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Abstract
Asymmetric loads often occur at tunnel entrances or exits during shallow buried tunnel construction. Due to asymmetrical 
loads, structures are subjected to complex forces, and the design process of these tunnels is different from that of regular 
tunnels. Therefore, it is necessary to discriminate asymmetric tunnels quantitatively. Currently, determining whether a tun-
nel is subject to asymmetrical loads is based on the empirical maximum burial depths and surface slope angles listed in 
the Chinese Code for the Design of Railway Tunnel. However, in real geological conditions, the maximum burial depths 
and surface slope angles of the tunnel are not necessarily completely consistent with the Chinese Code; in other words, the 
continuous discrimination of asymmetric tunnels is not realized. In this paper, the surrounding rock stress ratio of the arch 
shoulder was treated as index to define asymmetrical loading tunnels and a new approach to achieve the continuous dis-
crimination of asymmetric tunnels was proposed. Compared to the empirical values in the Chinese Code, the results show 
that the asymmetric stress ratio tends to decrease with the decrease in the surrounding rock grade. Regardless of whether 
the grade is III, IVRock, IVSoil or V, the asymmetric stress ratios of the surrounding rock tend to converge and stabilize with 
increasing burial depths and decreasing dip angles, and the sensitivity of the slope angle to the stress ratio is bounded by 20°. 
The asymmetric stress ratio of the surrounding rock arch shoulder can be used as an index to ascertain whether a tunnel is 
subjected to asymmetric loads. When the surrounding rock grades are III and IVRock, the values calculated by the proposed 
approach are lower than the empirical values, and the approach is more conservative than the empirical method. When the 
surrounding rock grades are IVSoil and V, the values calculated by the proposed approach are in good agreement with the 
empirical values. The approach of continuous discrimination of asymmetric tunnels proposed in this paper is reliable. The 
findings of this study can help for better understanding of the identification of asymmetrical loading tunnels, the design of 
support structures and the safety risk assessment of tunnels.

Keywords  Asymmetrical loading tunnel · Finite element model · Quantitative definition · Stress ratio

1  Introduction

In tunnel engineering, asymmetric phenomena are common. 
Especially at the entrance and exit of a tunnel, asymmetrical 
loads are particularly prevalent (Yang et al. 2020; Hu et al. 
2021; Liu et al. 2017). In contrast to symmetric tunnels, 
asymmetric tunnels are more complex in tunnel design and 
support structures (Xiao et al. 2014, 2016; Papanikolaou and 
Kappos 2014). Some scholars have studied the surrounding 
rock stress and the failure mechanism of asymmetrical load-
ing tunnels, and many achievements have been obtained (Lei 
et al. 2015a, b; Lu et al. 2021; Zhao et al. 2021; Zhang et al. 
2014; Qiu et al. 2021).

The first aspect is about the study of surrounding rock 
pressure calculation. Based on the calculation method of 
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the code, modified computational equations of vertical 
load and horizontal load were proposed, and a simplified 
analytical method for surrounding rock pressure was given 
based on the new assumption condition and load simplified 
model (Zuo et al. 2011; Zhang et al. 2016). According to the 
bipolar coordinate system, Zou et al. (2018) proposed the 
Mohr–Coulomb failure criterion, the gravitational effect and 
elastic–plastic solutions for the rock surrounding a shallow 
tunnel in an elastic–plastic semi-infinite space. Using the 
complex variable method and discrete Fourier transform, Lin 
et al. (2019) presented a solution for the sectional estimation 
of the stress and displacement fields of a liner and a geoma-
terial near a shallow buried tunnel. In addition, Nomikos 
et al. (2006) presented an analytical method to calculate the 
load-carrying capacity of two-dimensional asymmetric rock 
wedges when the load on joint faces was not symmetric, 
such as the case of an asymmetric wedge formed in the roof 
of a circular tunnel in an inclined stress field. Furthermore, 
under the action of asymmetric loads, some scholars have 
proposed upper limit solutions of surrounding rock pressure, 
elastic solutions of plane strain and analytical solutions for 
the interaction of shallow buried tunnels (Lei et al. 2015a, 
b; Cao et al. 2019; Yang et al. 2013). By considering the 
mutation theory, strain hardening and softening and gravity 
of the cavity, some researchers have proposed the mutation 
model, rheological constitutive model and analytical model 
(Yang et al. 2019; Zuo et al. 2015).

The second aspect is about the study of failure mechanism 
and failure characteristics. Many scholars have obtained the 
stress distributions and variation trends of the surround-
ing rock by mechanical tests and numerical simulations (Li 
et al. 2020; Liu et al. 2017). Using numerical code realistic 
failure process analysis (RFPA), Wang et al. (2012) studied 
the failure mechanism for a circular tunnel in transversely 
isotropic rock. Based on field monitoring data, Xiao et al. 
(2014) conducted three-dimensional numerical modeling to 
simulate the process of tunnel construction and to analyze 
the mechanism of cracking in the secondary lining. The 
existence of an asymmetric load transforms the structural 
stress state, and the failure form differs depending on loca-
tion. Using a tunnel excavation simulation testing system, 
the change laws and distribution forms of structural stress 
and surrounding rock pressure and the failure mechanism of 
the lining and surrounding rock in shallow buried tunnels 
under asymmetrical loading were studied systematically (Lei 
et al. 2016; Lei et al. 2015a, b). Based on similarity theory, 
a series of physical testing models and shaking table tests 
were designed and manufactured, and the dynamic response 
characteristics of shallow-buried tunnels with asymmetri-
cal pressure distributions were obtained (Jiang et al. 2018a, 
b; Jiang et al. 2018a, b). Moreover, a unified displacement 
function is used as the displacement boundary condition of 
the cross section of each tunnel and can be used to capture 

the asymmetric deformation behaviors about the horizon-
tal and vertical centerlines (Kong et al. 2019). Based on 
the Lianchengshan tunnel, Chen et al. (2020) analyzed the 
change in rock mass pressure with deformation, time and 
distance from the excavation face by field monitoring and 
numerical simulation. Furthermore, with the DDA (discon-
tinuous deformation analysis) method, Do et al. (2020) stud-
ied the mechanical response caused by horizontal excavation 
under different conditions (such as different inclinations and 
positions of the tunnel face). Using the direct boundary ele-
ment method (BEM), Panji et al. (2016) studied the stress 
behavior of shallow buried tunnels under simultaneous non-
uniform surface traction and asymmetric gravity loading, 
and the study showed that the shallow eccentricity of the 
load had a significant impact on the displacement and stress 
around the tunnel. By field observations, monitoring and 
three-dimensional (3D) numerical simulation, Yang et al. 
(2020) concluded that the retaining wall at the shallow side 
of a tunnel presents counterclockwise rotation deformation 
characteristics along the toe of the wall, and the covering soil 
at the wall surface can apply counterpressure to the retain-
ing wall. Considering the most important parameters on 
overbreak, many ABC-ANN models have been constructed 
based on their effective parameters, and a new hybrid model, 
namely an artificial bee colony (ABC)–artificial neural net-
work (ANN), has been developed to predict overbreak (Koo-
pialipoor et al. 2019).

The third aspect is about the study of stress ratio quan-
tification, as shown in Table 1. By examining an example 
of a seismic cluster in a deep mine in Canada, a relative 
apparent stress ratio (ASR) was proposed to quantify the 
apparent stress of a seismic group, and the overall apparent 
stress of earthquakes was quantitatively calculated (Brown 
et al. 2017). To identify the deformation stage and failure 
process of a rock containing a single fissure, Lv et al. (2017) 
introduced the ratio of the concentrated stress to the peak 
stress of samples during experiments. In addition, Abdol-
lahipour et al. (2012) defined the ratio of lateral stress to 
vertical stress as the stress ratio, and by the change in the 
ratio and the displacement of key points, the stability of the 
cavern was evaluated. Karatela et al. (2016) investigated the 
effect of fracture orientation and the in situ horizontal stress 
ratio on the stability of the rock mass around the borehole, 
and the results showed that when the in situ stress ratio 
increases, the rock blocks at the borehole wall tend to move 
toward the center of the borehole. Yu et al. (2020) defined 
the ratio of vertical stress as the stress ratio, and based on 
the Chinese Railway Tunnel Design Code, they quantita-
tively analyzed the stress ratio of two sides of asymmetrical 
loading tunnels. Furthermore, the influence of the dip angle 
and the ratio of horizontal and vertical stress on the bearing 
capacity of prestressed concrete-lined pressure tunnels was 
studied using a two-dimensional finite element model, and 
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the study revealed that the in situ stress ratio significantly 
affects the load sharing between the rock mass and the lining 
(Simanjuntak et al. 2016). In addition, studies have shown 
that when the tunnel diameter is fixed, the deeper the ground 
covering depth is, the greater the required limit support pres-
sure. However, the ground covering depth has almost no 
effect on the ultimate support pressure, even if the tunnel 
is deep (Zhang et al. 2021). According to the Chinese Code 
for the Design of Railway Tunnels, determining whether a 
tunnel is subject to asymmetric loads is based on empiri-
cal values that are determined by maximum burial depths 
and surface slope angles (TB 1003–2019).

These studies have increased our understanding of the 
surrounding rock pressure calculation, failure mechanism, 
failure characteristics and quantification of stress ratio. 
However, very few studies have quantitatively analyzed the 
asymmetric loads of tunnels using the asymmetric stress 
ratio index. Furthermore, in the Chinese Code, asym-
metrical loading tunnels are given by experience from the 
maximum burial depths and surface slope angles of the 
tunnel, and the continuous discrimination of asymmetric 
tunnels is not realized. In this study, numerical simulations 
were used to quantitatively analyze the stress ratio of the 
surrounding rock, and a new approach for achieving the 

continuous discrimination of asymmetric tunnels was pro-
posed. Compared to the Chinese Code, the new approach 
is relatively cumbersome. However, this method breaks 
through the constraints of a specific slope angle and bur-
ied depth, overcomes human subjective factors and real-
izes the continuous discrimination of asymmetrical load-
ing tunnels. The methodology overview of this study is 
shown in Fig. 1. The results of this study provide signifi-
cant insights for the identification of asymmetrical load-
ing tunnels, design of support structures and safety risk 
assessment of tunnels.

2 � Asymmetric Tunnel Stress Ratio Model

To eliminate the limitation and subjectivity of relying only 
on the empirical values listed in the Chinese Code (TB 
1003–2019) to judge asymmetrical loading tunnels, finite 
element software was used to establish the 269 kinds of 
models with different burial depths and different ground 
slopes under different surrounding rock grades, and the 
asymmetric stress ratio of the arch shoulder under different 
conditions was quantitatively analyzed.

Fig. 1   Methodology overview
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2.1 � Elastic–plastic Mechanics Solution Model

In this study, the surrounding rock was considered to be an 
elastic–plastic material. When the stress state at a certain 
point in space enters the yield stage, the stress–strain rela-
tionship is nonlinear, and the increment of the total strain 
is made up of elastic strain and plastic strain on the basis 
of elastic–plastic theory (Wang et al. 2007):

The elastic–plastic constitutive relation of the surround-
ing rock is as follows:

Or abbreviated as:

where 
[
De

]
 is the elastic matrix; 

[
Dp

]
 is the plastic matrix; [

Dep

]
 is the elastic–plastic matrix; and A = -

{
�F

��

}
{H} is the 

characteristic parameter that can reflect the soft and hard 
characteristics of rock and soil materials, where A = 0 cor-
responds to an ideal elastic–plastic material.

The expression of the elastic matrix 
[
De

]
 of a material 

is as follows:

In contrast, the expression of the plastic matrix 
[
Dp

]
 of 

a material is as follows:

where λ is the lame constant and G is the shear modulus 
(kPa).

The plastic yield condition of rock and soil can be 
described according to the Mohr–Coulomb yield crite-
rion as:

With the yield function (f) of:

(1)d{�} = d{�}e + d{�}p
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⎢⎢⎢⎣
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(6)�n = −�n tan� + c

where �n is the shear stress (kPa), �n is the normal stress 
(kPa), � is the internal friction angle, c is the cohesion coef-
ficient ( kN∕m2 ), and �1 and �3 are the first and third principal 
stresses, respectively.

2.2 � Boundary Conditions and Model Parameters

According to the geological conditions and the design 
parameters of the Shidaoyangcha tunnel, the span of the 
tunnel was taken to be 12.6 m and the height to be 10.0 m. 
Based on the principles of numerical model establishment, 
the width of the model in the X direction is 100 m, and the 
height of the model in the Z direction is 40 m from the bot-
tom of the model to the center of the tunnel. The boundary 
is the displacement constraint. The two side boundaries are 
horizontal displacement constraints, the bottom boundary 
is x and y constraints, and the top boundary condition is an 
unconstrained boundary.

According to the support parameters of the Shidaoyang-
cha tunnel, the support structure is simulated by a linear 
elastic beam element and supported by C25 concrete with 
a thickness of 30 cm. The bolts are modeled as embedded 
truss elements with a length of 3.5 m and a spacing of 1.0 m. 
Depending on the characteristics of the surrounding rock, 
the initial geostress field considers only the overburden pres-
sure of the surrounding rock, and other mechanical influ-
ences are ignored. The model assumes that the surround-
ing rock is an isotropic and homogeneous material. Tunnel 
excavation is simulated by the two-step method. A schematic 
of the calculation model is shown in Fig. 2a, and the finite 
element method (FEM) model is shown in Fig. 2b.

According to the Chinese Code for the Design of High-
way Tunnels (JTG 3370.1–2018), the physical and mechan-
ical parameters of the surrounding rocks are shown in 
Table 2.

2.3 � Verifying the Model for Numerical Simulation

To verify the correctness of the numerical model, the 
stresses between the surrounding rock and initial lining of 
the shallow buried tunnel under asymmetric loads are moni-
tored. Measuring points should be laid on the key points of 
representative sections, and the monitoring data of the arch 
shoulder were selected for analysis, as shown in Fig. 3a.

The compressive face of the pressure sensor should be ori-
ented toward the surrounding rock, and the pressure sensor 
should be fixed on the steel arch frame before the initial lining 
is completed. Then, the shotcrete layer should be carefully 

(7)f =
1

2

(
�1 − �3

)
+

1

2

(
�1 + �3

)
sin� − c cos�
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applied to prevent the formation of a gap between the shotcrete 
and the pressure sensor, as shown in Fig. 3b.

According to the numerical simulation, the corresponding 
simulated values of the asymmetric stress were obtained. A 
comparison of the stress monitoring results and the numerical 
simulation results is shown in Table 3. The results show that 
the numerical analysis agrees with the field measurements and 
that the numerical model is reliable.

(a) (b)

Fig. 2   Diagrams of the calculation model and FEM model for a tunnel under asymmetric loads: a geometric dimensional drawing of the tunnel 
model; b sectional drawing of the tunnel model

Table 2   Physical and 
mechanical parameters of 
surrounding rocks

Surrounding 
rock grade

Bulk density 
(kN/m3)

Elastic modu-
lus (GPa)

Poisson ratio Internal friction 
angle (°)

Cohesion (kPa)

III 24 12 0.27 45 1100
IV Rock 23 5 0.30 38 600
IV Soil 20 2 0.35 30 300
V 18 1.5 0.40 25 100

Fig. 3   Layout of stress moni-
toring points of the tunnel: a 
position of pressure sensors; b 
arrangement of pressure sensors 
between the surrounding rock 
and initial lining

(a) (b)

Table 3   Comparison of the stress monitoring results and numerical 
simulation results

Serial number of the pressure 
sensor

Monitoring 
Sect. 1

Monitoring 
Sect. 2

1 2 1 2

Field measurement stress value 
(kPa)

192.12 285.74 298.60 339.81

FEM calculated stress value (kPa) 175.62 304.53 269.47 304.53
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3 � Stress Ratio and Numerical Models 
of Asymmetric Tunnels

3.1 � Stress Ratio of Asymmetric Tunnels

At present, determining whether a tunnel is subject to 
asymmetric loads is based on the empirical values of the 
maximum burial depths and surface slope angles listed in 
the Chinese Code for the Design of Railway Tunnel (TB 
1003–2019), which has great limitations and subjectivity. 
Therefore, to analyze the degree of asymmetric loads applied 
on the tunnel and realize the continuous discrimination of 
asymmetric tunnels, a quantitative approach to assess asym-
metrical loading tunnels was presented. In particular, a new 
discriminant indicator of asymmetric tunnels, named the 
asymmetric stress ratio, is introduced.

Based on the group's previous research, regardless of 
whether the surrounding rock is of grade III, IVRock, IVSoil 
or V, the stress ratio of the arch wall is approximately 1.0, 
and the stress ratio of the arch foot has no obvious varia-
tion with increasing burial depth and decreasing surface 
slope angle. However, the stress ratio of the arch shoul-
der changes obviously. Due to space limitations, this arti-
cle only introduces some of the main overviews of the stress 
ratio of the arch shoulder.

The asymmetric stress ratio is the ratio of the von Mises 
stress on symmetric left- and right-handed positions in the 
tunnel. Figure 2a shows points 1 and 2 that selected around 
the tunnel structure to analyze the asymmetric stress ratio. 
These points correspond to the left and right sides of the 
arch shoulder, respectively.

The stress ratio of the surrounding rock between points 1 
and 2 of the arch shoulder is defined as Δ1:

where �1 and �2 are the von Mises stresses at key points 1 
and 2, respectively.

3.2 � Numerical Models of the Calculation

To give the quantitative criterion for discriminating asym-
metric loading tunnels, the 269 kinds of models with differ-
ent burial depths and different ground slopes under different 
surrounding rock grades were established, which consist of 
two types.

First, the 256 kinds of numerical models were estab-
lished: the surrounding rock grades are III, IVRock, IVSoil and 
V; the burial depths are 5 m, 10 m, 15 m, 20 m, 25 m, 30 m, 
35 m and 40 m; and the surface slope angles are 5°, 10°, 15°, 
20°, 25°, 30°, 35° and 40°. Second, the13 kinds of numeri-
cal models based on the critical conditions of asymmetrical 

(8)Δ1 =
�2

�1

loading tunnels listed in the Chinese Code for the Design 
of Railway Tunnels (TB 1003–2019) were established. 
Through the model calculations, the arch shoulder stresses 
of the surrounding rock are obtained, and the values of the 
asymmetric stress ratio are calculated.

4 � Numerical Simulation Results 
and Discussion

4.1 � Asymmetric Stress Ratio of Arch Shoulder

The 256 kinds of numerical models were established: The 
surrounding rock grades are III, IVRock, IVSoil and V; the 
burial depths are 5 m, 10 m, 15 m, 20 m, 25 m, 30 m, 35 m 
and 40 m; and the surface slope angles are 5°, 10°, 15°, 20°, 
25°, 30°, 35° and 40°. From the model calculations, the von 
Mises stresses of the surrounding rock at key points 1 and 2 
corresponding to different numerical models were obtained. 
Then, based on Eq. (8), the asymmetric stress ratios were 
calculated.

Diagrams of the variation trends of the arch shoulder sur-
rounding rock stress ratio for grades III, IVRock, IVSoil and V 
are plotted with the changes in the burial depths and surface 
slope angles, as shown in Fig. 4.

As shown in Fig. 4, regardless of whether the surrounding 
rock is of grade III, IVRock, IVSoil or V, the asymmetric stress 
ratio of the surrounding rock decreases and tends to stabilize 
with increasing burial depth and decreasing surface slope 
angle. When the surrounding rock is of grade III, the val-
ues of the stress ratio converge to approximately 1.64; when 
the surrounding rock is of grade IVRock, the values of the 
stress ratio converge to approximately 1.59; when the sur-
rounding rock is of grade IVSoil, the values of the stress ratio 
converge to approximately 1.54; and when the surrounding 
rock is of grade V, the values of the stress ratio converge to 
approximately 1.17. The asymmetric stress ratio decreases 
with decreasing surrounding rock grades.

Furthermore, from Fig. 4, two groups of behavior were 
clearly classified: Regardless of whether the surround-
ing rock is of grade III, IVRock, IVSoil or V, slope angles 
between 5° and 20° show a gradual decrease, and slope 
angles between 25° and 40° show a rapid decrease when 
the burial depth is increased. Taking the burial depth of 5 m 
for example, when the slope angle is between 5° and 20° 
and the surrounding rock is of grade III, the values of stress 
ratio range from 1.17 to 2.74; when the surrounding rock is 
of grade IVRock, the values of stress ratio range from 1.15 to 
2.53; when the surrounding rock is of grade IVSoil, the values 
of stress ratio range from 1.13 to 2.30; when the surround-
ing rock is of grade V, the values of stress ratio range from 
1.12 to 2.11; it can be seen from the above that the values of 
stress ratio decreases gradually, and the range of variation 
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decreases gradually with the reduction in surrounding rock 
grades. When the slope angle is between 25° and 40° and 
the surrounding rock is of grade III, the values of stress ratio 
range from 4.28 to 8.52; when the surrounding rock is of 
grade IVRock, the values of stress ratio range from 3.81 to 
7.19; when the surrounding rock is of grade IVSoil, the values 
of stress ratio range from 3.34 to 5.91; when the surround-
ing rock is of grade V, the values of stress ratio range from 
2.93 to 3.89; it can be seen from the above that the values of 
stress ratio decreases gradually, and the range of variation 
decreases gradually with the reduction in surrounding rock 
grades, but the range of stress ratio variation is significantly 
larger than that at 5°–20°. This phenomenon indicates that 
the sensitivity of the slope angle to the stress ratio increases 
after the slope angle exceeds 20°, and the effect of the asym-
metric loads on the tunnel will be strengthened gradually.

Diagrams of the variation trends of the arch shoulder 
surrounding rock stress ratio for grades III, IVRock, IVSoil 
and V are plotted in three-dimensional coordinates with the 
changes in the burial depths and surface slope angles, as 
shown in Fig. 5.

As seen from the diagram above, the stress ratio shows 
a good curve variation. Along with the decreasing burial 
depths and increasing surface slope angles, the stress ratio 
gradually reaches the maximum value; with the increas-
ing burial depths and decreasing surface slope angles, the 
stress ratio gradually reaches the minimum value. When 
the surrounding rock is of grade III, the maximum stress 
ratio is 8.52; when the surrounding rock is of grade IVRock, 
the maximum stress ratio is 7.20; when the surround-
ing rock is of grade IVSoil, the maximum stress ratio is 
5.92; and when the surrounding rock is of grade V, the 

(a) (b)

(c) (d)

Fig. 4   Diagram of the variation trend of the asymmetric load stress ratio of surrounding rock: a grade III surrounding rock; b grade IVRock sur-
rounding rock; c grade IVSoil surrounding rock; d grade V surrounding rock
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maximum stress ratio is 3.89. The values of the maximum 
stress ratio decrease with decreasing surrounding rock 
grades, and the values of the minimum stress ratio are all 
approximately 1.00, with little change.

Using a mathematical function, the three-dimensional 
surfaces were fitted in Fig. 5 to obtain the variation equa-
tion of the stress ratio with burial depths and surface slope 
angles under different surrounding rock grades. The equa-
tion of stress ratio is as Eq. (9).

where h is the burial depth (m), � is the surface slope angle 
(°), + is the stress ratio, and A, B, C, D, E, F, G, H, I and J 
are parameters. The corresponding parameters are different 
at different grades of surrounding rock, as shown in Table 4.

When judging whether a tunnel is an asymmetric tunnel, 
it is only necessary to know the surrounding rock grade, 
burial depth and slope angle. The corresponding numerical 
model was established using finite element software, the sur-
rounding rock stress of the arch shoulder was extracted, and 

(9)Δ2 =
A + Bh − C� + D�2 − Eh�

1 + Fh − G� + Hh2 + I�2 − Jh�

the stress ratio Δ1 was calculated according to Eq. (8). The 
parameters in Eq. (9) were selected according to Table 4, and 
the corresponding burial depth and slope angle were entered 
to calculate the stress ratio Δ

2
.

4.2 � Asymmetric Critical Stress Ratio of Empirical 
Values

The data used to judge asymmetric tunnels in the Chinese 
Code are empirical data obtained from a large number of 
practical works. In general, determining whether a tunnel is 
subject to asymmetric loads is based on empirical values that 
are determined by the maximum burial depths and surface 
slope angles listed in the Chinese Code for the Design of 
Railway Tunnel (TB 1003–2019). When the vertical distance 
from the lateral arch shoulder of the tunnel to the surface is 
not more than the limit value listed in Table 5, the tunnel 
should be treated as being subjected to asymmetric loads. 
However, in real geological conditions, the maximum burial 
depths and surface slope angles of the tunnel are not nec-
essarily completely consistent with the Chinese Code; in 
other words, the continuous discrimination of asymmetric 

Fig. 5   Diagram of the variation trend of the surrounding rock stress ratio in three-dimensional coordinates: a grade III surrounding rock; b grade 
IVRock surrounding rock; c grade IVSoil surrounding rock; d grade V surrounding rock
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tunnels is not realized. Therefore, Eq. (9) for the continuous 
identification of asymmetric tunnels was proposed, and a 
comparative analysis was performed with the corresponding 
empirical values of the Chinese Code.

Based on Table 5, numerical models of critical states 
for different surrounding rock grades are established to 
further verify the approach proposed above. The values of 
Von Mises stresses at key points in the surrounding rock 
are extracted, and the corresponding empirical values of 
asymmetric stress ratios are calculated according to Eq. (8). 
Furthermore, according to the critical states for different sur-
rounding rock grades listed in Table 4, Table 5 and Eq. (9) 
proposed in this paper, the corresponding stress ratio is 
calculated.

The results are shown in Table 6, and the results were 
divided into three parts. In the first part, the surrounding 
rock grades are III and IVRock, and the ground slope is 
greater than or equal to 1:1.5; in the second part, the sur-
rounding rock grades are III and IVRock, and the ground 
slope is 1:2; and in the third part, the surrounding rock 
grades are IVSoil and V, and there is no restriction on the 
ground slope.

By comparing the stress ratios of the empirical value 
and equation value in Table 6, the following information 
is available. When the surrounding rock is of grade III, the 
empirical values are greater than the equation values. When 
the ground slope is greater than or equal to 1:1.5, there is a 
large difference between the empirical values and equation 
values. When the ground slope is 1:2, the empirical value 

is basically the same as the equation value. When the sur-
rounding rock is of grade IVRock, the empirical values are 
greater than the equation values. When the ground slope 
is greater than or equal to 1:1.5, there is a large difference 
between the empirical values and equation values. When the 
ground slope is 1:2, the difference between the empirical 
value and equation value is small. When the surrounding 
rock grades are IVSoil and V, the equation values are in good 
agreement with the empirical values.

It can be seen from the above analysis that, in general, 
when the surrounding rock grades are III and IVRock, the 
empirical values are greater than the equation values, and 
the proposed approach in this paper is more conserva-
tive than the empirical method. When the surrounding 
rock grades are IVSoil and V, the equation values are in 
good agreement with the empirical values. The proposed 
approach in this paper will provide significant insights for 
the continuous identification of asymmetrical loading tun-
nels, the design of support structures and the safety risk 
assessment of tunnels.

5 � Summary and Conclusions

In this paper, based on numerical simulation, the asymmet-
ric stress ratio for different slope angles and burial depths 
was analyzed in the presence of grades III, IVRock, IVSoil 
and V surrounding rock, and a new approach to achieve the 

Table 4   Parameters of different 
grades of surrounding rock

A B C D E F G H I J

III 0.6759 0.0824 0.0118 0.0003 0.0008 0.0458 0.0596 0.0005 0.0009 0.0009
IVRock 0.7340 0.0727 0.0154 0.0003 0.0007 0.0428 0.0579 0.0004 0.0009 0.0008
IVSoil 0.7910 0.0585 0.0196 0.0003 0.0006 0.0353 0.0559 0.0004 0.0008 0.0007
V 0.9339 0.0325 0.0220 0.0015 0.0001 0.0268 0.0508 − 0.000009 0.0009 -0.0009

Table 5   Maximum burial depth above the lateral arch shoulder of a double-lined tunnel under asymmetric loads (m)

*Denotes a lack of statistical data, which can be obtained by analogous engineering values or empirical design values

Ground slope Surrounding rock grade Sketch diagram

III IVRock IVSoil V

1:0.75 7 * * *

 

1:1 7 * * *

1:1.25 * * 18 *

1:1.5 7 11 16 30

1:2 7 11 16 30

1:2.5 * * 13 20
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continuous discrimination of asymmetric tunnels was pro-
posed. Based on the achieved results, the following conclu-
sions are drawn:

1.	 With decreasing surrounding rock grade, the asymmetric 
stress ratio tends to decrease. Regardless of whether the 
grade is III, IVRock, IVSoil or V, the asymmetric stress 
ratios of the surrounding rock tend to converge and sta-
bilize with increasing burial depths and decreasing dip 
angles, and the effect of the asymmetric loads on the 
tunnel will be weakened gradually.

2.	 The sensitivity of the slope angle to the stress ratio 
increased after the slope angle exceeded 20°, and the 
effect of the asymmetric loads on the tunnel will be 
strengthened gradually.

3.	 When the surrounding rock grades are III and IVRock, 
the values calculated using the proposed approach are 
lower than the empirical values, and the approach is 
more conservative than the empirical method. When 
the surrounding rock grades are IVSoil and V, the val-
ues calculated using the proposed approach are in good 
agreement with the empirical values.

4.	 The asymmetric stress ratio of the surrounding rock arch 
shoulder can be used as an index to ascertain whether a 
tunnel is subjected to asymmetric loads. When the sur-
rounding rock grades are III and IVRock, and the values 
of the stress ratio are greater than those calculated by 
Eq. (9), and when the surrounding rock grades are IVSoil 
and V, the values of the stress ratio are greater than or 
approximately equal to those calculated by Eq. (9), and 
the tunnel can be considered to be in an asymmetrical 
loading state.
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