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Abstract
Slope stability assessment is necessary to evaluate the safety of natural or man-made slopes. This analysis is crucial for 
determining the potential risk that could result in landslides or other hazardous situations. This research investigates the 
landslide predictability of crucial locations in Kalimpong, Darjeeling Himalayas, which are characterized by complicated 
geology in tough terrains. The study concentrated on the factor of safety determination process for dry and saturated condi-
tions utilizing the GeoStudio commercial software “SLOPE/W” based on limit equilibrium method and provide an analyti-
cal comparison using computational intelligence and machine learning approaches. Support vector machine, decision tree, 
random forest, logistic regression, naïve Bayes, k-nearest neighbors algorithm, and AdaBoost are used as machine learning 
classifiers having a strong capability of predicting slope failures and perils. Five parameters, namely cohesion, internal 
friction angle, unit weight, slope angle, and slope height, are chosen as random variables and stability condition as output. 
Inter-criteria correlation (CRITIC)-based method is utilized to perform sensitivity analysis denoting the greatest impacting 
parameter, i.e., slope height. Novel ensemble approach R-Boost is identified to give maximum accuracy in comparison to all 
seven machine learning methods. By multifold cross-validation, R-Boost has the greatest forecasting skill, with an average 
classification accuracy of 0.725 and in terms of area under the curve, random forest (RF) represents an average value of 0.81, 
followed by R-Boost at 0.798. Among all predictive models, particularly R-Boost followed by RF provides quite similar 
results as obtained by SLOPE/W. This technique will be particularly beneficial in preventing, anticipating, and reducing the 
impact of these sorts of catastrophic disasters, which function as substantial barriers to the nation's socioeconomic progress
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1 Introduction

Slope failures are the easiest natural hazard to prevent, 
reduce, or resolve (Collins and Znidarcic 2004). Landslides 
occur on a large portion of land surfaces except snow-cov-
ered areas in India (Chawla et al. 2018). This translates to 
a total area of 0.42 million  km2, out of which 43% area is 
found in the North-Eastern Himalayan Region (NEHR) 
according to GSI 2014. According to the National Crime 
Records Bureau's (NCRB) statistics on inadvertent fatali-
ties (2010–2019), landslides kill around 304 people in India 

each year. Surprisingly, recent changes in global climatic 
conditions have resulted in catastrophic weather events that 
increase the likelihood of landslides (Zou et al. 2021) and 
their frequency is being aggravated by uncontrolled urbani-
zation and unorganized land-use changes in steep terrains 
(Khanna et al. 2021; Phong et al. 2021; Pourghasemi et al. 
2012). The Kalimpong district is located in the NEHR and 
is susceptible to small- and large-scale landslides, particu-
larly during the monsoon season, which lasts from July 
to September. The Kalimpong area has a steeply slanting 
mountainous topography that is constantly drained by heavy 
rains, making it very prone to landslides. The major town is 
located on a ridge near the Teesta River, but other rivers like 
Relli, Neora, Geesh, Leesh, Jaldhaka, and Murti, as well as 
several tiny streams, drain Kalimpong. These water bodies 
create active denudation among slopes on the valley side by 
erosion, which makes them steeper. The interCuvial (Area 
occurring between two phases or streams) area has been 
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narrowed, making the environment more prone to landslides. 
The average monthly rainfall in Kalimpong during the rainy 
season, from June to September, runs from 119 to 417 cm 
(https:// world clim. org). Anthropogenic infrastructure pro-
jects such as roads, communities, hydropower projects, and 
so on loosen the slope material at the price of vegetative 
cover. This permits the loose debris to glide downslope with 
only a minimal lubrication from water. All of these elements 
combine to make Kalimpong an alluring site for landslide 
research. It is also critical to demarcate the danger-prone 
zones after which suitable steps may be implemented to limit 
the risks to people as well as property (Roy et al. 2022).

In general, slope stability is determined by shear strength 
as a function of normal stress on the slip surface, cohesion, 
and internal friction. The factor of safety (FoS) reflects the 
slope's stability, which is determined by calculating the ratio 
of “shear strength” to “shear stress” generated. A slope gen-
erally collapses when the produced shear stress exceeds the 
available shear strength of the soil (Kabir et al. 2023). Limit 
equilibrium analysis techniques (LEMs), a basic and conven-
tional analytical tool for slope stability investigations, may 
be used to compute FoS and are widely utilized in slope sta-
bility studies because of their simplicity, low version com-
plexity, and rapid processing durations (Mafi et al. 2021). 
Both the static as well as dynamic scenarios for multi-
dimensional (2D and 3D) environments (Azarafza et al. 
2014; Agam et al. 2016) can be used with LEM. The FoS 
is estimated using several equilibrium approaches. Some of 
the most well-known approaches include Fellenius, Bishop, 
Janbu, Modified Swedish, Morgenstern-Price etc., (Alejano 
et al. 2011). Maximum approaches out of this produce simi-
lar findings when calculating FoS, with the variance in pro-
jected values often being less than 6% (Huang et al. 2012). 
In recent decades, LEM has been proposed and extensively 
researched for slope stabilization evaluation (Yue and Kang 
2021; Liu et al. 2015; Wang et al. 2011; Cheng et al. 2007; 
Zhu et al. 2005; Zhu et al. 2003). Regardless of their utilitar-
ian value, the LEM technique has remained the method of 
choice for optimum utilization of a number of methodologies 
based on the nature of issue to be addressed (e.g., circular, 
non-circular) and the desired precision of the findings (Mat-
thews et al. 2014). The method of slices is also utilized for 
identifying the most critical slip surface, taking into account 
the consideration of probabilistic soil parameters. (Johari 
and Rahmati 2019). Traditional stability analysis methods, 
which are impacted by the stabilization process, struggle to 
deliver reliable conclusions due to the uncertainties while 
assessing FoS values. To address this issue, researchers 
applied computational intelligence methodologies that give 
a very precise forecast of the slope condition, failure mecha-
nism, and danger of slide (Azarafza et al. 2022; Zhu et al. 
2003; Ahangari Nanehkaran et al. 2022; Li and Yang 2019; 
Mathe and Ferentinou 2021). Meanwhile, machine learning 

approaches have attracted a lot of attention for minimizing 
uncertainty in FoS computations.

Artificial intelligence (AI), and particularly machine 
learning, has offered great assistance for determining the 
stability of slopes in terms of FoS calculation utilizing prog-
nostic models. Such models conjecture FoS based on the rate 
of machine learning and specified accuracy of models. These 
algorithms try to construct techniques for comprehending 
the existing state of “target data”, learning, and operating 
to learn using “training data”. It employs a variety of algo-
rithms that are categorized as “shallow” or “deep” learning 
approaches in order to produce likelihoods or predictions 
(Raschka et al. 2020). The precision of the predictions is 
directly related to the algorithms’ learning mechanism, 
which can be a counterpart to learning models such as con-
trolled, unstructured, or reinforcement learning (Schmidhu-
ber 2015). The last 25 years have seen the effective use of AI 
and ML techniques in the fields of engineering and sciences 
(Asteris et al. 2021a, b, c; 2022; Johari et al. 2016; Harandi-
zadeh et al. 2021; Zhao et al. 2021; Zhang et al. 2021; Arma-
ghani et al. 2021; Zhou et al. 2021a,b; 2016; Yang et al. 
2020; Kardani et al. 2021). ML models are also utilized in 
order to calculate findings for slope stability analysis that 
can offer insights into prospective slope collapse processes 
and rates through predictive modeling, risk assessment, and 
uncertainty analysis (Bui et al. 2020; Erzin and Cetin 2012; 
Abdalla et al. 2015; Verma et al. 2016; Samui 2013; Sakel-
lariou and Ferentinou 2005; Ferentinou and Sakellariou 
2007). MATLAB-based coded program (Johari and Fooladi 
2020; Kalantari et al. 2023), ANFIS, and other algorithms 
are also used to forecast the FoS of slopes and made com-
parisons of those predictions with results of LEM approach 
(Mohamed and Kasa 2014). In different research, particle 
swarm optimization (PSO) technique is also used to compare 
the FoS of slopes with 3D-FEM (Kalatehjari et al. 2014). 
They demonstrated effective use of PSO under 3D circum-
stances, but less effective use under 2D slope stability con-
ditions. In order to forecast slope stability in comparison to 
the LEM slope stability study, many researchers (Ferentinou 
and Sakellariou 2007; Lu and Rosenbaum 2003; Sakellariou 
and Ferentinou 2005) employed artificial neural networks 
(ANN), a fundamental and common AI model. The LEM 
and ANN model findings were discovered to be in agree-
ment, and the categorization of sample observations based 
on the anticipated failure mechanism was made possible. In 
different research, while comparing support vector machine 
(SVM) model and contrasted it with ANN outcomes, it was 
shown that SVM was able to achieve a little greater accu-
racy (Samui 2008). Gradient boosting was used to deter-
mine the FoS and its connection to the triggering factors on 
slope instabilities (Zhou et al. 2019). A similar comparison 
was made with support vector regression (SVR) and the 
radial basis function (Wei et al. 2021a). Different artificial 

https://worldclim.org
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intelligence-based methods were employed to forecast the 
FoS values for slopes with the necessary precision, which 
was then applied for slope stabilization (Qi and Tang 2018). 
The “extreme learning machine” (Liu et al. 2014), “attrib-
ute recognition method” (Tao et al. 2021), ANN (Wei et al. 
2021b), “fuzzy comprehensive evaluation method” (Wang 
and Lin 2021), “aggregative indicator method” (Yan et al. 
2019), “particle swarm optimization” (Gupta et al. 2016) 
and “cloud model” (Cui et al. 2021) have all produced a 
number of promising results. Taking into account the stress 
on the body of slope, demonstrating its deformation and sta-
bility and corresponding back failure mechanism play a cru-
cial role in the prediction of slope stability using numerical 
simulation techniques and the limit equilibrium approach.

Therefore, in this study, critical sites from Kalimpong 
are identified and utilized for the assessment of future risk 
prediction under dry and saturated conditions. This scope 
is fulfilled by calculating the factor of safety by LEM and 
denoting them as stable or unstable. Then, machine learning 
techniques are utilized to train the machine learning models 
and testing them for real-site data samples. The disciplines 
of computer science, database hypothesis, data analysis, 
probabilistic theory, and other scholarly fields are all nec-
essary for using machine learning algorithms, which have 
major advantages including quick processing and good gen-
eralization. Standard machine learning techniques may be 
able to solve some systems and issues that are challenging 
to solve using conventional experimentation and simulation 
techniques. The seven traditional ML algorithms used in 
this research offer the benefits of a straightforward structure, 
good prediction, and high classification accuracy. Python (a 
programming language) and fundamental machine learning 
techniques are used in this study to evaluate the accuracy of 
the prediction models. Additionally, random cross-validation 
is used to further determine the models' accurateness. In 
the end, a versatile, exact, and trustworthy slope stability 
forecasting model is produced. Also, innovative approaches 
are designed to enhance the accuracy of models for such 
scattered datasets like data scaling, ensembling which can 
be achieved by normalizing or standardizing real-valued 
input and output variable and a new stack model R-Boost 
is developed in this research to get maximum accuracy in 
output prediction.

2  Study Area

Kalimpong is a small peninsula town in the Indian state 
of West Bengal, close to the border of Nepal. It is 1250 m 
above sea level and is recognized for its moderate tem-
peratures and natural beauty. Kalimpong is surrounded 
by lush green hills and is known for its tea plantations, 
flowers, and breathtaking Himalayan vistas. It is hemmed 

on the western side by the Teesta River and on the eastern 
side by the Relli River. The average temperature in this 
region is between 27 and 5 °C. The strong monsoons in 
this region generate devastating floods that annually cut 
off Kalimpong from the remaining state. Because of its 
location and natural characteristics, Kalimpong, like many 
other high regions, is prone to collapses. During the sum-
mer, the region suffers strong rainfall, which often results 
in landslides, also due to the steep slopes and loose soil. 
Despite many efforts, it continues to be a severe threat to 
Kalimpong and the surrounding communities. Local lead-
ers and individuals must be vigilant and take the appropri-
ate precautions to prevent and mitigate its effects in the 
region (Das et al. 2022). Figure 1 shows the geographic 
location of Kalimpong in India and a Google image of 
Kalimpong with critical sites marked (L1-6) in Mahakal 
Dara Bhalukhop, Chandraloke, Upper Tashiding, Ngas-
sey Busty, Mongbol Road, and Deolo, respectively. Fig-
ure 2 represents the site images of these locations after 
the recurring landslide with their latitudes and longitudes 
in caption while soil samples were collected from these 
locations later.

2.1  Geology

Kalimpong is situated in the Eastern Himalayas, a region 
known for its complex geological features. The region is 
characterized by the collision of the “Indian” and “Eura-
sian” tectonic plates, which has resulted in the formation 
of the Himalayan mountain range. The eastern flanks of 
Kalimpong are rather flat and safe, however the western 
face is primarily steep and rocky. The town of Kalimpong 
is primarily made up of soft phyllite, Archean gneiss, and 
schists. The area has several cracks and joints that increase 
the chance of rock decomposition and dissolution, leading 
to the formation of unconsolidated substance (Dikshit and 
Satyam 2018). The mountainous soils found in the area are 
marked by heavy organic matter and water-holding ability, 
which can cause volume growth. The bedrock in the region 
is a golden to silver-colored quartz mica schist of the Dal-
ing series, with small variations. The constant percolation 
of water at the bottom layer of the soil horizon is linked 
with coarse textures in the middle part of the soil resulting 
in a reduction in soil shear strength (Abraham et al. 2020). 
These geological features shape the landscape and natural 
resources of Kalimpong. Because of the geological activ-
ity in the region, the Eastern Himalayas are also prone to 
earthquakes. In the past, the shocks caused significant dam-
age to infrastructure and human lives. An elevation map of 
Kalimpong shown in Fig. 3 provides information regarding 
the topography of a slope, which is a crucial factor for under-
standing the forces operating on it.
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2.2  Geohydrology

Kalimpong, like other steep places, has a complicated water 
system affected by the region's geography, geology, and tem-
perature. The power of the soil to receive water boosts soil 
mass and, finally, soil unit area. Landslides become more 
possible when pore pressure rises due to growing soil water 
absorption. Water flow weathers the rocks along the edges of 
streams and rivers, causing rock and other materials to break 
over time, resulting in slides. The rainy season in Kalimpong 
produces high-intensity rainfall, making it the region's peak 
landslide season. A number of smaller channels known as 
kholas (second- and third-order streams) and jhoras (mainly 
first- and second-order streams) drain the area. The jhoras 
get their water from a large number of long-lasting regular 
springs at the hill's top (Source: Save the Hills). The region 
is crossed by five subbasins, all of which are Teesta River 
sources (Mukherjee and Mitra 2001). First-order streams 
in the Teesta region combine to create second- and higher-
order streams (Fig. 4).

3  Methodology

The study of geotechnical traits of crucial sites' soil at dif-
ferent places in Kalimpong is important so as to find the 
strength of the soil. For analysis of landslides, soil sam-
ples were collected from the slope’s bottom, center, and 
top parts after the occurrence.These were procured by an 
instrument “Core Cutter” at an approximate depth of 0.5 m. 
All of these placid samples were carefully transferred to a 
laboratory and tested for various qualities, viz. grain size 

distribution (Fig. 5), Atterberg limits as per IS: 2720(Part-
5), water content, maximum dry density IS: 2720(Part-7), 
cohesion, and internal friction angle as per ASTM standards. 
In situ bulk density measurement was also done by core 
cutter method. The data obtained are to be utilized for LEM 
modeling by SLOPE/W software in GeoStudio. As geotech-
nical research shows, the presence of sand in the sample and 
the undrained and drained study of soil samples has also 
been done using direct shear test and triaxial shear test (con-
solidated drained), but since worst conditions are described 
to identify future risk threshold, only drained parameters 
are noted here by representing the Mohr–Coulomb failure 
envelope (Fig. 6).

3.1  SLOPE/W Results

The present study measures the FoS for a variety of 
critical cut slopes with varying soil properties in Kalim-
pong using the Morgenstern–Price (M–P) method (Morgen-
stern and Price 1965), in GeoStudio 2021.4 with the help 
of Slope/W software, confirmed by field survey. This part 
explains the full approach, including mathematical modeling 
and field validation. Figure 7 depicts the SLOPE/W results 
for various samples at L1-6 for dry (bulk) and saturated 
conditions, respectively, and the soil properties along with 
computed factor of safety are represented in Table 1.

3.2  Data Collection and Processing of Slope Field 
Cases

In this research, 97 field instances of slope stability analysis 
were analyzed, including 12 cases of crucial sites from the 

(a) (b)

Fig. 1  a Geographic location of Kalimpong in India. b Google image of Kalimpong with locations 1–6  (Source: USGS)
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Kalimpong area, the findings of which are reported above, 
and 85 cases from pertinent literature based on “slope stabil-
ity” assessment (Sah et al. 1994; Zhou and Chen 2009; Li 
and Wang 2010). Each sample depicts a field study related 
to slope engineering, which embraces five input parameters 
(i.e., five independent factors). The stability of the slope 
will then be assessed using a signal (one dependent compo-
nent), either "stable" or "failure." Table 2 shows the distri-
bution range of each component. To make it easier to apply 
ML models, “failure” and “stable” are ticketed as 0 and 1, 

respectively, at the time of prediction and later converted 
to the same.

3.3  Sanity of the Data

Each group of data was matched based on five independent 
characteristics, yielding one dependent outcome. Because 
the data are merged, each sample attribute is significant and 
distinct, with an accurate indication. Among these 97 dataset 
rows, 41 are categorized as "stable," whereas the remaining 

Fig. 2  Post-landslide images of critical locations
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56 are categorized as "failure." There is a ratio of 1:1.36 
between these two groupings, indicating that the signs are 
distributed almost equally. To more immediately examine 
the data's validity, a violin chart (strip plot for revealing 
underlying data by points) is used. Figure 8a–e shows the 
violin plots for UW, C, Phi, SA, and SH for both “Stable” 
and “Failure” categories. The white circle at the center of 
each plot shows the median. The box's range includes the 
first and third quartiles. The 95% confidence level is indi-
cated by a narrow black line existing in each violin plot. The 
silhouette or boundary of each violin provides an approxima-
tion of the normal kernel density for the supplied feature. 

The findings indicate that the data are stable and follow a 
normal distribution.

3.4  Attributes of the Information Dissemination

This section examines different statistics of each feature 
to check whether the data/parameters are having a “skew-
ness” distribution. Because the five sources have distinct SI 
units and meanings, they are all evaluated independently. 
The unit weight's minimum, maximum, mean, mode, 
median, and standard deviation are 13.97, 31.30, 20.827, 
18.5, 19.97, and 3.79 kN/m3, indicating that it follows the 

Fig. 3  Elevation map of Kalim-
pong  (Source: USGS)

Fig. 4  Geohydrological details 
showing streams of 1, 2, and 3 
orders  (Source: USGS)
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normal distribution. Table 3 also displays all statistical data 
values such as mean, median, mode, min, max, standard 
deviation, and dispersion. Figure 9 depicts a parametric dis-
tribution, as well as the mean (mu) and standard deviation 
(sigma) for normal distribution and rate parameter (lambda) 
for exponential distribution. However, the slope height in 
Fig. 9d demonstrates that it fits exponential distribution in 
a better manner as compared to normal distribution in other 
indices with rate parameter lambda = 0.01379. Also, mean 
and standard deviation for exponential distribution is the 
inverse of rate parameter, which comes out to be 72.49 for 

slope height. The remaining parameters, UW, C, Phi, and 
SA, demonstrate normal distribution.

3.5  Assessment of Correlations Among Parameters

It is crucial to first investigate the relation between the five 
attributes (i.e., factors) before making a conclusion on pre-
diction models. The significant relationship between these 
features may influence the models’ accuracy used in pre-
diction and lead to indecorous inferences that controvert 
the reality. The equation to calculate Pearson's correlation 

Fig. 5  Grain-size distribution curve 

Fig.6  Mohr–Coulomb failure envelope
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Fig. 7  SLOPE/W results for L1-6 under dry and saturated conditions
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Fig. 7  (continued)
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coefficient between any two elements is represented by Eq. 
(1) (Cohen et al. 2009).

where r is the coefficient of correlation of x and y (range − 1 
to 1), xi is the x variable value, yi is the y variable value, 
x = the mean of x values, and y = the mean of y values. 
Table 4 contains a matrix with the association values of all 
five qualities. If the correlation value of two components 
approaches 1, they are regarded to have a strong correlation. 
Otherwise, the relationship between these two elements is 
weak. According to Table 4, correlation between cohesion 
and internal friction angle is − 0.22, which shows that mate-
rials are negatively correlated with each other. The slope 
angle and friction have the highest positive relationship, with 
an r value of 0.522 (among the five characteristics consid-
ered in Table 4). However, two entities with a correlation 
coefficient up to 0.5 are not inextricably related. As a result, 
the five qualities exhibit an ignorable connection. To better 
explain the relationship between the five qualities chosen 

(1)(r) =

∑

(xi − x)(yi − y)
�

∑

(xi − x)
2 ∑

(yi − y)
2

for this paper and to more clearly illustrate the variables' 
ranges and affiliations, the correlation matrix of the factors 
influencing the stability of the concerned slopes is displayed 
in Fig. 10 by blending using the drawing software.

4  Prediction from Models

4.1  Conventional ML Models

In this work, seven supervised models—support vector 
machine (SVM), decision tree (DT), k-nearest neighbors 
(KNN), logistic regression (LR), random forest (RF), and 
AdaBoost—and one probabilistic model naïve Bayes (NB) 
are used. A supervised machine learning approach called 
SVM may be applied to classification, regression, and out-
lier identification. It is a kind of linear classifier that seeks 
the most effective hyperplane for categorizing the data. The 
gap between the two classes is maximized by choosing the 
hyperplane in this fashion (Samui 2008). For classifica-
tion and regression analysis, decision tree is a supervised 
machine learning method. It is a graphical representation 
of all the possible solutions to a decision based on certain 
conditions. In a decision tree, each node represents a deci-
sion, and each edge represents the outcome of that decision 
(Hwang et al. 2009) Since kNN is a non-parametric method, 
it makes no assumptions about how the data will be distrib-
uted. To get the categorization or regression value of a par-
ticular data point, it only examines the k-nearest neighbors 
(Cheng and Hoang 2016). A logistic function is used in the 
linear model of logistic regression to represent the likeli-
hood that the output variable will fall into a certain class 
(Bhagat et al. 2022). Multiple decision trees are trained in 
the random forest algorithm using arbitrary subsets of the 

Table 1  Geotechnical analysis and factor of safety of collected soil samples

Site/state Soil classification OMC (%) MDD (g/cm3) Unit weight 
(kN/m3)

Cohesion 
(kPa)

Internal fric-
tion angle (°)

Slope angle (°) Slope 
height 
(m)

FoS

L1 Dry Clayey sand 12.5 1.85 20 5 33 35.5 50 1.293
L1 Sat Clayey sand 12.5 1.85 21 5 33 35.5 50 0.808
L2 Dry Clayey sand 19.7 1.59 18.5 2 33.2 30 25 1.243
L2 Sat Clayey sand 19.7 1.59 20 2 33.2 30 25 1.098
L3 Dry Silty fine sand 15 1.80 15 1 33.6 34.6 45 1.123
L3 Sat Silty fine sand 15 1.80 17 1 33.6 34.6 45 0.716
L4 Dry Silty fine sand 12.1 1.82 19.7 5 32.3 33 19 1.253
L4 Sat Silty fine sand 12.1 1.82 21.8 5 32.3 33 19 1.173
L5 Dry Clayey sand 17 1.75 19.9 32 31.5 41.6 65 1.137
L5 Sat Clayey sand 17 1.75 22 32 31.5 41.6 65 0.684
L6 Dry Silty fine sand 17.9 1.66 19 5 28.8 33.3 25 1.215
L6 Sat Silty fine sand 17.9 1.66 20 5 28.8 33.3 25 0.905

Table 2  Ranges of different inputs

Parameters Abbreviations used Range

Unit weight UW [13.97,31.3]
Angle of slope SA [16,50]
Cohesion C [0,70.07]
Internal friction angle Phi [0,38]
Height of slope SH [3.6,432]
Status of stability Outcome “Failure” or “Stable”
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training data, and the final prediction is achieved by averag-
ing the predictions of each individual tree (Xie et al. 2022). 
A supervised machine learning technique called AdaBoost 
(adaptive boosting) is utilized for classification and regres-
sion analysis. It is an ensemble learning technique that com-
bines a number of weak learners to increase the model's 
performance and accuracy (Lin et al. 2021). Naïve Bayes is 
a probabilistic ML algorithm that is used for classification. 
It is based on Bayes' theorem and presupposes that the input 
characteristics are conditionally independent of one another 
(Feng et al. 2018).

4.2  Consideration of Impacting Parameters on 
Slope Stability

Slope stability is influenced by both numerical and quali-
tative parameters. The numerical parameters include 

cohesiveness, slope height and angle, pore water pressure, 
unit weight, internal friction angle, and others. Qualita-
tive parameters include failure patterns, physical charac-
teristics and quality of soil and rocks, subsurface water, 
and more. Here, the objective is to determine whether a 
slope is stable or failing, and this is based on numerical 
calculations. However, converting qualitative characteris-
tics into quantitative values is the biggest issue while field 
instances data are not sufficient. Therefore, ML algorithms 
are used to develop prediction models based on five indica-
tors: C, SA, SH, Phi, UW, and the dependent component 
related to assessment of slopes is classified as "stable" or 
else "failure". Interstitial water pressure is not included in 
the prediction models because it is often unclear in field 
instances and value assignment is based on diverse stand-
ards. This study focuses on 99 slope data case sets and 
concludes that the five chosen indicators accurately reflect 

(a) UW

Failure

Stable

(b) C

(c) Phi (d) SA (e) SH

Fig. 8  Normal kernel density violin plots for different input parameters

Table 3  Statistical 
characteristics of data

Indices Mean Median Mode Minimum Maximum Standard deviation Dispersion

UW 20.827 19.97 18.5 13.97 31.30 3.79 0.1811
C 22.161 16.28 5 0 70.07 16.52 0.7417
Phi 25.389 28.8 0 0 38 10.4 0.4078
SA 32.799 31 30 16 50 8.66 0.2629
SH 72.499 37 50 3.6 432 72.499 1.3530
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slope stability. Thus, interstitial water pressure is excluded 
to ensure sufficient accuracy and reliability in the predic-
tion models.

4.3  ML Models Analysis

Standard cross-validation techniques, such as 2, 3, 5, 10, 
and 20-fold is applied on the original testing data. To 
create the model for slope stability forecasting, 29 sam-
ples are selected at random as the test set and the rest 
data are considered as the training set. After repeating 
the aforementioned random choice five times, the model's 
final forecast result is the average of the five prediction 
outcomes. For ease of reckoning in this article, rand-
omized cross-validation is performed using programming 
language Python. Only the scatter plots and linear fitting 
curves between unit weight on horizontal axis (x) and vari-
ous parameters on vertical axis (y) are displayed in this 
article due to space restrictions. Figure 11 also represents 
the fitting line equation, its slope and intercept, Pearson’s 
coefficient (r) and coefficient of determination (COD).

4.4  Valuation of Models

The common prediction model assessment metrics include 
classification accuracy (CA), precision (P), recall (R), the 
F1 score (F1) and the area under the curve (AUC). The 
combination of forecasting and reality is classified into four 
categories: true positive (TP), true negative (TN), false posi-
tive (FP), and false negative (FN). According to Eq. (2), CA 
measures how well the model can correctly predict both 
positive and negative instances shown (Begum et al. 2021).

Precision is a metric used in machine learning to evaluate 
the accuracy of a model's positive predictions, as indicated 
by Eq. (3) (Begum et al. 2021).

Equation (4) (Chen et al. 2022) gives recall, which is the 
inverse of accuracy.

(2)CA =
(TP + TN)

(TP + FP + FN + TN)

(3)P =
TP

(TP + FP)

Fig. 9  Distribution histogram of different indexes
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The F1 score indicated by Eq. (5) provides a balance 
between precision and recall, and is particularly useful in sit-
uations where there is an uneven class distribution or where 
the cost of false positives and false negatives is similar. The 
higher the F1 score, the better the model's performance in 
correctly classifying both positive and negative instances. If 
recall is considered to be on the horizontal axis and accuracy 
is considered to be on the vertical axis, the 'PR' curve may 
be calculated [further details can be found in (Begum et al. 
2021)]. Models outside of the slope provide better outcomes 
in general.

(4)R =
TP

(TP + FN)

(5)F1 =
TP

[TP + 0.5(FP + FN)]

Equations (6) and (7) calculate the true-positive rate 
(TPR) and false-positive rate (FPR).

ROC is a graphical plot that illustrates the trade-off 
between the true-positive rate (TPR) and the false-positive 
rate (FPR) of a binary classifier as the decision threshold 
is varied. A higher AUC value indicates more success for 
a model.

(6)TPR =
TP

(TP + FN)

(7)FPR =
FP

(FP + TN)

Table 4  Evaluation metrics for different ML methods

Folds AdaBoost kNN Logistic regres-
sion

Naïve Bayes Random forest SVM Decision tree Stack (R-Boost)

Area under the 
curve

2 0.719077 0.695557 0.684016 0.726916 0.772648 0.667465 0.652657 0.752178
3 0.643946 0.6777 0.736934 0.726916 0.858449 0.72561 0.789416 0.801829
5 0.724085 0.762413 0.736716 0.71581 0.799652 0.734538 0.718206 0.789199
10 0.797256 0.761542 0.779617 0.733667 0.84473 0.78027 0.74412 0.832317
20 0.783972 0.777657 0.768728 0.714939 0.794861 0.756533 0.704268 0.815767
Average 0.7337 0.7350 0.7412 0.7236 0.8141 0.7329 0.6545 0.7983

Classification 
accuracy

2 0.731959 0.670103 0.628866 0.618557 0.721649 0.628866 0.587629 0.701031
3 0.670103 0.618557 0.690722 0.659794 0.721649 0.71134 0.762887 0.721649
5 0.701031 0.71134 0.659794 0.618557 0.71134 0.71134 0.690722 0.701031
10 0.752577 0.690722 0.71134 0.628866 0.71134 0.701031 0.690722 0.742268
20 0.762887 0.701031 0.680412 0.639175 0.752577 0.670103 0.659794 0.762887
Average 0.7237 0.6784 0.6742 0.6330 0.7237 0.6845 0.6784 0.7258

F1 Score 2 0.719257 0.663267 0.621176 0.620605 0.714843 0.621176 0.579084 0.681634
3 0.663267 0.614323 0.688124 0.661116 0.71856 0.708916 0.763247 0.712534
5 0.699254 0.71134 0.657772 0.620039 0.71134 0.71134 0.684313 0.699254
10 0.749101 0.692512 0.708916 0.630624 0.710264 0.699254 0.684313 0.740736
20 0.758795 0.702823 0.678513 0.639724 0.751655 0.663267 0.653924 0.760255
Average 0.7179 0.6769 0.6709 0.6344 0.7213 0.6808 0.6730 0.7189

Precision 2 0.741123 0.665886 0.622227 0.625917 0.721248 0.622227 0.578569 0.712435
3 0.665886 0.613393 0.687917 0.663693 0.71942 0.708963 0.76377 0.723568
5 0.698838 0.71134 0.657021 0.622695 0.71134 0.71134 0.687715 0.698838
10 0.751637 0.699566 0.708963 0.634505 0.7098 0.698838 0.687715 0.740654
20 0.763089 0.711892 0.677929 0.640407 0.751383 0.665886 0.655111 0.76183
Average 0.7241 0.6804 0.6708 0.6374 0.7226 0.6815 0.6746 0.7275

Recall 2 0.731959 0.670103 0.628866 0.618557 0.721649 0.628866 0.587629 0.701031
3 0.670103 0.618557 0.690722 0.659794 0.721649 0.71134 0.762887 0.721649
5 0.701031 0.71134 0.659794 0.618557 0.71134 0.71134 0.690722 0.701031
10 0.752577 0.690722 0.71134 0.628866 0.71134 0.701031 0.690722 0.742268
20 0.762887 0.701031 0.680412 0.639175 0.752577 0.670103 0.659794 0.762887
Average 0.7237 0.6784 0.6742 0.6330 0.7237 0.6845 0.6784 0.7258
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5  Examination of Results from Predictions

5.1  Model Assessment Based on the Unprocessed 
Data

Seven distinct machine learning approaches and one stack-
ing approach of random forest and AdaBoost i.e., R-Boost is 
introduced to conduct the random cross assessment. Table 4 
shows the classification accuracy, precision, recall, F1, and 
AUC values derived from Eqs. (2–7). AUC is an important 
metric in machine learning because it provides a reliable 
and easy-to-interpret measure of a model's performance in 
binary classification problems, especially when the dataset 
is imbalanced. In terms of AUC, RF represents an average 
value of 0.81, while R-Boost has an AUC of 0.798 followed 
by LR with a value of 0.74. Also in terms of classification 
accuracy, R-Boost has the greatest forecasting skill in terms 
of CA, with an average of 0.725. AdaBoost and RF comes 

in second with an average accuracy of 0.723. AdaBoost also 
produces strong results since it converts a high bias low vari-
ance model to a low bias low variance model, which aids in 
the development of an ideal machine learning model that 
provides a highly accurate estimate. It is also simpler to use, 
requiring less adjustment than algorithms such as SVM. 
Here, however, the R-Boost algorithm developed gives 
maximum CA because it first applies random forest to the 
dataset in order to generate an initial array of decision trees. 
The decision trees are then given an AdaBoost enhance-
ment to increase their efficiency and precision. This method 
can increase the model's precision and decrease its variance, 
making it more reliable and better able to handle compli-
cated datasets with numerous characteristics to more explic-
itly characterize the correctness of each model. Accuracy is 
one of the indicators that the model's behavior is inaccurate 
for regarding skewed data. When both F1 and AUC values 
are taken into account, excellent prediction models may be 

Fig. 10  Correlation matrix
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developed. According to the findings in Table 4, forecast 
models with F1 values more than 70% comprise R-Boost, 
AdaBoost, and RF. Furthermore RF, R-Boost, and LR have 
AUC values greater than 74%. As a result, RF and R-Boost 
are regarded to be the most accurate predictor on the basis 
of AUC and CA, which also adds value to the novelty factor 
of this research paper.

5.2  Sensitivity Analysis

Here we focus on the sensitivity analysis by weight determi-
nation criteria in which the importance factor is computed 
for each input parameter. Inter-criteria correlation (CRITIC)-
based method is utilized to perform this activity by making 
use of coefficient of variation, which is equal to (standard 
deviation/average) for individual parameter given by Ij. The 
objective weight  (Wj) of any criteria j is determined using 
Eq. (8) (Krishnan et al. 2021).

In accordance with the five input parameters, weight-
age plays an important role. Weightage of each parameter 
is shown in Fig. 13. The values of weightage in percentage 
comes out to be 2.7, 12, 7.5, 6.3, and 71.5 for UW, C, Phi, 
SA, and SH respectively. According to the findings, slope 
height has a greater influence on slope stability than cohe-
siveness while unit weight has the least shown in Fig. 12.

5.3  ROC Curve

The receiver operating characteristic (ROC) curve is a 
graphical depiction of a binary classifier system's per-
formance. Area under ROC (ROC-AUC) in the curve for 

(8)
Wj =

Ij
�

n
∑

j=1

Ij

�

Fig. 11  Regression fitting line and scatter plots of different parameters
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current scenario, as shown in Fig. 13, indicated that RF 
provided the greatest overall accuracy when used to quan-
tify the level of competence for all models. Strong machine 
learning algorithms RF and R-Boost can forecast FoS for 
various earth slopes and give appropriate outcomes based 
on the ROC curve findings. In the interim, SVM can be rec-
ommended as an alternate method that produces acceptable 
and accurate results. Based on these ROC curves, RF has 
the maximum overall accuracy with AUC = 0.81 in com-
parison to other classifiers, while R-Boost has an AUC of 

0.798 followed by LR with a value of 0.74, respectively. 
Naïve Bayes has the lowest AUC of 0.654. It is conceivable 
to state in this regard that the use of RF and R-Boost can 
give FoS with dependable and accurate results that are in 
excellent agreement with LEMs. This type of ML technol-
ogy can help in the development of an optimal approach for 
determining the stability state of such slopes and providing 
relevant stabilization measures for them.

5.4  Comparison with GeoStudio Results

The modeling was done in stages, beginning with geometri-
cal modeling and progressing through border conditions, 
behavioral specifications, materials, and mechanical mod-
eling. In the phase of geometrical modeling, each slope is 
created based on the geographic conditions, angle and height 
of the slope's surface as well as other geometric index quali-
ties. The boundary criteria are implemented via the “external 
boundary”, which is a secure polyline encircling the soil 
region needs to be studied. Also, it can be drawn manu-
ally in SLOPE/W by drawing the regions using appropriate 
coordinates. The present work used schematic coordinates. 
Table 5 contains details regarding the stability prediction 
based on best models and SLOPE/W program data. With 
their reasoning method, predictive models, particularly 
R-Boost followed by RF, deliver similar or close results to 
stability condition, as mentioned in Table 5 where S and F 
represent stable and failure, respectfully.

3% 12%
8%

6%

71%

UNIT WT. C PHI SA SH

Fig. 12  Weightage indicator of each parameter

Fig. 13  ROC curve



427Iranian Journal of Science and Technology, Transactions of Civil Engineering (2024) 48:411–430 

1 3

6  Conclusions

To investigate the effects of topography, weather, and other 
climatic conditions on slopes, a thorough numerical exami-
nation is conducted under static conditions for dry and satu-
rated conditions, respectively, by LEM and further simu-
lated by machine learning models. The major findings of 
this study are summarized as follows:

1. The current study is concerned with the modeling 
and assessment of stability grades at crucial sites in 
Kalimpong identified by site visits and landslide inven-
tory maps. Limit equilibrium software (SLOPE/W) is 
utilized to carry out factor of safety and slip surfaces 
determining the future perspective of stability in these 
locations. The comparison of FoS derived from simula-
tion studies shows that under dry conditions, all slopes 
are stable, while in saturated conditions, two slopes are 
stable (marginally) while four are unstable which justi-
fies the vulnerable impact of rainfall on the study area 
under both dry and saturated condition.

2. Five parameters namely cohesion, internal friction angle, 
unit weight, slope angle, and slope height are chosen as 
random variables and output being stability condition. 
By Inter-criteria-based correlation (CRITIC) method, 
the outcomes indicate that height of the slope is having 
the greatest impact on slope stability while cohesion is 
second.

3. Cross-validation in different number of folds and seven 
distinct machine learning approaches with a novel stack-
ing approach R-Boost is used to conduct the random 
cross assessment. In terms of AUC, RF represents an 
average value of 0.81, while R-Boost has an AUC of 
0.798 followed by LR with a value of 0.74, and in terms 
of classification accuracy, R-Boost has the greatest fore-

casting skill in terms of CA, with an average of 0.725. 
Among all predictive models, particularly R-Boost fol-
lowed by RF, provides similar results as obtained by 
SLOPE/W.

4. The current study includes a comprehensive analysis 
as well as evidence from experiments, which show that 
slopes typically fail under saturated circumstances or 
are marginally stable, which is supported by machine 
learning models. This technique will be highly beneficial 
in minimizing, anticipating, and reducing the impact of 
such catastrophes disasters, which are one of the major 
impediments to the nation's socioeconomic progress.
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