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Abstract
Debris flows are the most dangerous geological hazard in steep terrain. For systematic debris flow mitigation and manage-
ment, debris flow evaluation is required. Over the past few decades, several methods for figuring out a debris flow's suscep-
tibility have been created. The current study was carried out to examine the global debris flow susceptibility from 2003–July 
2022. The findings demonstrated a growth in the number of papers published during the investigation period that dealt with 
the susceptibility of debris flows. From the study, it has been seen that China has the highest number of debris flow study 
as of now. This article discusses the most often used models with their advantage and disadvantage. There are 96 causative 
factors responsible for the occurrence of the debris flow, among which the top five are slope, aspect, curvature, lithology 
and rainfall. In 14.5 per cent of the publications, the slope is regarded as the most significant causative factor for the occur-
rence of debris flows. In comparison, the support-vector machine (SVM) has been utilised as the most popular approach for 
assessing debris flow susceptibility in 8.5 per cent of the articles. Lastly, it is determined that new advances in technology in 
the areas of geographic information systems (GIS), remote sensing and computing, and the expansion of data accessibility 
are important considerations in boosting interest in research in debris flow susceptibility.
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1  Introduction

Debris flow is a unique mass movement caused by heavy rain 
or snowmelt on steep hilly areas. A phrase used to describe 
mass movement occurrences is the landslide. Landslides 
can be classified into different categories depending upon 
the utilization of materials and how they move, including 
spread, fall, topple, and flow (Varnes 1978). Varnes catego-
rized landslides based on the materials employed and the 
patterns of motion involved (Varnes 1978). There are two 
types of materials used in landslides: rock and soil. Two 
more forms of soil are debris and earth. The various types of 
movement include spreads, falls, topples, slides, and flows. 
A flow is a continuous dimensional movement with short-
lived, closely placed, and rarely preserved shear surfaces. 
Many researchers have created their debris flow idea, which 

has evolved. According to Varnes, debris flow is a land-
slide that mimics a flow consisting of a high proportion of 
coarse particles (Varnes 1978). It is frequently the result of 
abnormally heavy rain, which results in torrential flow on 
steep terrain and a rapid flow through predefined drainage 
systems. Varnes also claimed that the factors behind debris 
flow induction are rainfall rate and duration, the physical 
properties of materials and deposition, pore-water pressure, 
slope angle, and movement mechanism (Varnes 1978). 
Moreover, debris flow happens whenever the water content 
of the debris materials becomes saturated, which creates 
rapid movement of the same in a regular confined channel 
(Hungr et al. 2001). According to his research, the debris 
flow rate can exceed one m/s and approach ten m/s. Debris 
flows as a continuous fluid mix of water and silt (Sassa et al. 
2007). Three main factors are responsible for the debris flow 
(Sassa et al. 2007). The first reason is channel bed erosion 
due to heavy rainfall. A landslide caused the second reason, 
which resulted in material movement. Another factor is the 
disintegration of a natural dam on the slope's higher reaches. 
Debris flow is classified into channelized debris flow and hill 
slope debris flow (also known as open slope debris flow). 
The topographic and geological characteristics of the region 
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where the debris flow occurred are used to classify these 
two types of debris flows. Hillslope debris flows create their 
course down the slope, whereas channelized debris flows 
flow along a pre-existing path, such as gullies, rivers, val-
leys, or depressions. (Nettleton et al. 2005). Debris flow sus-
ceptibility zonation (DFSZ) mapping identifies debris flow 
vulnerable zones in hilly areas. Debris flow susceptibility 
maps divide debris flow-prone areas into various suscepti-
bility regions and rank them according to the likelihood of 
debris flow hazards occurring. Recently, this has become a 
widely accepted and extensively used debris flow research 
worldwide. The current study will review global debris flow 
susceptibility literature between 2003 and July 2022. For this 
purpose, a database comprising 90 research papers has been 
prepared after extraction from the Web of Science portal.

2 � Methodology

A bibliographic search has been carried out on “Web of 
Science” Database (2003–2022) for the following combi-
nation of keywords: "susceptibility*", "Debris flow*". For 
this analysis, only peer-reviewed journal articles written in 
English have been considered, as they possess the best qual-
ity articles. The English language has been selected because 
this is understandable to the international scientific commu-
nity. After screening the studies on the given topic, articles 
were finally selected, the critical analysis of which is stated 
in the following paper.

3 � The Chronological Evolution of Published 
Articles

In the 90 papers on debris flow susceptibility (Fig. 1) that 
were published between 2003 and July 2022, only ten arti-
cles were included between 2003 and 2012; however, in 
2013, there was a rapid increase, and there were at least four 
publications published every year on debris flow susceptibil-
ity. Figure 1 shows that after 2012 researchers started focus-
ing on the debris flow susceptibility model. Amongst the 90 
research papers on debris flow susceptibility (Fig. 1.) pub-
lished between 2003 and July 2022, only ten articles have 
been included between 2003 and 2012; however, a sudden 
hike in the publication has been observed in 2013. It can be 
observed from Fig. 1. that after 2012, researchers started 
focusing on the debris flow susceptibility model.

4 � The Pattern of Journal Publication

As presented in Fig. 2, 64.7% of the total articles reviewed 
on debris flow susceptibility between 2003 and July 2022 are 
published in following ten journals like Natural Hazards and 
Earth System Sciences, Journal of Mountain Science, Natu-
ral Hazards, Remote Sensing, Geomorphology, Landslides, 
Earth Surface Processes and Landforms, Environment Earth 
Sciences, Water and Bulletin of Engineering Geology and 
the Environment. Out of these ten journals, Natural Hazards 
and Earth System Sciences, Journal of Mountain Science, 
and Natural Hazards have published 54.3% of the papers. 

Fig. 1   Web of Science's analysis 
of the literature database from 
2003 to July 2022. The right 
ordinate axis shows the total 
number of articles published 
during the analysis period, 
while the left ordinate axis 
shows the number of articles 
published annually
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5 � Authors and Study Area

The authors' study of 90 papers on debris flow suscepti-
bility revealed that 200 authors have written those manu-
scripts. Amongst those, only 3.44 per cent of the articles 
were written by a single author, while two or more authors 
co-wrote 96.5 per cent. Between 2003 and July 2022, each 

author contributed to the publication of an average of 0.44 
publications. Figure 3 shows the contribution of top ten 
authors in terms of publications of debris flow susceptibil-
ity assessment articles for 2003–July 2022.

A total of 118 study areas were given in the 90 papers. 
The maximum percentage of studies is located in China, 
as shown in Fig. 4. 

Fig. 2   In terms of the number of publications listed in the literature 
database, the top ten journals (out of 35) are as follows. A horizon-
tal bar's colour indicates the number of articles in four classes. The 

height of the horizontal bars displays the average number of citations 
across four classes. Square brackets indicate class limit inclusion, and 
round brackets indicate exclusion

Fig. 3   Top ten Authors in 
terms of publications of debris 
flow susceptibility assessment 
articles for the period 2003–July 
2022

0
1
2
3
4
5
6
7
8
9

N
o.

 P
ap

er
s

Authors



1280	 Iranian Journal of Science and Technology, Transactions of Civil Engineering (2023) 47:1277–1292

1 3

6 � Thematic Variables

The authors have utilised a total of 96 distinct input the-
matic variables. After the study, it has been observed 
that minimum 5 and maximum of 18 thematic variables 
have been utilised for the application of the susceptibility 
model. One can infer from Table 1 that out of the 96 dis-
tinct variables, 75 variables appeared just once or twice in 
the database, which depicts that these are less significant 
with respect to the variables which are used frequently 
for study.

We divided this vast amount of input theme variable 
names into 17 categories that authors seem to utilise more 
frequently. The following two key criteria were used to 
classify each variable name. For example, "Plane Curva-
ture" and "Profile Curvature" were placed into the class 
"Curvature" since they were synonyms for the same the-
matic variable name. Second, similar descriptors with 
different meanings but connected to the same themes 
were grouped. For instance, the themes of "geology" and 
"lithology" were combined into the class "geology". Five 
theme clusters were created from the 17 identified classes. 
i.e. other variables, hydrological, morphological, land 
cover, and geological (Fig. 5). These five cluster consists 
of 72.3% of the thematic variables the author frequently 
uses. 

7 � Methods for Investigating 
the Susceptibility of Debris Flow

Debris flow is a severe natural disaster that can occur any-
where on the globe. Rapid debris flows demolish structures 
and put people's lives and property at risk [5, 38, and 65]. 
Therefore, developing efficient strategies for mitigating 
the disastrous implications of debris flows is critical. The 
spatial pattern of the likelihood of debris flows caused by 
severe weather is depicted by the debris flow susceptibil-
ity map (DFSM). It is widely used for anticipating debris 
flows and mitigating their serious consequences. (Chen et al. 
2016; Li et al. 2017; Polat and Erik 2020; Qiao et al. 2021). 
These are largely branched into two classes: quantitative 
and qualitative approaches (Intarawichian and Dasananda 
2011; Ayalew and Yamagishi 2005; Kanungo et al. 2009; 
Aleotti and Chowdhury 1999). In qualitative techniques, 
professionals used the field experience and observation of 
the study area to provide weights to numerous conditioning 
parameters (Du et al. 2019; Yalcin et al. 2011). Qualita-
tive approaches may include different approaches like the 
weighted linear combination methods and analytical hierar-
chy process (AHP). The correlation between the influenc-
ing factors and existing debris flow and past debris flow is 
represented numerically as causative factor weights and their 
categories in the quantitative approach (Kanungo et al. 2009; 
Yalcin et al. 2011). Quantitative approaches may include 

Fig. 4   Map displaying the locations of all 118 study areas, including duplicates that are reported in the literature database. Five classes in vari-
ous colours represent the number of study fields in each nation
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Table 1   Debris flow susceptibility assessment factors

Factors No of articles Factors No of articles

Active fault 1 Plane curvature 8
Aridity index 2 Population density 7
Aspect 18 Profile curvature 9
Average gradient of main channel 1 Rainfall 14
Catchment area 2 Relative cutting depth 1
Catchment perimeter 1 Relative height difference 2
Catchment relief 1 Relative relief 2
Channel length 1 Relief amplitude 1
Circularity ratio 1 Relief ratio 1
Curvature 3 River density 2
Curvature of the main stream 1 Road density 8
Cut density 1 Road length 1
Distance from epicentre 1 Rock hardness 1
Distance from fault 10 Roundness melton ratio 1
Distance to river 9 Sediment transport capacity index 1
Drainage buffer distance 1 Sediment transport index(STI) 2
Drainage density 3 Seismic intensity 3
Earthquake 1 Slope 25
Earthquake density 1 Slope depth 1
Elevation 13 Slope gradient 1
Fault density 1 Slope length factor 1
Fault length 1 Slope length steepness factor 1
Flow accumulation 1 Soil cover 1
Forest density 1 Soil Drainage 1
Forest type 1 Soil erosion 3
Formation lithological index 1 Soil texture 5
Freeze–thaw erosion intensity 1 Soil type 1
Geomorphology 1 Soil type 1
Groove gradient 2 Solar radiation 1
Ground Roughness 1 Stream power index(SPI) 5
gully density 1 Surface roughness 1
Hydraulic conductivity 1 Temperature 1
Hypsometric integral 1 Terrain characterization index (TCI) 2
Land cover 4 Terrain ruggedness number 1
Land use 9 Topographic position index (TPI) 2
Landform 2 Topographic roughness index 1
Length of the main stream 1 Topographic wetness index (TWI) 10
Lithology 15 Topography 2
Main channel area 1 Tree age 1
Main channel length 1 Tree diameter 1
Maximum elevation difference 2 Valley depth 1
Mean altitude 2 Vegetation 1
Mean annual temperature 1 Vegetation cover 2
Melton ratio 1 Vegetation coverage index 2
Melton ruggedness number 1 Water erosion intensity 1
Moisture index 2 Watershed area 2
Nature of slope material 1 Watershed system geomorphologic entropy 1
Normalized difference vegetation 

index(NDVI)
13 Wind erosion intensity 1



1282	 Iranian Journal of Science and Technology, Transactions of Civil Engineering (2023) 47:1277–1292

1 3

statistical, probabilistic, and distribution-free approaches 
(Kanungo et al. 2009). Different qualitative and quantita-
tive methodologies for landslide susceptibility mapping have 
been used worldwide. Over the last few decades, statistical 
methodologies such as (Banerjee et al. 2018; Chen et al. 
2014; Xu et al. 2013; Sarkar et al. 2008; Saha et al. 2005; He 
et al. 2012; Merghadi et al. 2020), frequency ratio (Intara-
wichian and Dasananda 2011; Angillieri 2020; Demir 2019; 
Lee and Pradhan 2007; Xiong et al. 2020; Dou et al. 2019), 
the weight of evidence (Chen et al. 2019; Sujatha et al. 2014; 
Youssef et al. 2016), and certainty factor (Wubalem 2021; 
Wang et al. 2015; Kanungo et al. 2011) models have been 
used. In recent years, researchers have also utilised the dif-
ferent susceptibility mapping techniques that have used dif-
ferent machine learning methods such as artificial neural net-
work (Gao et al. 2021; Chen et al. 2020; Elkadiri et al. 2014), 
Bayesian network [29,3 0], random forest (Liang et al. 2020; 
Xiong et al. 2020; Dou et al. 2019), decision tree (Zhang 
et al. 2019; Arabameri et al. 2021), Naïve Bayes algorithm 
(Zhang et al. 2019; Qing et al. 2020; Chen et al. 2017). The 
information value method for debris flow susceptibility map 
for Sichuan Province (China) (Xu et al. 2013). In India, 
Sujatha and Sridhar used an analytical network process to 

create a debris flow susceptibility map (Sujatha and Sridhar 
2017). Achour created such a map in Portugal using logistic 
regression and frequency ratio models (Achour et al. 2018). 
Qin also prepared the DFSZ maps using the frequency ratio 
method (Qin et al. 2019). When appropriate geotechnical 
and hydrological data are available, the physical model is a 
solid alternative for debris flow forecast on a regional scale. 
Several models, such as EDDA (Erosion–Deposition Debris 
flow analysis) and FLO-2D, can correctly predict debris flow 
erosion, moving, and build-up (Gomes et al. 2013; Chen and 
Zhang 2015; Shen et al. 2018). When statistical approaches 
were utilised in the past, debris flow was commonly consid-
ered a point. However, awareness of the start and the source 
of regional debris flows is crucial in determining their sus-
ceptibility (Ciurleo et al. 2018). It is highly tough to analyse 
debris flow and landslide separately, as seen in the Yongji 
County study (Park et al. 2016). As a result, landslide inven-
tory research is critical for precisely forecasting the source 
region of debris flows as most of the debris flow is due to 
landslides, as seen in Yongji County (Blahut et al. 2010). 
Numerous established physical models (Kang and Lee 2018) 
can replicate the process of the debris flow that is produced 
by shallow landslides, primarily including LISA (Level I 

Fig. 5   Tree diagram illustrating the variables used in estimating debris flow susceptibility and hazard
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stability analysis) (Hammond et al. 1992), SMORPH method 
(Shaw and Johnson 1995), SHETRAN method (Ewen et al. 
2000), SINMAP method (Pack et al. 2001), the SHALSTAB 
method (Dietrich et al. 1993) and TRIGRS method (Baum 
et al. 2008). Sometimes collecting sufficient precise hydro-
logical and geotechnical data in the field is too challenging, 
so the data-driven model uses statistical principles to make 
DFSM (Qiao et al. 2019; Zhang et al. 2014). Each technique 
has its strengths in terms of outcomes. The model integra-
tion is usually an appropriate approach when a single model 
cannot meet various requirements simultaneously. In some 
studies, DFSM reliability has been reduced due to duplicated 
factors to avoid this merging the factor selection procedure 
with DFSM modelling to pick significant factors (Yang et al. 
2019). The concept of fusing several statistical methods to 
increase the accuracy of debris flow prediction has become 
increasingly popular in research. It involves merging classic 
statistical methods and layering machine learning models 
(Dou et al. 2019) (Table 2).

The methods mentioned above of analysis have been used 
in the previous debris flow research from 2003 to July 2022. 
This section explains the model used in more than 2 per 
cent of the total paper from 2003 to July 2022 are explained 
briefly.

7.1 � Semi‑quantitative Approaches

Debris flow susceptibility can be assessed using semi-quan-
titative methods (Li et al. 2021b). Fuzzy set-based analysis 
(Zhang et al. 2022), analytic hierarchy process (AHP), and 
other methodologies are included in multi-criteria decision 
analysis.

7.1.1 � Analytic Hierarchy Process (AHP) approach

The AHP can be classified as a multi-criteria decision-mak-
ing approach that can be used to assess the susceptibility of 
debris flow hazards. It is a methodical process that includes 
problem definition, objective, and alternate determination, 
paired-wise comparison matrix formulation, weight deter-
mination, and overall priority determination. (Saaty 2008). 
Debris flow is a complicated process caused by several fac-
tors (Li et al. 2021b). The AHP method can measure the 
link between causative factors and debris flow in absolute 
or relative terms. (Pham et al. 2016; Qiao et al. 2019; Sun 
et al. 2021). In absolute terms, each alternative is measured 
against one ideal alternative, whereas in terms of relative 
measurement, each alternative is compared to a large num-
ber of other alternatives. Absolute and total measurement is 
a controlling approach based on what is known to be the fin-
est. The comparative measuring access, on the other hand, is 
descriptive and is conditioned by the evaluator's competence 
and ability to check observations (Pardeshi et al. 2013). Each 

of the debris flow causes might be considered as an alterna-
tive. Furthermore, these causal elements are given absolute 
values (1–9) based on their respective importance in causing 
slope instability (Dou et al. 2019; Li et al. 2021b). To calcu-
late the Consistency Ratio (CR) and Consistency Index (CI), 
comparison matrices are created (Li et al. 2021b). Because 
of the influence of the weight assigner's subjectivity, the 
AHP technique, as a subjective weighting method, allo-
cates a significant weight to those factors having imperfect 

Table 2   Total models used for debris flow susceptibility are classified 
as follows

Model used Mentioned in % of 
papers (2003–July 
2022)

Analytic hierarchy process (AHP) 6.77
Analytical network process (ANP) 1.69
Artificial neural network (ANN) 3.38
Back propagation neural network (BPNN) 1.69
Bayes discriminant analysis (BDA) 1.69
Binary logistic regression (BLR) 1.69
Boosted regression trees (BRT) 1.69
Certainty factor (CF) 3.38
Convolutional neural network (CNN) 1.69
Cuckoo optimization algorithm (COA) 1.69
Decision tree (DT) 1.69
Discriminant Analysis 1.69
Ensemble methods 1.69
Extreme Gradient Boosting 1.69
Frequency ratio (FR) 5.08
Fuzzy C-means algorithm (RES_FCM) 1.69
Gaussian Processes 1.69
Generalized linear model 1.69
Gradient boosting machine (GBM) 1.69
Grey wolf optimization (GWO) 1.69
Heuristic method 1.69
Index Entropy Model 3.38
Information content model (ICM) 3.38
Information Value 1.69
Information value (IV) 3.38
Logistic regression (LR) 6.77
Modified logistic regression model 1.69
Multi-Criteria Evaluation (MCE) 1.69
Navies Bayes 1.69
Nearest Neighbours 1.69
One-dimensional convolutional neural network 1.69
Principal Component Analysis (PCA) 3.38
Random forest (RF) 6.77
Rock engineering system 1.69
Shannon entropy (Entropy) 3.38
Support-vector machine (SVM) 8.47
Weights of evidence method 1.69
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correlations with debris flow occurrence in the research area, 
reducing the model's prediction capacity.

7.2 � Quantitative Approaches

Predicting debris flow susceptibility using quantitative meth-
odologies is founded on real-world data and analysis. Fur-
thermore, quantitative tools eliminate the biased inherent in 
qualitative techniques.

7.2.1 � Statistical Approaches

Statistical approaches are the most commonly used methods 
for debris flow susceptibility (Sun et al. 2021; Dash et al. 
2022). It must be understood that an evaluator's capability, 
technical skills, and expertise in applying a specific statisti-
cal model are more essential than the technique on its own. 
Overall, there are no defined standards or practice guide-
lines for evaluating debris flow susceptibility using statisti-
cal modelling. As a result, selecting a suitable method for 
assessing debris flow susceptibility is often a challenging 
issue. Different methods defined under statistical approaches 
are classified as follows.

7.2.1.1  The Information Content Model (ICM)  Shannon'S 
(1948) communication theory, which first proposed the 
concept of information as well as the computation for-
mula of information entropy (Shannon 1948), is being 
used to assess the information content model (ICM). ICM 
refers to a statistical analysis and forecasting method. This 
method analyses the information content values of each 
influencing factor and builds an evaluation and predic-
tion model based on known debris flow information and 
its influencing factors (Li et al. 2021b). The debris flow 
susceptibility of the entire research region can then be 
assessed using the analogy principle. The ICM technique 
can help to eliminate subjective judgment and provide a 
more objective evaluation model. However, this method 
undervalues several factors, lowering the model's predic-
tive effectiveness.

7.2.1.2  Principal component analysis (PCA)  A unique mul-
tivariate statistical method called "PCA" was proposed to 
create debris flow susceptibility maps of the research area 
in a GIS system (Li et al. 2021b). To decrease the redundant 
information of the variables and translate them into vari-

ables, the principal component analysis (PCA) approach 
was used to select the most influential factors and their cor-
responding weights based on the percentage of variability 
acquired. Correlative variables into uncorrelated variables 
(Gorsevski 2001). The results are then fed into a (GIS) geo-
graphic information system model, which is used to assess 
and map the research area's susceptibility to debris flow. 
The study uses a linear model, which assesses the prob-
ability that each pixel contains debris flow. This study mini-
mises the influence of redundancy between the components 
analysed by automating the analysis of most of the charac-
teristics connected to the incidence of slope failures while 
decreasing factors not influencing the triggering of debris 
flow.

7.2.1.3  Information Value (IV) Model  This technique is a 
bivariate statistical analysis method (Yin et  al. 1988) that 
can measure the effect of independent factors on the distri-
bution of a dependent variable (Melo et al. 2012). Research-
ers worldwide have used it to analyse debris flow suscepti-
bility (Li et al. 2021a; Xu et al. 2013).

The following Eq. (1) can be used to calculate the infor-
mation value:

In the x-th causative factor, the information value of the 
y-th class is IVxy. The debris flow density is referred to as 
densclas within factor class, Densmap is the overall factor 
map's debris flow density, the number of pixels impacted by 
debris flow in the y-th class of the x-th causative factor is 
NDxy, Nxy is the pixels in the y-th class of the x-th causative 
factor, in the x-th causative factor map, NDx would be the 
overall number of pixels impacted by debris flow, and Nx is 
the pixel value in the x-th causative factor map. This model 
has been utilised extensively in previous investigations in 
Indian Himalayan terrain. An IVm picture for a causative 
factor is created by combining the associated IVxy images 
for distinct classes of that causative factor. The arithmetic 
overlay procedure is used to integrate these IVm pictures 
expressing the information values for the classes (IVxy) 
of the causal factors. In the GIS environment, each pixel's 
debris flow susceptibility index (DFSI) is then computed 
using the relation below Eq. (2).

The total number of causal factors is denoted by the let-
ter Z.

(1)

(2)DFSI =
∑Z

m=1
IVm

IVxy = ln

�
Densclas

Densmap

�
= ln

�
NDxy∕Nxy∑n

y=1
NDxy∕

∑n

y=1
Nxy

�
= ln

⎛⎜⎜⎝
NDxy∕Nxy

NDx

Nx

⎞⎟⎟⎠
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7.2.1.4  Index Entropy Model  Vlčko proposed the index 
entropy model (Vlčko et al. 1980). This model may deter-
mine the area percentages and weights of various debris 
flow effect factors at all levels. This model is a binary sta-
tistical model. The entropy index model's weight param-
eters have a Gaussian distribution. In this method entropy 
index reveals the key regulating element influencing ori-
gin development under natural conditions. It is possible 
to determine the weight range of 0 to 1. The more signifi-
cant the factor's contribution to debris flow generation, the 
closer the weight value is to 1. On the GIS platform, the 
layers of each factor are overlaid on the debris flow pattern 
data layers. Each impact factor weight, as well as the aver-
age probability density of debris flow, can be computed 
by the index entropy model. The dominant factors are 
eventually identified. The entropy methodology has been 
extensively used to calculate the weight index of natural 
disasters. It has been used for integrated environmental 
impact studies of natural processes such as droughts, sand 
storms, and debris flows (Chen et al. 2017).

7.2.1.5  Logistic Regression (LR)  Among the various mul-
tivariate statistical techniques, logistic regression is the 
most widely used method for spatially predicting debris 
flow susceptibility and hazard zonation (Li et  al. 2021a; 
Liang et al. 2020; Xiong et al. 2020; Achour et al. 2018). 
Using categorical and continuously scaling factors, the 
logistic regression approach can successfully forecast 
a binary response parameter, such as the presence or 
absence of debris flows. (Liang et al. 2020). After a logis-
tic regression statistical study, this method forecasts the 
likelihood of debris flow. Equation (3) can define the link 
between the presence of debris flow inside a specific area 
and the variables that influence it. (Achour et al. 2018).

On a 'S shaped' curve, 'P' reflects the expected prob-
ability of a debris flow that runs from 0 to 1. A linear 
combination is represented by the term 'z'. The logistic 
regression uses an Eq. (4) that is fitted to the data set.

The model's intercept is represented by ‘b0’, the bi 
(i = 0, 1, 2 …, n) are the slope coefficient of the logis-
tic regression model and the xi (i = 0, 1, 2, 3………., n) 
represents the independent variable. When the dataset 
seems continuous or discrete or a combination of the two, 
logistic regression can be employed. On the other hand, 
the logistic regression results cannot distinguish between 
the impacts of various classes on the frequency of debris 
flows. In logistic regression, the dependent variable should 

(3)P =
1

1 + e−z

(4)z = b
0
+ b

1
x
1
+ b

2
x
2
+ b

3
x
3
+…+ bnxn

be binary, including yes or no, zero or one, presence or 
absence, and so forth. (Chen et al. 2017). The frequency 
ratio model is simple to use; however, the LR model is 
more challenging because it needs to convert data from 
a GIS to external statistical software. The FR method 
evaluates the relationship between one dependent variable 
(debris flows) and many independent variables using only 
discrete data (predisposing factors). However, in addition 
to discrete forms, the LR allows for evaluating continuous 
independent variables.

7.2.1.6  Frequency Ratio  Among bivariate statistical 
approaches, frequency analysis is the most extensively 
employed (Angillieri 2020). The spatial distribution of 
prior debris flow in the area, and the association between 
these key causative factor groups are utilised in this 
method (Achour et  al. 2018; Qin et  al. 2019; Wu et  al. 
2019; Kurilla and Fubelli 2022).

The following Eq.  (5) is used to determine the fre-
quency ratio (FR):

The frequency ratio value of the j-th class in the i-th 
causative factor is represented by FRij, the number of pix-
els affected by debris flow in the ith causative factor's j-th 
class is NDij. In the i-th causative factor layer, NDi denotes 
the total number of debris flow-affected pixels (i.e. the 
total number of pixels in the study area that were affected 
by debris flow), Nij is the number of pixels in the j-th class 
of the i-th causative factor and Ni is the total number of 
pixels in the i-th causative factor (i.e. the total number of 
pixels in the study area that were affected by debris flow). 
The FRij > 1 indicates stronger relationship and FRij < 1 
indicates weaker relationship. To build a FRl image for 
a certain causative factor, the matching FRij images for 
multiple classes of that causative factor are combined. The 
arithmetic overlay technique is used to integrate these FRl 
images reflecting the frequency ratio values for the classes 
(FRij) of the causative factors. In a GIS environment, the 
debris flow susceptibility index (DFSI) of each pixel is 
then determined using Eq. (6) (Angillieri 2020).

The total number of causal factors is denoted by the 
letter t. (i.e. the corresponding thematic layers).

7.2.1.7  Shannon’s Entropy  CE Shannon developed the 
"Shannon entropy" notion in 1948 (Shannon 1948). Shan-
non coined the term "information entropy" to describe the 

(5)FRij =
NDij

NDi

/
Nij

Ni

(6)DFSI =

t∑
l=1

FRl
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average amount of data after redundancy was removed, 
and he presented a mathematical equation for computing 
it based on thermodynamics. Shannon's entropy model 
improves the frequency ratio model. The frequency ratio 
model only considers sub-factors weighting, not causative 
factors' weighting. Shannon's entropy is a measure of a 
system's uncertainty or instability. One and all index in 
the assessment index system represents unlike qualities of 
the objects and different dimensions of their values. Some 
indicators are as small as possible for a specific system, 
while others are as large as possible. As a result, direct 
comparison of these evaluation indicators is impossible.

7.2.1.8  The Certainty Factor (CF)  A function of probabil-
ity, the certainty factor (CF), is defined. Shortliffe and 
Buchanan proposed it, and Heckerman later improved it 
(Shortliffe and Buchanan 1975; Heckerman et  al. 1986; 
Kurilla and Fubelli 2022). As previously stated, this 
model can handle heterogeneity and uncertainty in many 
input data layers. The CF can be stated in the following 
Eqs. (7) and (8) (Heckerman et al. 1986):

where ppij is the conditional probability of a number of 
debris flow events occurring in the i-th factor's j-th class, 
and can be written as given by Eq. (9):

In the i-th causative factor map, NDi is the total num-
ber of debris flow impacted pixels. (i.e. the total number 
of pixels in the study area that were affected by debris 
flow), and the number of pixels in the i-th causative factor 
map is given by Ni (i.e. the total number of pixels in the 
area under study). The CF values vary from − 1 to 1. A 
positive CF number indicates that debris flow activities 
are more likely, whereas a negative CF value indicates that 
same activity is less likely. A CF value close to 0 does not 
provide a clear indicator of the likelihood of debris flow. 
The related CFij images for various classes of a particular 
causative factor are similarly combined to generate a CFl 
image for that causative factor, as in the other two models. 
The arithmetic overlay procedure is used to integrate these 
CFl images reflecting the certainty factor values for the 
classes (CFij) of the causative factors.

(7)CFij =

{
ppij − ppi

ppij
(
1 − ppi

)
}

if ppij>ppi

(8)CFij =

{
ppij − ppi

ppij
(
1 − ppij

)
}

if ppij < ppi

(9)ppi =
NDi

Ni

As a result, in the GIS context, the debris flow suscep-
tibility index (DFSI) of each pixel is determined using 
Eq. (10).

The total number of causal factors is denoted by the letter 
t. (i.e. the corresponding thematic layers). Several authors 
have adopted the certainty factor approach for mapping 
debris flow and landslide susceptibility [5, 23, and 56].

7.3 � Artificial Intelligence (AI) Methods

Some statistical principles are used in artificial intelligence 
(AI) methods. In contrast, these methods are based on specu-
lation, predefined algorithms, and outcome. When a direct 
mathematical relationship between cause and effect cannot 
be demonstrated, AI approaches are appropriate (Chowd-
hury and Sadek 2012). For debris flow investigations, there 
are a variety of AI or machine learning technologies that 
can be applied (Gao et al. 2021). These can be categorized 
as; random Forest (RF), artificial neural network (ANN), 
support-vector machine (SVM) (Qiu et al. 2022; Jiang et al. 
2022), etc. These approaches effectively handle continuous 
and discrete data irrespective of data dimension. Moreover, 
they can demonstrate high generalisation performance on 
various real-world challenges and have few parameters to 
alter and give learning machine architecture without experi-
menting (Pawley et al. 2017). As a result, AI methods are 
better suited to analysing high-dimensional data and com-
plicated systems.

7.3.1 � Artificial Neural Network (ANN)

The artificial neural network (ANN) models human mind 
neuron operations such as processing information, reten-
tion, and exploration. It has a solid concurrent processing 
capacity and has emerged as the fastest in nonlinear problem 
handling. It determines how to get the network's weights 
and structure through training, demonstrating a solid abil-
ity to self-learn and adapt to its surroundings. ANN was 
commonly utilised in debris flow susceptibility mapping 
because of the above advantages (Gao et al. (2021), Chen 
et al. (2020), Bui et al. (2016) and Aditian et al. (2018)). 
The artificial neural network (ANN) method is a technique 
that uses artificial neural networks to solve problems. The 
ANN method makes things simpler to acquire, depict, and 
undertake mapping of debris flow susceptibility through 
one multivariate knowledge space into another by providing 
data collection or relevant information for fair representation 
mapping (Gao et al. 2021). The debris flow is a complicated 
process resulting from a mix of causative and triggering 

(10)DFSI =
∑t

l=1
CFl
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events. Furthermore, the strong correlations between debris 
flow and the causal and activating aspects are believed to be 
nonlinear. As a consequence, the ANN method is used to 
address such complex nonlinear interactions between both 
the elements as well as the debris flow. The ANN method's 
main drawback is the time it takes to convert data from one 
format to another in a GIS environment.

7.3.2 � Random Forest (RF)

The RF method uses machine learning to generate debris 
flow susceptibility maps (Gao et al. 2021; Xiong et al. 
2020; Dou et al. 2019; Zhang et al. 2019). The RF is a 
standard ensemble learning bagging algorithm that chooses 
the decision tree like a weak learner and strengthens the 
decision tree's establishment (Chen et al. 2018). The RF 
algorithm follows the following procedure: (1) to gener-
ate k decision trees, bootstrap a sample of the input data. 
(2) Again, for the division of each node in a decision tree, 
m characteristics are chosen at random. (3) The attribute 
with the most robust prediction accuracy for each node is 
utilised to separate the nodes. (4) Following a clear vote 
amongst k decision trees, the final forecast result might 
be achieved. The number of trees (k) and the number of 
forecasting variables that detach the nodes (m) were taken 
into account. On the one hand, the RF models' great gen-
eralisation capacity is based on many decision trees. How-
ever, once the no of trees reaches a certain threshold, the 
models' efficiency does not improve, and the computation 
cost increases. By randomly selecting the original data, the 
RF approach, as just a machine learning method, avoids the 
problem of over-fitting. It also has a greater tolerance for 
errors and missing data, resulting in excellent prediction 
accuracy.

7.3.3 � Support‑vector Machine (SVM)

SVM method is classified as a supervised learning model. 
The SVM method can change the more dimensional com-
plex problems into easily separable problems that can 
be easily calculated (Xu et al. 2012). To accomplish this 
operation, kernel functions are typically used. Sigmoid 
functions (SF), linear functions (LF), radial basis func-
tions (RBF), sigmoid functions (SF), and polynomial 
functions are all common kernel functions (PF). The RBF 
function is the most adaptable of the four types of kernel 
functions to the classification task of data. Debris flow 
susceptibility maps are created using SVM (Gao et al. 
(2021), Liang et al. (2020), Qing et al. (2020), Chen et al. 
(2020), Sun et al. (2021)) (Table 3).

8 � Model Validation

Using training and validation sets, debris flow susceptibil-
ity zonation models rebuild the links between the inde-
pendent and dependent variables. Field observations and 
statistical measures are used to test all statistical methods, 
artificial intelligence or machine learning, as well as semi-
quantitative approaches. Different criteria can be used to 
distinguish and separate the validation and training sets, 
dictating the type of validation analysis. Random and tem-
poral selection procedures have both been applied in the 
previous literature. When using a temporal validation, the 
information about debris flow is divided into two groups 
depending on temporal. (Sujatha et al. 2014; Dash et al. 
2022). When using a random validation, the validation set 
is chosen randomly from a geographic region (Xiong et al. 
2020). 86.7% of the articles that discussed the model per-
formance validation used a random selection, while 13.3% 
used a temporal selection, according to the analysis of the 
literature collection. Validation method used for debris 
flow susceptibility for the period 2003–July 2022 are clas-
sified in Fig. 6 and found that the most common were 
receiver operating characteristic (ROC) curve (43.5%) 
(Qin et al. 2019; Wu et al. 2019), success/prediction rate 
curve (33.3%), Kappa coefficient (2.6%), Seed cell area 
index (SCAI) (2.6%), spatial consistency test (2.6%) (Sun 
et al. 2021), contingency tables (2.6%), precision (2.6%), 
recall (2.6%), F1 score (2.6%), field Survey Data (2.6%), 
and R index (2.6%) (Sujatha and Sridhar 2017).

9 � Discussion and Conclusions

The topic's significance has been increasing since 2013, 
and so the number of research papers. The reasons behind 
this increase could be the advancement in remote sens-
ing technologies, availability of modelling softwares, 
data accessibility, GIS, as well as the need to identify at-
risk areas for land utilization planning and to prevent or 
mitigate debris flow losses. Out of the total 90 articles 
reviewed, 42% of articles are from Natural Hazards and 
Earth System Sciences, Journal of Mountain Science, Nat-
ural Hazards, and Remote Sensing. While if we look at the 
study areas, it can be inferred that maximum research on 
the given topic has been done in countries like China, fol-
lowed by Italy, while the rest world lacks the same. This 
directly reflects the scope of the research on this topic 
in India. As per the study, it can be said that there are 
96 causative factors responsible for the occurrence of the 
debris flow, amongst which the top five are slope, aspect, 
curvature, lithology and rainfall. After the study, a clear 
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research gap can be found like amongst the thirty-seven 
methods available for the study; only the top five, namely 
support-vector machine (SVM), analytic hierarchy process 
(AHP), logistic regression (LR), random Forest (RF), and 
frequency ratio (FR) have been explored significantly. This 
implies that others must also be explored to get an in-depth 
comparison of the utility of all available methods. Talking 
about validation of the models, eleven methods have been 
used in previous studies to validate the result, where ROC 
and success/prediction rate curve are the ones that are used 
in maximum. This highlights the scope for the exploration 
of other validation methods. Apart from this, maximum 
papers have focused on the single model approach and not 
the mix of multiple models, which could be a good option 
for future study. After reading this paper, one gets to know 
of the scope of the work yet to be explored.
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