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Abstract
Many organizations in developing countries have started to place a strong priority on risk management in their business. 
Therefore, this article proposes a novel model that incorporates organizational maturity as a new dimension in the risk 
evaluation of construction projects. The research methodology uses a hybrid best–worst method–fuzzy rule-based system 
(BWM-FRBS) combined with a 3D risk matrix to evaluate risks based on the probability and mathematical equations 
generated for the impact and the organizational maturity. After analyzing several research studies, the initial risk assess-
ment structure was formed. A focus group session with 12 experts was carried out to confirm the final components of the 
model parameters. The component weights were calculated using the BWM technique. The impact and the organizational 
maturity equations were prepared. The outputs of the preceding equations and the probability of occurrence were then used 
as inputs to the FRBS model to determine the risk score. This model used a 3D risk matrix to construct fuzzy rules. Iraqi 
construction projects were used as a case study to confirm the validity of the integrated model. The authors concluded that 
this model is more effective and precise than conventional techniques for evaluating and prioritizing risk and can provide 
critical information for risk management.
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1  Introduction

Construction projects are performed within dynamic and 
complex environments, making uncertainty and risk their 
defining characteristics. As a result, most construction pro-
jects fail to meet their stated objectives (Zegordi et al. 2014). 
The primary objective of risk management is to enhance 
the likelihood of project success. The way to achieve this 
goal is to methodically detect and evaluate potential risks, 
propose solutions to eliminate them, and take full advan-
tage of favorable situations (Chapman 1996). Therefore, 
a successful process of risk management, beginning with 
risk assessment, cannot happen without this step, since tak-
ing the proper preventive and corrective measures in the 

next phase of risk management depends on completing this 
step (Alvand et al. 2021). Currently, the use of risk assess-
ment techniques in the construction industry is growing. 
Researchers and practitioners in the construction sector have 
developed several approaches based on Monte Carlo simula-
tion (MCS), risk matrix (RM), analytical hierarchy process 
(AHP), sensitivity analysis (SA), fault tree (FT), and event 
tree (ET) methods (Ahmadi et al. 2016).

In recent years, various models have been created to ade-
quately evaluate the risks that projects can pose. In 2013, a 
fuzzy-inference system (FIS) was created to calculate the 
hazards associated with roof fall by predicting the roof fall 
rate (Razani et al. 2013). In Iran, Keramati et al. (2013a) 
utilized a fuzzy AHP to analyze customer relationship man-
agement risks depending on the expert opinions of project 
managers. In the same year, they utilized the fuzzy analyti-
cal network process (FANP) for expert-driven prioritization 
of risk factors (Keramati et al. 2013b). Ebrat and Ghodsi 
(2014) assessed construction project risks using an adap-
tive network-based fuzzy inference system (ANFIS) model. 
The findings demonstrate that the ANFIS model provides 
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more accurate risk assessments for building projects. Samadi 
et al. (2014) used the FANP to rank risk factors and the 
F-TOPSIS (Technique for Order of Preference by Similarity 
to Ideal Solution) method for ranking responses. Valipour 
et al. (2016) proposed a new approach for fair risk allocation 
by utilizing fuzzy techniques and cybernetic ANP, focus-
ing on detecting correlations between risk allocation cri-
teria and obstacles. Using Dempster–Shafer theory, Hatefi 
et al. (2019) established an evidentiary system for project 
environmental risk evaluation that accounts for uncertainty. 
The model is used to calculate the potential impact of the 
Maroon oil pipelines on the Isfahan ecosystem. Also, a tun-
neling case study from the relevant literature is applied to 
the proposed model. In another study, Boral et. al. (2020) 
proposed a novel strategy by combining the fuzzy-AHP with 
the F-MAIRCA (Multi-Attribute Ideal-Real Comparative 
Analysis). This study estimated the relative weights of risk 
variables using the fuzzy-AHP approach and then proposed 
a modified F-MAIRCA to evaluate risk events. The findings 
of their study demonstrated that their improved F-MAIRCA 
approach is efficient and yields more feasible decisions. Li 
et al. (2020) developed an evaluation method for the under-
ground gas hazard in coal mines using the fuzzy AHP and 
Bayesian network techniques. Based on the findings, the 
model can serve as a guide for decisions in the coal mining 
industry to mitigate the danger of gas explosions in the coal 
mines. Etemadinia et al. (2021) proposed a system dynam-
ics and ISM approach for analyzing uncertainties during the 
design phase of construction projects. The findings demon-
strate how managers may more precisely estimate project 
goals such as cost and completion time by considering the 
linked dynamics and structures of the entire project risk.

After this introduction, the remainder of the article is 
structured as follows: The second section highlights a review 
of the previous literature. Section 3 discusses research gaps 
and the study problem. In the fourth section, the research 
objectives are defined. Sections 5 and 6 describe the tech-
niques used. The research method is clearly described in the 
seventh section. Section 8 describes the field work of this 
study, explaining the literature reviews and the meeting with 
experts as well as the case study that will be adopted. Sec-
tion 9 includes the results obtained and the final form of the 
proposed model. Section 10 discusses the results and main 
contribution of this study, and the conclusions are given in 
section 11.

2 � Literature Review

The meaning of the word “risk” is relatively unclear due 
to its many meanings and assessment techniques. Thus, 
risk could be uncertainty, possible loss, repercussions, the 
possibility of an undesirable occurrence, or the influence 

of ambiguity on goals, depending on the situation. Often, 
it is a composite measure, such as Consequences or Dam-
ages + Uncertainty or Consequences + Probability (Aust and 
Pons 2021).

Over time, the ISO 31000 risk management (ISO 2009) 
principle interpretation has become the predominant stand-
ard. It defines risk as “the influence of uncertainty on the 
likelihood of attaining the organization's goals.” In addition, 
this standard gives a precise method for determining risk 
and demonstrates that each risk is the result of combining 
two risk dimensions: the consequences of the risk and the 
likelihood of the risk occurring. These are then combined 
to form a risk metric. The combination can be accomplished 
in one of two approaches: (i) by multiplying the impact by 
the probability if both scales are numeric, or (ii) by utiliz-
ing a correlation matrix. The acceptable risk thresholds are 
then utilized to classify and prioritize the risks based on 
acceptability, practicability, reaction time, cost–benefit ratio, 
durability, enforceability, and compliance with the law.

One advantage of using the ISO 31000 “Impact × Prob-
ability” model to determine risk is that it offers a stand-
ardized approach. Nevertheless, it has certain restrictions. 
When it comes to risk management in its broadest sense, the 
scales are virtually always subjective and highly varied from 
one organization to the other (Waldron 2016; Pons 2019). 
Even the same scale might result in different estimates from 
several analysts, further contributing to inconsistent results. 
These components do not provide enough detail for many 
situations.

In an effort to consider additional, conditional criteria, 
the available research demonstrates a variety of approaches 
to accomplishing this goal. Extending the risk measure to 
include three or more components is a popular strategy. The 
most popular ones were manageability (Aven et al. 2007; 
Azadeh-Fard et al. 2015), detectability (Youssef and Hyman 
2010), and time (Osundahunsi 2012a, b). Vulnerability was 
mentioned most often (Kolesár et al. 2012; Cioaca et al. 
2015). Other, more application-specific elements, such as 
knowledge (Paltrinieri et al. 2019), resilience (Chien et al. 
2019), and experience (Gray et al. 2019), have also been 
incorporated into the risk equations. The definition of the 
effects and the probability comes first in many of these 
techniques; subsequent steps include adding the other com-
ponents. Table 1 lists risk equations that use an additional 
variable as input.

3 � Research Gaps and Problem Statement

Although standard methods such as a 2D risk matrix are 
easy to comprehend, they do not allow complicated cau-
sation to be depicted. This has produced a large body of 
literature about strategies that discuss the consequence, the 
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probability, and an extra contextual component. The major-
ity of research has solely focused on creating one additional 
dimension. Based on the literature, there is no constant and 
straightforward approach on incorporating an additional 
dimension into risk assessment. This is particularly prob-
lematic in situations when there are multiple factors.

A survey of the literature mentioned in Sect. 2 reveals 
that significant efforts have been produced to address the 
shortcomings of traditional assessment approaches for risk 
factors. Despite the prevalence of risk identification and 
assessment methods in this field, there is still a need for 
novel studies to focus on four fundamental principles:

•	 Inaccurate determination of the impact level of an event 
on the projects’ objectives. Expert assessment was often 
based on the impact of the event on the project cost or 
schedule, and some experts devoted less attention to the 
effects of this risk on the project environment and safety, 
and the project's reputation.

•	 Lack of attention to the maturity of the organizations in 
risk management as an essential dimension in assessing 
risks.

•	 Inattention to the precision and efficacy of the decision-
making ranking processes.

•	 The majority of prior models cannot provide a reliable, 
all-inclusive strategy or methodology that integrates all 
essential elements of a risk assessment system.

4 � Research Objective

Based on the gaps identified in section 3, the study aims to 
develop a novel model to assess, rank, and quantify risk fac-
tors by incorporating the organizational maturity as a third 
dimension in the risk evaluation of construction projects. 
Therefore, the objectives are as follows: (i) integrating three 
risk dimensions into a single index, where the first dimen-
sion is the probability of occurrence and the other two fac-
tors are the impact level and the organizational maturity; (ii) 
generating mathematical equations derived from a survey of 
relevant literature and expert judgments for the impact level 
and the organizational maturity by adopting the best–worst 

method (BWM); and (iii) inputting the probability of occur-
rence and the output of mathematical equations into the 
fuzzy rule-based system (FRBS)-3D risk matrix model, 
where the result will be the risk score.

5 � Best–Worst Method (BWM)

A method of comparison similar to the AHP, the pairwise 
comparison method has been frequently used in multi-cri-
teria decision-making (MCDM) situations (Jia et al. 2020). 
It generates preference matrices and provides an approach 
to establishing the weights of the parameters by showing 
the relative preferences between every pair of parameters. 
Because of the difficulty inherent in making comparisons 
and the limitations of human comprehension, using a pair-
wise comparison in practice suffers from the inconsistency 
of its comparison matrices. The BWM was developed by 
Rezaei; it is a vector-based approach in which the weights 
of parameters are derived differently depending on paired 
comparisons. In contrast to conventional comparison tech-
niques, the BWM employs only integer values to describe 
preferences, decreases the time required for comparisons, 
and, most crucially, yields more consistent and trustworthy 
findings. The BWM stages are explained as follows (Rezaei 
2015):

1.	 From the set of parameters { P1,P2,P3,… .,Pn } the 
best (most preferred, most important) and worst (the 
least preferred, least important) parameters are selected 
and designated by PB and PW , respectively, where 
P1,P2,P3,… .,Pn are parameters to be compared. PB 
and PW are the best and worst parameters, respectively

2.	 The preference of the best parameter above all 
other parameters is obtained using a value rang-
ing from 1 to 9, and the best vector for othering will 
be represented as AB = (aB1 , aB2,aB3,…,aBn ), where 
AB ∶ best to others vector;

(
aB1, aB2, aB3,… , aBn

)
 o r 

called aBj represents the preference of parameter PB over 
parameters Pj , where Pj represents other parameters of 
study.

Table 1   List of models that use another factor as additional input

No. Probability criteria Impact criteria Addition input Application Authors

1 Probability Impact Recovery time × expected cost Construction projects Al-Mhdawi et. al. (2022)
2 Likelihood Consequence Vulnerability Construction projects Asadi et al. (2018)
3 Probability Impact stakeholder attribute (SA) × Manageability Construction projects Xia et al. (2017)
4 Probability Impact (cost) Impact (schedule) Construction projects Abd El-Karim et al. (2015)
5 Probability Expected loss Manageability Industrial enterprise Valitov et al. (2014)
6 Likelihood Impact Probability of detection Supply chain Griffis and Whipple (2012)
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3.	 The preference of other parameters over the worst 
parameter is defined using the same range, and the 
other parameters compared to the worst vector may 
be represented as AW  = (a1w ,, a2w,…,anw,)T, where 
AW ∶ others to worst vector;

(
a1w, , a2w, ..., anw,

)T  o r 
called ajW denotes the preference of parameter Pj over 
the worst parameter Pw.

4.	 To determine the optimum weights, for the parameters, 
it is necessary to minimize the maximum absolute dif-
ferences ||

|
WB − aBj Wj

|
|
|
 , ||
|
Wj − ajW WW

|
| for all j. This is 

expressed as follows:

Converting the problem to the following linear-program-
ming formula can help find a solution:

where WB represents the optimal weight of the best param-
eter; WW is the optimal weight of the worst parameter;Wj is 
the optimal weight of other parameters; � is the value of con-
sistency. The linear Eq. (2) requires a novel solution. When 
this is done, the optimum weights ( W∗

1
,W∗

2
,W∗

3
,…… ,W∗

n
 ) 

as well as optimal value of consistency of comparison � , 
designated �∗ , are achieved. The consistency ratio indicates 
that the closer the value of �∗ is to zero, the more reliable the 

(1)
min max

j
=

{
|
|
|
WB − aBj Wj

|
|
|
,
|
|
|
Wj − ajW WW

|
|

}

St.;
∑

j

Wj = 1;Wj ≥ 0, for all j

(2)

min �;S.t.;
|||
WB − aBj Wj

|||
≤ �, for all j;

|
||
Wj − ajW WW

|| ≤ �, for all j;
∑

j

Wj = 1;

Wj ≥ 0, forall j;

comparison system offered by the decision-makers. Utiliz-
ing �∗ and the relevant consistency index as illustrated in 
Table 2, we then compute the consistency ratio as follows:

where aBW represents the preference for the most desirable 
parameter over the least desirable parameter.  The value of 
the consistency ratio will be compared with the threshold 
value as illustrated in Table 3.

6 � Fuzzy Rule‑Based System (FRBS)

Fuzzy logic is commonly employed in environments char-
acterized by impression, ambiguity, lack of full knowledge, 
contradictory information, partial truth, and the potential of 
occurring, i.e. an environment described by uncertain and 
defective evidence (Nauck et al. 1999). A fuzzy rule-based 
system (FRBS) is able to combine the knowledge of experts 
with data presented numerically to create fuzzy rules for 
analyzing the performance of a system. Knowledge may be 
expressed in a variety of ways. The greatest way to describe 
human knowledge is via expressions derived from reality. 
Typically, the knowledge base represents familiarity with 
an issue that can be solved using fuzzy linguistic principles 
such as IF–THEN and the effective use of a fuzzy system 
through an inference engine which can aid in the production 
of FRBS output with specified input (Ghosha et al. 2020). 
There are four basic components of a typical fuzzy inference 
process (Gallab et al. 2018):

•	 Fuzzification
•	 Fuzzy rule
•	 Fuzzy inference engine

(3)Consistency Ratio =
�∗

consistency index

Table 2   Consistency index (CI) 
(Rezaei 2015)

aBW 1 2 3 4 5 6 7 8 9

CI (max �) 0 0.440 1 1.630 2.30 3 3.730 4.470 5.23

Table 3   Illustrates the threshold 
for different combinations 
(Lieng et al. 2020)

Scale ( aBW) Parameters

3 4 5 6 7 8 9

3 0.2087 0.2087 0.2087 0.2087 0.2087 0.2087 0.2087
4 0.1581 0.2352 0.2738 0.2928 0.3102 0.3154 0.3273
5 0.2111 0.2848 0.3019 0.3309 0.3479 0.3611 0.3741
6 0.2164 0.2922 0.3565 0.3924 0.4061 0.4168 0.4225
7 0.2090 0.3313 0.3734 0.3931 0.4035 0.4108 0.4298
8 0.2267 0.3409 0.4029 0.4230 0.4379 0.4543 0.4599
9 0.2122 0.3653 0.4055 0.4225 0.4445 0.4587 0.4747
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•	 Defuzzification process

Figure 1 illustrates the structure of FRBS. The fuzzifica-
tion method is done to create values of membership for a 
variable utilizing the membership functions (MF) depending 
on the fundamental notions of the theory of fuzzy set. With 
the aid of the membership functions, their value for a fuzzy 
variable may be generated using the fuzzification process. 
The membership functions will take on a trapezoidal or tri-
angular form depending on the issue. Fuzzification involves 
a transformation from the crisp numbers of inputs to their 
related fuzzy ones (Rastiveis et al. 2013). Nonetheless, a 
rule-based system often assumes that all input variables have 
independent connections. As can be seen from the figure, the 
main contrast between crisp and fuzzy systems is how the 
input space is partitioned according to the rules.

Mamdani, Tsukamoto, and Takagi–Sugeno fuzzy algo-
rithms are three rule-based system algorithms that are regu-
larly employed. The antecedent section of every algorithm 
is identical. In contrast, they vary in the consequent sec-
tion. Mamdani presented the most frequently used infer-
ence engine approach. On the other hand, the complexity of 
Mamdani’s approach increases linearly with the size of the 
set of variables in the premise. As the set of rules increases, 
building rules may become highly laborious, and it often 
becomes difficult to grasp the links between the anteced-
ents and consequences (Cavallaro 2015). The Tsukamoto 
approach defines the consequence of each rule using a fuzzy 
set with a monotonic membership function. The output is 
derived via a weighted average procedure. Fuzzy inputs 
lead to a clear result in the Takagi–Sugeno-type approach 
(linearly combining the information). It is efficient, robust, 
and well suited to deal with optimization and adaptive pro-
cesses. Therefore, it is particularly appropriate to control 
problems, notably for nonlinear dynamic systems. However, 
the Mamdani approach is more accommodating to human 
input (Rastiveis et al. 2013; Asadi et al. 2018). The current 

study uses the Mamdani algorithm in the proposed model 
for project risk assessment.

Fuzzy values are produced through the inference process. 
By defuzzification, the results of a fuzzy risk assessment 
will be “defuzzed.” Different methods of defuzzification 
have been used, including centroid of area, smallest of maxi-
mum, and mean of maximum. The appropriate defuzzifi-
cation method must be selected depending on application 
(Abed 2022). This research applies the centroid of area 
(COA) approach to defuzzification.

7 � Methodology

This article presents an integrated risk assessment frame-
work that can assist construction project managers in assess-
ing and prioritizing project risk factors more efficiently and 
systematically than the existing risk assessment methods, 
which provide ambiguous visions of risk factor priority. 
Consequently, the developed model may help construction 
project managers to put suitable response plans for assessed 
risks.

The proposed integrated model is broken down into the 
following six primary stages:

1.	 Stage 1: Preparing the initial structure of the risk assess-
ment algorithm:

	   Extensive systematic literature studies are carried 
out for a large number of papers concentrating on risk 
assessment to characterize an initial set of evaluation 
parameters.

2.	 Stage 2: Focus group session.
	   Twelve experts of academia and industry engineers 

collaborate to verify and reach a consensus on a set of 
evaluation dimensions. Three evaluation dimensions 
with nine sub-dimensions have been considered the most 
important factors for evaluating risks as follows:

Fig. 1   Structure of FRBS 
(Hatefi et al. 2019)
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•	 Probability of occurrence.
•	 Impact level (including financial loss, schedule loss, 

quality loss, health and safety loss, reputation dam-
age).

•	 Organizational maturity (including risk detection, 
risk control, resilience, risk communication).

3.	 Stage 3: Constructing mathematical equations of impact 
level and organizational maturity.

	   The BWM under LINGO software, version 20, is used 
to determine the preferable weights of the sub-dimen-
sions of both impact level and organizational maturity 
in order to make the final mathematical equations for the 
dimensions.

4.	 Stage 4: Building a fuzzy-rule based system model
	   The outputs from the previous stage will be combined 

with the outputs from the risk occurrence probability. 
These outputs will be inputs to the fuzzy rule-based 
system (FRBS) model designed based on the Mamdani 
algorithm in MATLAB software package to compute 
final risks scores.

5.	 Stage 5: 3D risk matrix.
	   A 3D risk matrix will be used to construct the FRBS 

model rules in the MATLAB environment.
6.	 Stage 6: Validation and sensitivity analysis:
	   A comparison and sensitivity analysis reveal the 

validity of the proposed model's outcomes.

Figure 2 illustrates the steps of this model.
The integration of these techniques was as follows:
After defining the main and sub-dimensions of the pro-

posed model from stages 1 and 2, the technique (BWM), 
with the help of 12 construction experts, will then be used 
to find the weights of the sub-dimensions and build math-
ematical equations for both the impact level and the organi-
zational maturity. After that, the outputs of these two equa-
tions and the third dimension (which is the probability of 
the risk occurrence) will be inputs to the FRBS model. The 
3D risk matrix is used to generate the rules for the FRBS 
technique in the MATLAB program. Thus the result will be 
the risk score.

8 � Field Work

This step consists of three main sections, which are as 
follows:

8.1 � Preparing the Initial Structure of the Risk 
Assessment Algorithm

In the traditional scenario, risk is determined by the prob-
ability and impact of a potentially unfavorable occurrence. 

During a comprehensive examination of the prior litera-
ture, the authors discovered that no research had addressed 
“organizational maturity” as an extra factor in the risk 
assessment equation for building projects. Therefore, they 
propose adding this dimension to the structure of the pro-
totype to become three primary dimensions: “probability 
of occurrence,” “impact level,” and “organizational matu-
rity.” In addition, they propose subdividing the dimensions 
of “impact level” and “organizational maturity” into sub-
dimensions to cover all aspects and ensure that the model is 
comprehensive and precise in its outcomes. The proposed 
sub-dimensions are collected from different articles and cat-
egorized under these main dimensions as shown in Table 4.

8.2 � Focus Group Session

The focus group considers a qualitative data collection 
method. It is defined as “a group of persons with certain 
features whose talks are centered on a specific problem or 
subject” (Anderson 1991). A focus group interview allows 
the largely homogeneous group to respond to the inter-
viewer's questions, and will be chosen when data-gathering 
opportunities are scarce. Compared to individual inter-
views, focus groups are preferable (Vanderstoep and John-
ston 2008). Consequently, as Patton (2002) underlined, 
focus groups are used to gather high-quality data in the 
social environment. They must be adequately defined and 
understood to perform focus group discussions effectively. 
Typically, focus groups need between 6 and 12 participants 
each session (Harthi 2015). This technique was used to 
develop the components of the impact level and organiza-
tional maturity.

In this study, the authors used strict rules to choose the 
focus group experts to ensure that the meeting results were 
accurate:

1.	 The experts must have at least 10 years of construction 
project experience.

2.	 Academic experts are required to have at least two arti-
cles in risk management.

Based on these criteria, 12 experts were selected for the 
focus group meeting. This group comprises project manag-
ers and academics (Ph.D. in civil engineering) who have 
extensive knowledge of construction projects and more than 
15 years of experience working in various public and private 
organizations. Initially, a presentation was provided on the 
initial structure of the proposed risk assessment model and 
the primary and sub-dimensions derived from prior stud-
ies. The experts were asked about additional dimensions 
and modes if deemed essential. According to the findings 
of this section, other sub-dimensions were added, and the 



547Iranian Journal of Science and Technology, Transactions of Civil Engineering (2024) 48:541–559	

1 3

Fig. 2   Research methodology

Table 4   Illustrates the initial dimensions of the proposed model

No. Main dimensions Sub-dimensions Author

1 Impact level Financial loss Abd El-Karim et al. (2015); Asadi et al. (2018); Farahani et al. (2021)
Schedule loss Osundahunsi (2012a, b); Abd El-Karim et al. (2015); Asadi et al. 

(2018); Farahani et al. (2021)
Quality loss Asadi et al. (2018); Farahani et al. (2021)

2 Organizational maturity Detection Alvand et al. (2021)
Resilience Asadi et al. (2018); Chien et al. (2019)
Risk control Zhang et al. (2016)
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dimensions' states were confirmed, organized, and ranked 
from 1 to 5 based on the experts' consensus.

8.3 � Application of the Model in Iraqi Construction 
Projects

In this section, to validate the proposed model, ten critical 
risk factors were gathered from sources (Sami Ur Rehman 
et. al. 2020; Kassem et al 2020; Al-Juboori et al. 2021; Jahan 
et al. 2022), in addition to historical data. These risks were 
evaluated by decision-makers (DMs) using both the conven-
tional methods and the proposed model. The DM team com-
prises five specialists working on the projects: three from 
the supervision team (owner, employer representatives), and 
others from the contractor team (project manager and worker 
supervisor). Table 5 presents the list of risk factors.

9 � Results

9.1 � Focus Group Results

This study's expert panel comprised 12 individuals from 
prominent building organizations. Nearly 80% of the experts 
possessed a postgraduate degree. The initial structure of the 
model, which consists of main and sub-dimensions, was sub-
mitted to the experts so that they could verify the model and 
recommend any additional dimensions or states. The experts 
proposed adding three sub-dimensions for “impact level” 
and “organizational maturity,” and confirmed the structure 
of mathematical equations; in addition, the characteristics 
of model criteria were developed.

Tables 6 and 7 illustrate the final findings of the focus 
group session to establish and validate the structure and 
components of the qualitative risk assessment model for 
construction projects. The risk assessment model com-
prises three primary dimensions: the probability of occur-
rence, impact level, and organizational maturity. The impact 
level includes five components, namely financial loss ( Floss ), 

Table 5   List of risk factors Risk code Risk description

R1 Lack of expertise and qualifications of the contractor or subcontractors
R2 Owner intervention, as in the selection of suppliers or subcontractors
R3 Delay in the client paying the financial dues to the contractors
R4 Inaccurate and insufficient information from the site investigation and survey
R5 Multiple change orders from the client
R6 Fluctuation in foreign exchange rates
R7 Financial and economic crisis/financial instability
R8 Inconsistency in contract documents/ambiguous contract terms and conditions
R9 Inaccuracy in estimating time and budget
R10 Lack of skilled workers in the region where the project is being carried out/

insufficient number of site workers

Table 6   Index number of the impact level sub-dimensions

Index Financial loss Schedule loss Quality loss Health and safety loss Reputation damage

1 Very low financial loss Very low impact on 
schedule

Very low impact on 
quality

Very low (minor Injuries 
or harms that may 
require first aid)

Very low (no damage to 
project reputation)

2 Low financial loss Low impact on schedule Low impact on quality Low (injuries or harms 
that requiring first aid)

Low damage to project 
reputation

3 Moderate financial loss Moderate impact on 
schedule

Moderate impact on 
quality

Moderate (injuries or 
harms that required 
hospitalization)

Moderate damage to pro-
ject reputation

4 High financial loss High impact on schedule High impact on quality High (injuries or harms 
that required long-term 
hospitalization)

High damage to project 
reputation

5 Extreme financial loss Extreme impact on 
schedule

Extreme impact on 
quality

Extreme (death of a per-
son in site)

Extreme damage to project 
reputation
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scheduling loss ( Sloss ), quality loss ( Qloss ), health and safety 
loss ( H&Sloss ), and reputation damage ( Rdamage ), as illus-
trated in Eq. 4. Additionally, the organizational maturity 
included four elements—risk detection ( Rdetection ), risk 
control ( Rcontrol ), resilience (Re), and risk communication 
( Rcommunication)—as illustrated in Eq. 5.

where ( C1, ..,C5;X1, ..,X4 ) represent the normalized weight 
of sub-dimensions. All identified components were classified 
on a scale of 1 to 5, where the probability of occurrence is 
classified from 1 = very low to 5 = very high. Impact level 
and organizational maturity are classified in Tables 6 and 7.

9.2 � BWM Results

After the expert panel has confirmed the risk assessment 
model in construction projects and the focus group research 
has been completed, the BWM will determine the weight 
of each component in the impact level and organizational 
maturity equations. Below is a numerical example showing 
the calculation of sub-dimensional weights for an impact 
level. The example was applied to one of the 12 experts. 
The same procedure is used for other dimensions with other 
expert opinions.

1.	 Twelve BWM questionnaires were sent to the same 
experts (individually). In this phase, the authors solicit 
experts' opinions about the best/worst parameters. The 
best parameter is the one each responder recognizes 
as the most significant sub-dimension in each major 
dimension equation. In contrast, the worst parameter is 
the one selected by each expert/decision-maker as the 

(4)
{Impact level = C1 × Floss + C2 × Sloss + C3 × Qloss

+C4 × H&Sloss + C5 × Rdamage
}

(5)
{Organization Maturity = X1 × Rdetection + X2 × Rcontrol

+X3 × Re. + X4 × Rcommunication
}

least essential sub-dimension in each central dimension 
equation. A brief questionnaire collects this data. The 
12 responders are required to provide their preferences. 
Table 8 below shows, for example, the preferences of 
expert 2 for sub-dimensions of impact level.

2.	 Practitioners are required to compare their chosen best 
parameter to the remaining parameters and indicate their 
choice using a number between 1 and 9. A score of 1 

Table 7   Index numbers of the sub-dimensions of organizational maturity

Index Risk detection Risk control Resilience Risk communication

1 Extreme (100% capability of risk 
detection)

Extreme capability in control-
ling risk

Extreme resilience to overcome 
risks

Extreme risk communication

2 High (75% probability of detect-
ing risk)

High capability in controlling 
risk

High resilience to overcome risks High risk communication

3 Moderate (50% probability of 
detecting risk)

Moderate capability in control-
ling risk

Moderate resilience to overcome 
risks

Moderate risk communication

4 Low (25% probability of detect-
ing risk)

Low capability in controlling risk Low resilience to overcome risks Low risk communication

5 Very low (not capable of detect-
ing risk)

Very low capability in control-
ling risk

Very low resilience to overcome 
risks

Very low risk communication

Table 8   Sub-dimensions of impact level

Sub-
dimen-
sions

Financial 
loss

Schedule 
loss

Quality 
loss

Health 
and safety 
loss

Reputation 
damage

Best cri-
terion

Quality loss

Worst cri-
terion

Reputation damage

Table 9   Preferences of expert 2

Best-to-
others

Financial 
loss

Schedule 
loss

Quality 
loss

Health 
and safety 
loss

Reputation 
damage

Quality 
loss

3 4 1 3 5

Table 10   Preferences of other parameters against worst factor of 
expert2

Others-to-worst Reputa-
tion 
damage

Financial loss 2
Schedule loss 2
Quality loss 5
Health and safety loss 3
Reputation damage 1
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indicates that both parameters are of equal significance. 
A score of 9 indicates that the most important parameter 
is far favored over the other one. This will produce best-
to-others vectors. Table 9 shows the selections of expert 
2.

3.	 Respondents are requested to prioritize all other factors 
above the least significant parameter. Once again, values 
of 1 to 9 will be used. This yields vectors of others-to-
worst (OW). Table 10 shows the preferences of expert 2 
for other parameters against the worst factor.

4.	 Based on Tables 9 and 10, the best-to-others linear 
model and others-to-worst linear model can be gener-
ated according to Eqs. 1 and 2:

Min �

|
|
|
WQ.loss − 3WF.loss

|
|
|
≤ �

||
|
WQ.loss − 4WS.loss

||
|
≤ �

||
|
WQ.loss − 1WQ.loss

||
|
≤ �

||
|
WQ.loss − 3WH&S.loss

||
|
≤ �

||
|
WQ.loss − 5WRe.damage

||
|
≤ �

||
|
WF.loss − 2WR.damage

||
|
≤ �

5.	 The unique solution can be obtained using LINGO 
software, version 20, 64x. Figure 3 illustrates the pro-
gramming steps in LINGO software and results for the 
opinion of expert 2.

6.	 Finally, we find the consistency ratio by using �cal-
culated from LINGO software and value 

(
�max

)
 from 

Table 2, then compare the value with the threshold value 
from Table 3:

The same procedure will be used for all experts’ opin-
ions. Two invalid questionnaires were omitted from the 
research due to inconsistency ratio. The final weight of the 
sub-dimensions was then determined by calculating the 
arithmetic mean of the weights derived from 10 experts’ 
opinions. Table 11 presents a list of parameter weights (the 
bold numbers represent the final weights of parameters).

Thus, the final Eqs. 6 and 7 of the impact level and organ-
izational maturity were calculated as follows:

|
|
|
WS.loss − 2WR.damage

|
|
|
≤ �

|
|
|
WH&S.loss − 3WR.damage

|
|
|
≤ �

WF.loss +WS.loss +WQ.loss +WH&S.loss +WR.damage = 1

WF.loss ≥ 0;WS.loss ≥ 0;WQ.loss ≥ 0;
WH&S.loss ≥ 0;WR.damage ≥ 0

C.R. =
0.0622

2.3
= 0.027 < 0.3019 ⋅ ⋅ ⋅ (ok)

Fig. 3   Results of weights and consistency indicator
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(6)
{Impact level = 0.253Floss + 0.228Sloss + 0.274Qloss

+0.133H&Sloss + 0.112Rdamage
}

(7)

{OrganizationMaturity = 0.248Rdetection + 0.363Rcontrol

+0.19Re + 0.199Rcommunication
}

9.3 � Fuzzy Rule‑Based System Results

The risk assessment model is established using a fuzzy plat-
form based on the Mamdani approach and implemented in 
MATLAB software. The model consists of three inputs: the 
probability of occurrence, the impact level, the organiza-
tional maturity, and one output (i.e., risk score). Accord-
ing to several research studies on applied building and 
risk management, the Gaussian membership function is 
the most appropriate geometry for situations like the one 
under inquiry (Iliadis et al. 2010). The shape of the proposed 

Table 11   Relative weights 
based on experts’ opinions

Experts Floss Sloss Qloss H&Sloss Rdamage Rdetection Rcontrol Re. Rcomm.

1 0.178 0.053 0.482 0.178 0.107 0.06 0.58 0.226 0.136
2 0.171 0.128 0.451 0.171 0.077 0.477 0.182 0.273 0.068
3 0.44 0.196 0.1288 0.061 0.17 0.533 0.072 0.113 0.282
4 0.37 0.205 0.205 0.137 0.082 0.21 0.577 0.126 0.087
5 0.34 0.184 0.184 0.184 0.105 0.143 0.607 0.1786 0.0714
6 0.4 0.07 0.226 0.113 0.191 0.561 0.211 0.07 0.158
7 0.077 0.192 0.346 0.192 0.192 0.073 0.183 0.122 0.622
8 0.16 0.426 0.24 0.12 0.053 0.176 0.588 0.06 0.176
9 0.225 0.394 0.225 0.112 0.042 0.553 0.219 0.164 0.064
10 0.166 0.426 0.249 0.06 0.1 0.2155 0.5629 0.0599 0.1617
Weights 0.253 0.228 0.274 0.133 0.112 0.248 0.363 0.19 0.199

Fig. 4   Structure of FRBS
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Gaussian MFs has been employed in several models for risk 
assessment and was chosen based on prior research. The 
Gaussian shape is used as a membership function for all 
input and output variables in the proposed model. Figure 4 
illustrates the structure of FRBS in MATLAB.

9.3.1 � Fuzzy Input and Output

The variables regarded as input, the probability of occur-
rence, impact level, and organizational maturity, and out-
put, risk score, were represented using linguistic variables 
as shown in the following Table 12. Figures 5 and 6 illus-
trate MFs of input and output.

9.3.2 � Fuzzy Rule Encoding by 3D Risk Matrix

There are three input variables in this research. Each is 
represented using five linguistic terms. Therefore, this will 
generate 5 × 5 × 5 = 125 rules. In previous studies, fuzzy 
rules have been derived from expert opinions. In this study, 
the authors use a novel method for rule generation utiliz-
ing the three-dimensional (3D) risk matrix developed by 
Amirshenava and Osanloo (2018). The three-dimensional 
risk cube, which is color-coded like a traffic light, may be 
a valuable modern method for generating fuzzy rules. The 
researchers adapted the risk cube's traffic light scale to the 
scale of the present study (preserving the cube's color gra-
dation). The risk cube has five layers in each direction cor-
responding to the probability of occurrence, impact level, 

and organizational maturity scales. The cube's traffic light 
consists of four zones (colors), namely very high, high, 
moderate, and low, which correspond to the risk score, and 
each zone corresponds to a different level of risk. Table 13 
illustrates the gradation of the cube's traffic light according 
to the study's scale. Figure 7 shows the details of the cube's 
traffic light.

9.3.3 � Final Assessment of the Risk Score

In the last step, the total risk score was computed by combin-
ing three inputs based on the membership function presented 
in Table 12. The risk score provided by the model may be 
advantageous to various projects by identifying those with 
a high prospect of failure and offering a good scenario. It is 
recognized that risk appraisal is a dynamic activity, yet fuzzy 
set theory has proven effective in addressing these issues. 
The 3D risk matrix is a perfect approach employed in the 
current study to define the complex relationship between 
input and output parameters. Figures 8 and 9 illustrate the 
control surface of the risk score in the MATLAB environ-
ment and its graphical representation, respectively.

9.4 � Validity Test and Sensitivity Analysis 
of the Proposed Model

Validation is the process of determining the quality and 
accuracy of the results produced from a particular model 

Table 12   Linguistic variables of input and output of FRBS model

Variables Linguistic term Fuzzy rating

Probability of occurrence Extreme (EX)

 

High (H)
Moderate (M)
Low (L)
Very low (VL)

Impact level Extreme (EX)

 

High (H)
Moderate (M)
Low (L)
Very low (VL)

Organizational maturity Very low(VL)

 

Low (L)
Moderate (M)
High (H)
Extreme (EX)

Risk score Extreme (EX)

 

High (H)
Moderate (M)
Low (L)
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Fig. 5   MFs of inputs

Fig. 6   MFs of output
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and the extent to which they represent reality (Thacker et al. 
2004). To this end, methods of comparison and sensitivity 
analysis were used in two major portions. First, to validate 
the efficacy of the proposed model, the authors validated the 
architecture of the model with the help of an expert in the 
fuzzy technique. In addition, they compared the proposed 
model to the conventional approaches. Second, the sensitiv-
ity analysis of the dimensions was demonstrated to investi-
gate the most influential risk score components.

9.4.1 � Validity of the Model

In this study, the proposed model was validated in three 
steps.

1.	 The model's architecture was assessed by two experts 
with a Ph.D. in risk management with more than 10 
years of experience. They have conducted much research 
in risk management utilizing fuzzy techniques. The 
experts confirmed that the model architecture was vali-
dated.

2.	 A comparison is utilized to ascertain the feasibility of 
the proposed model in evaluating project risk. Conse-
quently, the conventional probability impact (PI) and 
traditional failure mode and effect analysis (FMEA) 
were used for comparisons. Five DMs with more than 
10 years of experience evaluated ten risk factors using 
the three approaches. The findings of models are listed 
in Table 14.

3.	 The authors presented the findings from Table 14 to the 
experts in the focus group to get their feedback on the 
reliability of the proposed model. The experts agreed 
that the model's results were consistent with the actual 
reality of construction projects. They attribute this to the 
fact that the proposed model accounted for the weighted 

Fig. 7   3D risk matrix heat map. For example, the first rule will be extracted by the first layer (EX): If probability is VL (green), impact is 
VL(green) and organizational maturity is EX, then the risk score is L (green)

Fig. 8   Control surface of FRBS model

Table 13   Risk levels of the 3D risk matrix

Matrix Zone Risk Level

Extreme (EX)

High (H)

Moderate (M)

Low (L)
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relevance of variables (sub-dimensions) in the equations 
for impact level and organizational maturity, which con-
ventional models overlooked. In other words, we can 
say that the present model addresses the shortcomings 
of earlier models. It is noted that the PI method ranked 
risks in four classes, while the FMEA method ranked 
risks in six. In comparison, these factors have different 
levels of risk score in the proposed model. Therefore, 
they will be more accurate in assessing and ranking risk 
factors.

9.4.2 � Sensitivity Analysis

Sensitivity analysis is an approach for determining the most 
significant input factors influencing outputs (Shams et al. 
2015). The sensitivity analysis was performed to identify the 
most influential risk score components. The cosine ampli-
tude can be used to do this (Ji and Liang 2015). The follow-
ing Eq. (8) represents this procedure:

where xi and xj denote input variables and output variables, 
respectively, while n represents the total data used. Rij rep-
resents the strength relationship between input and output 
variables. The strength of the relationships are shown in 
Table 15. According to this table, the influential elements 
of the risk score are organizational maturity, impact, and 
probability, respectively.

10 � Discussion

The purpose of this section is to discuss the study out-
comes and the main contributions that will add to the body 
of knowledge. After systematic review for many studies, 
the authors inferred that utilizing innovative algorithms 
and techniques helps minimize uncertainty in assess-
ment procedures. Additionally, new and essential factors 
which impact the risk levels of building projects should 
be investigated. Consequently, this research recommended 
the development of a new method to risk assessment in 
building projects. They found that most previous models 

(8)Rij =

∑n

l=1

�
xil × xjl

�

�∑n

l=1
x2
il

∑n

l=1
x2
jl

� 1

2

Fig. 9   Graphical view of the 
rules of FRBS model
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focus on the impact of risk on project cost and time while 
paying less attention to the project environment and safety 
and the project's reputation.

Based on extensive review of previous studies and the 
consensus of the focus group experts, the most critical 
dimensions in the new model were identified. Conse-
quently, the two equations, the impact level and the organi-
zational maturity were built. The researchers' next plan 
was to adopt a new hybrid approach to risk assessment 
using (BWM-FRBS) coupled with the 3D risk matrix. The 
BWM aimed to find the weights of the dimensions devel-
oped in this study. The outputs of these equations and the 
probability of the event occurring will be the inputs for the 
FRBS model. The role of the 3D risk matrix was to build 
the model's rules used in MATLAB software. The authors 
validated the proposed model through compared it with 
two of the most prevalent conventional risk assessment 
methods, namely the PI approach and the FMEA. With 
the assistance of five decision-makers, these three mod-
els were used to evaluate ten of the most significant risks 
affecting building projects in Iraq. Using the PI approach, 
the authors observed that this method gives equal ranking 
to risk (R1, R2, R3, R4, R6, R8, and R10). In the FMEA, 
the order of risk factors was computed by multiplying 
the parameters (O, S, D) without regard to their relative 
importance. This approach has a similar ranking (R1, 
R6, R8, and R10). These two methods may impose some 
restrictions on real-world applications. In contrast, the new 
technique based on BWM-FRBS eliminated these defi-
ciencies and provided logical classifications based on the 
experts' opinions. Based on the aforementioned, the main 
contributions of the proposed model can be described as 
follows:

1.	 Provides a suitable approach to uncertainties associated 
with critical risk assessments of project failure where 
fuzzy logic can effectively deal with these uncertainties.

2.	 BWM is considered to calculate the weights of the 
parameters; it is not a complex calculation, and the 
experts utilize their expertise, knowledge, and informa-
tion.

3.	 The proposed model successfully detects, evaluates, 
and prioritizes the most significant risks of construction 
projects and, consequently, delivers precise and useful 
information on risk management in building projects.

4.	 The three-dimensional risk matrix is adopted as a new 
approach combined with the fuzzy logic approach.

Table 15   Explains the strength relationship between input and output

Input variable Probability Impact Organizational maturity

Rij 0.9768 0.979 0.99
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5.	 In general, the current study findings enhance our knowl-
edge in assessing the dangers that might affect building 
projects.

11 � Conclusion

Adopting a suitable scientific approach to risk assessment 
can help prevent many consequences which can lead to 
schedule delays, budget overruns, and failure to fulfill 
safety and quality requirements. Because of the signifi-
cance of risk evaluation and prioritizing in construction 
projects, the study aims to present a novel approach based 
on BWM-FRBS for assessing construction project risks. 
The research methodology involves a six-stage procedure: 
(i) preparing the initial structure of risk assessment which 
introduces new dimensions; (ii) focus group session; (iii) 
constructing mathematical equations using the BWM; (iv) 
building a fuzzy-rule-based system model; (v) using a 3D 
risk matrix to construct the FRBS model's rules; (vi) vali-
dation and sensitivity analysis. The most important find-
ings in the practical part are summarized as follows:

1.	 A new dimension represented in the organizational 
maturity was added in the risk assessment model.

2.	 New mathematical equations were built for impact 
level of risk and organizational maturity. The relative 
importance (weights) of the sub-dimensions for both the 
impact level and the organizational maturity is calcu-
lated by adopting the BWM.

3.	 The organizational maturity mathematical equation 
involves four components: risk detection, risk control, 
resilience, and risk communication. In addition, five cri-
teria—financial loss, schedule loss, quality loss, health 
and safety loss, and reputation damage—are employed 
in the impact level equation.

4.	 The outputs derived from the previous equations with 
the output of the probability of occurrence resulting 
from experts' opinions were combined as inputs to the 
developed FRBS model to determine the risk score.

5.	 A 3D risk matrix was adopted in this model to generate 
125 fuzzy rules utilized in MATLAB software.

6.	 A case study was employed to explain the possible appli-
cability of the proposed paradigm by evaluating ten risk 
factors with the help of five decision-makers employed 
at an Iraqi construction organization.

7.	 The proposed model effectively identifies, assesses, and 
ranks the most severe risks associated with building pro-
jects. As a result, it provides accurate and helpful infor-
mation on risk management in construction projects.
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