre-
hensive simulation model of the food-water-energy nexus 
based on economic risk and uncertainty analysis. Therefore, 
in this paper, the planning of a multivariate probabilistic 
model based on long-term wind speed and duration data is 
considered to provide the required input for a comprehensive 
simulation–optimization framework for maximizing water 
productivity. The priorities and constraints governing water 
extraction and distribution in agriculture are formulated, 
with emphasis on the allocation of water and energy, the 
role of periodic drought stresses, economic parameters and 
rainfall in planning.

2 � Material and Methods

2.1 � Main Structure

The development of the proposed model of sustainable 
water and energy management requires detailed analysis of 
various components of the complex framework and search 
for relationships between them, and finally determining the 
algorithm governing the problem. This system will simulate 
the desired results by receiving various input parameters 
and optimizing them in the form of several predefined con-
straints. The general state of the problem has eight steps in 
which the planning process and its solution method will be 
performed according to the flowchart shown in Fig. 1.

The proposed process can be summarized as follows: (i) 
simulating the water allocation system in the agricultural 
lands (with sub-programs for calculating production func-
tions, transmission and distribution system); (ii) generating 
the wind energy model based on the probabilistic estima-
tion of wind speed and duration for use in the energy gen-
eration simulation system (using bivariate joint functions); 
(iii) mathematical model planning in the form of multi-
objective optimization (confrontation of water and energy 
consumption goals within the feasible domain of economic 
constraints, cropping pattern, etc.); and (iv) introducing and 
evaluating the developed model in Miandoab Plain as a case 
study. Daily time steps were used for the simulation process, 
which is defined as real-time modelling (Lalehzari and Kera-
chian 2020).

2.2 � Cropping Pattern

Agroecosystem management will be planned based on the 
five components of water, land, climate, economy and pro-
duction. As shown in Fig. 1, land-use change policies with 
the aim of yield production is one of the main constraints. 
Economic factors seem to have been a determining factor 
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in land allocation for food security. Moreover, the impact 
of climate change on agricultural development policies and 
cropping pattern formulation is considered. Obviously, water 
is the decision-making factor for agroeconomic manage-
ment. Therefore, the following formulations are considered 
for developing the simulation model as the first objective 
function (OF1).

One of the main issues in water allocation for food secu-
rity is the simulation of yield production, which has so far 
often been based on the guidelines of the Food and Agri-
culture Organization of the United Nations No. 33. Various 
studies have been performed using this relationship, which is 
based on the ratio of actual/potential evapotranspiration and 
a sensitivity coefficient. In this research, production func-
tions based on the role of water stress and water quality will 
be generated using the functions developed in the new FAO 
guidelines for the study area. Therefore, the second objec-
tive will be the relative efficiency of water consumption to 
maximize yield production as follows.

(1)

OF1 → maxYP =
N
∑

n=1

(

1 − Kyn

(

1 −
(

In + Pn
)

/ T
∑

t
CtnETtn

))

× RY

where YP = Non-dimensional yield productivity; Pt = pre-
cipitation in growth stage n (mm); I = allocated water as the 
decision variable (mm); ET is the maximum evapotranspira-
tion (mm), Ct = the crop coefficient in each stress period t 
and N = the number of simulation periods. The constraints 
considered on this planning system are summarized as 
follows.

(2)RY =

T∑

t=1

CtETt

/
T∑

t=1

It + Pt

(3)
P∑

p=1

Ap = A

(4)Bp = WP∗
p

D∑

d=1

Trd∕ETad

(5)Ip =

N∑

n=1

ETapn

Fig. 1   The main components of 
an agroeconomic management 
model
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where RY = a relationship for evaluating the evapotranspi-
ration and irrigation ratio, A = cultivated area (h); p = crop 
number, B = biomass (kg), WP* = normalized water pro-
ductivity, Tr = transpiration (mm/day), CR = the time period 
coefficient; FR = 125; Ra = rainfall (mm).

Furthermore, the transpiration of plants and evaporation 
from the soil surface depend on the moisture content of dif-
ferent soil layers. Runoff, deep percolation and evaporation 
are components of water balance that determine the amount 
of losses in each planning scenario and play a role in choos-
ing the best cropping pattern strategy. Irrigation time can 
be estimated according to the time interval between rainfall 
and irrigation and reaching soil moisture at the permanent 
wilting point.

2.3 � Wind Energy

Considering the concern regarding the effects of fossil fuels 
on the environment and their non-renewability, the devel-
opment of clean energy production knowledge over the 
past decade has been increased. Therefore, wind power has 
been used as a way to generate energy to supply mechanical 
power to pump water. These systems are simple turbines 
that supply mechanical energy for water exploitation. In this 
research, a simulation model of wind energy generation will 
be developed based on the following method. Power gener-
ated by a wind turbine will be estimated from the following 
equation.

where Ft = wind energy (W) at time t; ρa = air density 
(1.2 kg/m3); T = turbine wheel diameter (m) and ut = the 
wind speed (m/s) at time t. The wind energy with a wind 
turbine (J) is obtained by multiplying the force and the time 
of power generation.

where t = the time interval (s); μ = wind turbine effi-
ciency at time t; γw = the unit of water weight (9.81N/m3), 

(6)Ipn =

D∑

d=1

ETad ∀n = 1, 2,… ,N

(7)P =
(
FR − 0.2CRRa

)
Ra∕FR ∀Ra ≤ 2FR∕CR

(8)P =
(
FR∕C

R

)
+ 0.1Ra ∀ Ra > 2FR∕C

R

(9)Ft =
1

2
�a
(
�(T∕2)2

)
u3
t

(10)OF2 → minEt = Ft × � × t = �w × Qt × Hd

Q = pumping flow rate (m3/s), and H = the height of water 
pumping from the well into the tank (m). For economic eval-
uation, it is necessary to estimate the amount of investment 
in the study year compared to the base year as a constraint. 
Thus:

where CRF = the return on investment, i = the interest rate, 
n = the number of years since the base year, AC = the total 
cost, and CR, CW and CC are the cost of reservoir construc-
tion, wind turbine and cropping pattern, respectively.

According to the conceptual structure, two variables—wind 
speed and wind duration—are needed to calculate the second 
objective function. Therefore, wind characteristics were esti-
mated using hourly data (Carta et al. 2008) recorded at Mian-
doab whether station from 2002 to 2022. The probabilistic 
modeling was carried out according to the copula joint func-
tions. For more details, please refer to Chen and Guo 2019.

The other constraints of a comprehensive decision-making 
system addressed in this study will be divided into five gen-
eral categories: water availability, irrigation scheduling, and 
energy, technical, and economic constraints. The developed 
model will be optimized using the water cycle algorithm based 
on the theory of non-dominated sorting and crowding distance.

2.4 � Non‑dominated Sorting Water Cycle Algorithm

The non-dominated sorting test was inspired by an economics 
theory to evaluate solutions based on the domination ability 
(Deb et al. 2002). A genetic algorithm was the initial tech-
nique used to optimize the process. In this study, a water cycle 
algorithm is incorporated into this framework for increasing 
convergence.

The water cycle algorithm (WCA) starts by generating an 
initial population known as raindrops. The best member (the 
best drop of water) is selected as the sea. After that, some of 
the raindrops with superior position are considered as rivers 
and the rest of the raindrops are considered as streams that 
flow towards the rivers and the sea. In a multidimensional 
optimization problem, a raindrop is an array in the form of 
Nvar × 1. This array is defined by Eq. (13).

where X1 to XNvar represent the decision variables. To begin 
with, a sample of the raindrop matrix of Npop × Nvar is ran-
domly generated.

(11)CRF =
i × (1 + i)n

(1 + i)n − 1

(12)AC = (CRF × (CR + CW+ CF) + CC + CR + CW)

(13)Raindrop = [X1,X2,X3, ...,XNvar]
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where Npop and Nvar are the number of raindrops (initial 
population) and the number of variables, respectively. The 
values of the cost function (C) are obtained from Eq. (15).

where Ci is the objective value of each drop. In the first step, 
Npop number of raindrops are generated and then NSR number 
of the best drops (minimum value) are selected as sea and 
river. A raindrop with the smallest amount is considered as 
a sea drop. NSR is the sum of the number of rivers (which 
is a practical parameter) and a sea (Eq. 16). The rest of the 
population (streams that may flow into rivers or directly into 
the sea) is calculated using Eq. (17).

In order to determine or allocate raindrops to rivers and 
the sea, depending on the intensity of the flow, Eq. (18) is 
used.

where NSn is the number of streams that flow into certain 
rivers or the sea. A stream flows until it reaches the river 
along the connecting line between them using a randomly 
selected distance, which is determined according to Eq. (19).

where C is a value between 1 and 2 (close to 2), and the 
best value for C is considered as equal to 2; d is the distance 
between the stream and the river, and X is a random number 
distributed uniformly between zero and (C × d). The new 
position of streams and rivers can be calculated with the 
following equations.

(14)

Population of raindrops =

⎡

⎢

⎢

⎢

⎢

⎣

Raindrop1
Raindrop2

⋮
RaindropNpop

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

X1
1X

1
2X

1
3 ⋯ X1

Nvar

⋮ ⋱ ⋮

XNpop

1 XNpop

2 XNpop

3 ⋯ XNpop
Nvar

⎤

⎥

⎥

⎥

⎦

(15)
Ci = Costi = f

(
Xi
1
,Xi

2
,Xi

3
,… ,Xi

Nvar

)
, i = 1, 2, 3,… ,Npop

(16)
NSR = Number of Rivers +

sea

⏞⏞⏞

1

(17)NRaindrops = Npop − NSR

(18)

NSn = round

����
���

Costn
∑NSR

i=1
Cost i

���
���

× NRaindrops

�

, n = 1, 2,… ,NSR

(19)X ∈ (0,C × d), C > 1

where rand is a random number uniformly distributed 
between zero and 1. If the solution provided by a stream is 
better than the river connected to it, the position of the river 
and the stream will change. This exchange can happen in 
the same way for rivers and sea. One of the most important 
factors preventing the algorithm from quickly converging 
and becoming trapped in local optima is evaporation. The 
process of evaporation causes the sea water to circulate again 
in the form of rivers or streams. Equation (22) shows how to 
determine whether the river flows into the sea or not.

where dmax is a small number (close to zero). Therefore, if 
the distance between the river and the sea is less than dmax, it 
means that the river has reached the sea. In this situation, the 
evaporation process takes effect, and after sufficient evapora-
tion, precipitation will begin. The value of dmax decreases in 
each iteration according to the following equation.

After evaporation is estimated, a precipitation term is 
applied. In the precipitation process, new raindrops form 
streams at different locations. Equation (24) shows the new 
location of newly formed streams.

where LB and UB are the lower and upper bounds defined 
by the problem, respectively. The best newly formed rain-
drops are considered as rivers and the remaining raindrops 
are considered as new streams flowing into rivers. In the next 
step, Eq. (25) is used to increase the speed of convergence 
and computational performance of the algorithm.

where µ is a coefficient that shows the feasible domain near 
the sea, and randn is a random number of normal distribu-
tion. Large values of µ increase the possibility of leaving the 
feasible region, and small values of µ lead to the search of 
the algorithm in a smaller region near the sea. The appro-
priate value of µ was determined as 0.1. The criterion of 
convergence in this research is to reach a maximum number 
of repetitions equal to 5000.

(20)Xi+1
Stream

= Xi
Stream

+ rand × C × (Xi
River

− Xi
Stream

)

(21)Xi+1
River

= Xi
River

+ rand × C × (Xi
Sea

− Xi
River

)

(22)if
|
|
|
Xi
Sea

− Xi
River

|
|
|
< dmax, i = 1, 2, 3… ,NSR − 1

(23)di+1
max

= di
max

−
di
max

max iteration

(24)Xnew

Stream
= LB + rand × (UB − LB)

(25)Xnew

Stream
= XSea +

√
� × randn(1,Nvar )
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3 � Study Area

The Miandoab Plain with an area of approximately 1200 
Km2 is located in the south of Urmia Lake. The geographical 
coordinates of the study area are between 36° 50′ and 37° 
15′ east longitude and 45° 52′ and 46° 11′ north latitude. The 
location of this plain is shown in Fig. 1. Its potential evap-
otranspiration rate is estimated at 742 mm. The Zarrineh 
irrigation and drainage network is located in a plain with an 
area equal to 586 km2. The average annual rainfall during 
the period 1992–2022 is about 285 mm/year according to 
the recorded data at Miandoab synoptic station. This region 
has a cold and semi-arid climate based on meteorology data 
analysis and the empirical Emberger method (Norouzi Gho-
shbelag et al. 2019). According to the hydrological, agricul-
tural and environmental conditions of the region, the area is 
suitable for evaluating the developed models (Fig. 2).

To develop the decision-making system and evaluate 
the role of wind energy in agricultural water allocation, the 
cropping pattern of the Miandoab Plain in 2022 is summa-
rized in Table 1. The average yield production (YP) and 
irrigation (I) were collected based on field measurements, 
face-to-face interviews and questionnaires. The crop water 
requirement (CWR) was estimated based on the method 
reported by Allen et al. (1998).

4 � Results and Discussion

4.1 � Probabilistic Analysis

The univariate frequency functions applied to the joint 
framework of wind speed and duration are summarized in 
Table 2. The error analysis using Kolmogorov–Smirnov, 
Anderson–Darling and chi-square tests showed that the 
log-Pearson (LP) and log-normal (LN) estimators are suit-
able functions for predicting the wind speed and duration, 
respectively.

In the next step, correlation coefficients should be deter-
mined for evaluating the proportion of the wind variables. 
Figure 3 indicates the correlation coefficients considered in 
this study including τ Kendall, ρ Spearman and Pearson. 
Furthermore, the superior joint function was selected based 
on the maximum likelihood estimator as shown in Fig. 3. 
According to the figure, the Archimedean Frank copula fits 
acceptably for wind speed and duration. Considering the 
estimated correlation values and the effect between wind 
speed and duration, the probabilistic modeling approach is 
adopted to construct the joint probability density function 
of wind speed and duration.

Furthermore, Akaike information criterion (AIC), 
Bayesian information criterion (BIC), and the coefficient 

of determination (R2) were incorporated into the goodness-
of-fit evaluation for selecting the suitable joint function as 
shown in Table 3 (Wang et al. 2021).

Estimating the return periods is an essential component 
in calculating the wind energy for agricultural water sup-
plementation. In this study, return periods were obtained 
using the Frank function (Table 4). The results showed that 
the application of the bivariate joint method reduced the 
expected amount for each event calculated by the univariate 
method and can be effective in designing and evaluating the 
water allocation system (Sun and Khayatnezhad 2021). The 
design and optimization carried out in this research is based 
on a 25-year return period, which is known as a sustainable 
decision model.

4.2 � Optimal Water Allocation

One of the optimization results in this study is the evalu-
ation of the change in yield production (kg/ha) against 
the amount of water consumed. Figure 4 shows the role 
of optimization in improving production and reducing 
water consumption. As expected, the largest decrease in 
irrigation is addressed to the second objective function 
(OF2: energy optimization). On the other hand, the yield 
decreased between 5 and 38% for this strategy. The maxi-
mum yield reduction is shown in sugar beet (10,900 kh/ha) 
and canola (650 kg/ha). An improved irrigation schedule 
helped to increase sesame, millet and lentil production 
more than 20% at the 5% confidence level. Changing irri-
gation planning for increasing yield in the cropping pattern 
was proven effective by Lalehzari et al. (2020) and Ren 
and Khayatnezhad (2021).

5 � Conclusion

The defined objective functions for the multi-objective prob-
lem were (1) maximization of water productivity and (2) 
minimization of the wind energy used for extracting water. 
The non-dominated sorting concept and water cycle algo-
rithm were used as modeling tools based on the technical, 
economic, and water allocation constraints. The simula-
tion and optimization processes under simplified assump-
tions suggest that the developed model could be useful for 
practical application to minimize energy consumption for 
pumping in agricultural activities. The optimal allocation 
of water could increase the average water productivity for 
the Miandoab cropping pattern, especially for the second 
objective function. The results of this research suggest that 
the development of an irrigation strategy for reduced energy 
consumption is an effective approach, despite the fact that it 
will reduce production. A limitation for future studies is that 
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Fig. 2   Location of study area in Urmia Lake watershed
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Table 1   Cropping pattern of 
Miandoab Plain in 2022

* Million cubic meters (MCM); YP: yield production; I: irrigation; CWR: crop water requirement

No Crop Area YP I CWR​ No Crop Area YP I CWR​
ha kg/ha mm mm ha kg/ha mm mm

1 Wheat 750 5020 414 221 17 Sugar beet 165 23,500 716 552
2 Barley 450 3950 376 212 18 Safflower 40 1200 623 359
3 Maize 100 7850 1374 690 19 Eggplant 30 14,800 568 377
4 Pea 90 1400 462 258 20 Garlic 20 7400 880 386
5 Lentils 80 1050 475 239 21 Broad bean 16 2180 449 288
6 Bean 27 1310 467 263 22 Turnip 20 31,300 620 350
7 Vegetables 56 21,200 612 381 23 Cucurbita 15 870 512 340
8 Canola 110 1890 345 230 24 Carrot 50 31,600 823 267
9 Potato 960 27,780 745 460 25 Millet 88 1900 511 248
10 Onion 228 31,600 812 506 26 Fodder corn 2000 54,000 712 478
11 Tomato 50 28,300 756 368 27 Forage barley 230 7250 418 274
12 Cantaloupe 10 19,900 842 485 28 Clover 550 6820 582 340
13 Watermelon 450 36,300 993 512 29 Sorghum 50 73,600 390 193
14 Cucumber 60 18,600 814 428 30 Sunflower 12 1540 648 396
15 Alfalfa 3800 11,450 665 414 31 Sesame 13 960 1250 672
16 Mung bean 19 1360 480 244 Total 10,539 – 69* 42*

Table 2   Evaluation of marginal 
distribution functions

Variables Distribution functions Kolmogorov–
Smirnov

Anderson–Darling Chi-square

Statistic Rank Statistic Rank Statistic Rank

Wind speed Gamma 0.094 6 0.28 5 0.735 5
Gen. extreme value 0.089 4 0.26 4 3.979 8
Gen. gamma 0.076 2 0.23 1 0.375 2
Gen. logistic 0.103 9 0.34 8 3.441 7
Inv. Gaussian 0.099 8 0.29 6 0.675 4
Log-logistic 0.107 10 0.37 9 4.252 9
Log-Pearson 0.071 1 0.24 3 0.365 1
Log-normal 0.097 7 0.30 7 4.255 10
Normal 0.090 5 0.44 10 2.387 6
Weibull 0.082 3 0.24 2 0.377 3

Wind duration Gamma 0.076 4 0.30 4 1.68 5
Gen. extreme value 0.073 2 0.31 5 1.89 8
Gen. gamma 0.079 5 0.32 6 1.70 6
Gen. logistic 0.094 8 0.34 8 1.97 10
Inv. Gaussian 0.114 10 0.25 1 1.72 7
Log-logistic 0.088 6 0.33 7 0.47 2
Log-Pearson 0.089 7 0.37 9 1.08 4
Log-normal 0.062 1 0.29 3 0.61 3
Normal 0.075 3 0.26 2 0.26 1
Weibull 0.098 9 0.52 10 1.90 9
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the proposed method is effective, but the study area is not 
suitable for widespread application of wind turbines, and the 

estimated wind energy potential would be inaccurate without 
considering the influence of wind direction.

Fig. 3   Evaluating the correlation coefficients between wind variables and estimating the maximum likelihood estimator to select the best joint 
function

Table 3   Goodness-of-fit 
evaluation for selecting the 
suitable joint function

Clayton Frank Gamble Joe Gamble–Hoggard Ali-Michael-Hagh t

R2 89 91 64 81 70 76 68
AIC −68.2 −71.6 −53.1 −65.3 −58.7 −61.5 −56.4
BIC −63.0 −67.9 −51.7 −60.4 −55.7 −58.2 −53.3

Table 4   Wind speed and 
duration based on the univariate 
and bivariate analysis

Function Variable Unit Return periods

2 5 10 25 50 100

Marginal functions
Log-Pearson Speed m/s 6.6 11.9 16.7 32.2 46.5 59.8
Log-normal Duration h 18 23 46 78 95 143
Joint function
Frank Speed m/s 5.4 10.2 15.3 29.8 43.1 52.7

Duration h 16 20 41 70 86 128
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