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Abstract
Performance-based seismic design optimization (PBSDO), as a topic of growing interest, is applied to steel moment-resisting 
frames (MRFs) using the improved water strider algorithm (IWSA). Herein, PBSDO is carried out according to ASCE 41–17 
provisions considering life safety and collapse prevention (CP) performance levels. IWSA is an enhanced version of the 
recently developed metaheuristic called the water strider algorithm (WSA), inspired from the life cycle of these insects. Two 
other metaheuristics, enhanced colliding bodies optimization (ECBO) and particle swarm optimization, are selected for the 
comparative study. In the current article, for the first time, all the essential constraints to fully simulate the practical PBSDO 
problem in accordance with the ASCE 41–17 for steel MRFs are considered for these newly developed algorithms, i.e., WSA 
and IWSA, to challenge them for a complex problem. Two MRFs with 9 and 24 discrete variables are studied here for this 
purpose. The constraints include non-seismic ones, i.e., geometry and strength (component level), as well as the seismic ones 
which consist of the inter-story drift ratio (system level), force-controlled and deformation-controlled members’ acceptance 
criteria (component level). Furthermore, the strong column-weak beam (SCWB) criterion and plastic hinge distribution are 
investigated for the optimal designs. An efficient method is proposed to solve these complicated problems by which ECBO 
and IWSA could successfully solve both problems. The results demonstrate the predominance of the CP acceptance criteria 
constraints in the optimization and showcase the superiority or competitiveness of IWSA over the other three metaheuristics 
revealing its efficiency for complex structural optimization problems.

Keywords Structural optimization · Performance-based seismic design · Steel moment-resisting frames · Improved water 
strider algorithm

1 Introduction

Strong earthquakes such as USA Northridge (1994) and 
Japan Kobe (1995) provoked engineers and researchers to 
devise a new seismic design procedure for structures that 
was conventionally strength based. Although the casualties 
in these events were not significant, the damages incurred 
by structural components were enormous. This led the 
engineering community to develop the performance-based 

seismic design (PBSD) framework in which structures are 
designed to endure a specific damage level to satisfy the 
desired performance level of serviceability and strength in 
the face of future extreme events. The Federal Emergency 
Management Agency (FEMA) introduced several useful 
guidelines in PBSD; in this respect, one can refer to (FEMA-
273 1997; FEMA-356 2000; FEMA-440 2005). Although 
these codes were originally meant to be used for evaluation 
and retrofit purposes, they opened a new horizon for design-
ing of structures based on performance-based design (PBD) 
philosophy. Later, the ASCE 41–17, which is based on the 
aforementioned FEMA guidelines, opened a path to design 
new structures based on PBD concept other than evaluation 
and retrofit aims.

Many researchers have addressed the challenges of the 
PBD in recent years such as Saadat et al. 2014; Liu et al. 
2013; Mansouri and Maheri 2019; and Khalilian et al. 2021.
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According to ASCE 41–17, for the risk category of II, 
the performance levels for designing new structures based 
on PBSD framework are as follows:

• Life safety (LS)
• Collapse prevention (CP)

At the LS level of performance, the structure is allowed 
to have damaged components, but it remains safe for occu-
pants to evacuate the building. The CP performance level is 
defined as the state in which the structure has damaged com-
ponents and retains no margin against collapse; however, it 
continues to tolerate gravity loads (ASCE41-17 2017).

In order to construct a cost-efficient structure, differ-
ent earthquakes with various hazard levels are assumed to 
occur for a specific structure, and the structure is designed 
to have a particular performance level under those levels of 
an earthquake. The structure's performance level depends 
on the importance of the structure and the stakeholders’ 
preference. The hazard level associated with the LS and 
CP performance levels for the new buildings in risk cat-
egory of II is called BSE-1 N and BSE-2 N in ASCE 41–17, 
respectively. BSE-2 N denotes the basic safety earthquake-2 
assumed as the ground shaking based on the risk-targeted 
maximum considered earthquake ( MCER ), and BSE-1 N 
shows the basic safety earthquake-1 or called the design 
earthquake (DE) taken as the two-thirds of the BSE-2 N at 
a site (ASCE7-16 2016).

In order to evaluate the seismic response of the struc-
ture, the nonlinear static procedure, also known as pusho-
ver analysis (POA), is often an attractive choice due to its 
simplicity and ability to identify component- and system-
level deformation demands with accuracy comparable to 
dynamic analysis (Shayanfar et al. 2013). Under the FEMA-
273, FEMA-356, and ASCE 41–17 approach, in which the 
acceptance criteria of a given performance level are deter-
mined based on component-level responses, the constraints 
are implemented such that each component’s response is 
calculated and then compared to the allowable threshold.

The PBSD is a complex problem that entails adjusting 
many parameters; thus, it is difficult for designers to know 
whether the current design is the best or still there is a more 
desirable one. For this purpose, advancements in structural 
optimization have made it possible to move from traditional 
trial-and-error procedures toward an automatic approach 
(Fragiadakis and Lagaros 2011). Metaheuristic algorithms 
have gained growing popularity recently due to their effi-
ciency in solving engineering problems in suitable time 

duration and acceptable accuracy for engineering objec-
tives (Kaveh et al. 2018, 2013; Safari et al. 2021; Kaveh 
and Malakoutirad 2010; Makiabadi and Maheri 2021; 
Sedlar et al. 2021). Usually, the common characteristic of 
metaheuristic algorithms is the inspiration from natural or 
man-made phenomena. The water strider algorithm (WSA) 
is a new metaheuristic algorithm proposed by Kaveh and 
Dadras (2020). The viability of the algorithm in optimizing 
mathematical functions and size optimization of structures 
has formerly been investigated. Subsequently, Kaveh et al. 
proposed an improved water strider algorithm (IWSA) which 
uses opposition-based learning (OBL) and a mutation tech-
nique to enhance the standard WSA (Kaveh et al. 2020). 
The superiority of IWSA over WSA and many classical and 
well-established modern metaheuristics have already been 
demonstrated in their article.

The main purpose of structural optimization algorithms is 
to minimize the constructional cost of structures by building 
the lightest possible structure while satisfying several design 
constraints (Kaveh and Ghazaan 2018). In the framework 
of PBSD, structural optimization via metaheuristic algo-
rithms has received considerable attention in recent years. 
Kaveh et al. used the ant colony optimization (ACO) algo-
rithm for PBSD of steel moment-resisting frames (MRFs) 
and showed the superiority of ACO in comparison with the 
genetic algorithm (GA) for the discussed problems (Kaveh 
et al. 2010). Kaveh and Nasrollahi employed charged sys-
tem search (CSS) algorithm for PBSD of steel frames and 
used POA based on semirigid connections and compared the 
results with the GA and ACO (Kaveh and Nasrollahi 2014). 
Gholizadeh used a modified firefly algorithm (MFA) and a 
new neural network for PBSD of steel structures (Gholiza-
deh 2015). They also used an improved quantum particle 
swarm optimization (Gholizadeh and Moghadas 2014) and 
Newton metaheuristic algorithm in this issue (Gholizadeh 
et al. 2020). Eftekhar et al. utilized a hybrid metaheuristic 
in this framework to obtain designs with lighter weights and 
higher convergence rate than all the existing results in the 
literature (Eftekhar et al. 2021). Degertekin et al. employed 
school-based optimization (SBO) for PBSD of steel frames 
(Degertekin et al. 2020) and compared the results with other 
metaheuristic algorithms, showing the outperformance of 
the SBO algorithm to others.

Although WSA and IWSA algorithms have shown prom-
ising results in size optimization of space structures such as 
double-layer barrel vaults (Kaveh and Dadras Eslamlou 2020; 
Kaveh et al. 2020), the literature review reveals that these algo-
rithms have not been used in PBSD problems or a complex 
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engineering optimization problem so far. Furthermore, by 
studying the literature carefully, one realizes that the majority 
of articles have only considered system-level response such as 
inter-story drift ratio (IDR) for the entire optimization process, 
neglecting the component-level response; however, neglecting 
this fact is not allowed in FEMA-273, FEMA-356 or ASCE 
41 since the acceptance criteria for the specified performance 
are measured based on component-level response. Moreover, 
it has been stated in Table C1-3 of FEMA-356 that the drift 
criterion is only a qualitative assessment of the performance of 
the structure. In this regard, there are a few studies in the litera-
ture taking into consideration the component-level response. 
For example, Wang et al. considered the strength and elements 
rotation ratio in the performance-based seismic design optimi-
zation (PBSDO) of two MRFs and conducted nonlinear time 
history analysis (Wang et al. 2019); nevertheless, they only 
deemed CP performance level for their optimization process 
and did not check geometric constraint (constructability) in the 
optimization. Fathali and Hoseini Vaez performed the opti-
mum performance-based design of eccentrically braced frames 
(Fathali and Hoseini Vaez 2020), taking component- and sys-
tem-level constraints into account. Fathizadeh et al. considered 
soil–structure effects on PBSDO of MRFs using an engineered 
cluster-based genetic algorithm (Fathizadeh et al. 2021). Has-
sanzadeh and Gholizadeh performed a collapse-performance-
aided design of steel concentrically braced frames (Hassan-
zadeh and Gholizadeh 2019). Therefore, considering all the 
essential constraints to simulate a PBSD procedure according 
to ASCE 41 for MRFs have not been properly addressed in 
the literature yet. The strong capability of WSA and IWSA in 
search space exploration and achieving a suitable solution in 
a reasonable time inspired us to examine their ability on such 
problems as PBSDO. Thus, this study is herein proposed to 
investigate the efficiency of WSA and IWSA in solving a chal-
lenging and computationally demanding engineering problem, 
perform a comparative study on PBSDO problems, and extend 
their application. To the best of the authors’ knowledge, this 
is the first time that steel MRFs are optimally designed using 
metaheuristic algorithms considering all of the essential con-
straints according to the ASCE 41–17 provisions.

To further investigate the competitiveness of the newly 
developed metaheuristic algorithms, particle swarm optimi-
zation (PSO) and enhanced colliding bodies optimization 
(ECBO) are utilized in this article to perform a compara-
tive study. In fact, it has been demonstrated that PSO is the 
best performing algorithm in comparison with GA, ACO, 
and harmony search (HS) algorithms in the framework of 
PBSD of steel frames (Gholizadeh et al. 2013). Therefore, 

selecting PSO as the representative of a classical optimiza-
tion method is justified. Moreover, ECBO has shown to be 
a robust optimization algorithm in structural optimization 
problems, including performance-based design optimization 
(Kaveh and Ilchi Ghazaan 2014; Kaveh and Farhadmanesh 
2019; Fathali and Hoseini Vaez 2020). Thus, it is selected 
for a more comprehensive comparative study.

2  Performance‑Based Seismic Design

The performance of structures is determined based on demand 
and capacity. The demand of the structure is defined given the 
expected earthquake, which is dependent on the level of the 
seismic hazard level, implying the rate of occurrence of the 
event. On the other hand, capacity is expressed by the design 
parameters of the structure, including the strength of elements, 
ductility, and proportioning. Thus, given the earthquake hazard 
level and the structures’ capacity, performance levels are deter-
mined (Degertekin et al. 2020). In PBSD, a performance level 
is chosen for a specific hazard level. Commonly, for new build-
ings, the hazard level associated with 10 and 2% of probability 
of exceedance in 50 years has been respectively considered for 
the performance levels of LS and CP before the introduction of 
risk-targeted maximum considered earthquake ( MCER ) as new 
seismic design basis in ASCE 7. This earthquake is defined as 
the 1% probability of collapse of building in 50 years. Accord-
ingly, the hazard level at the design earthquake ( DE ) is a uni-
form reduction of MCER . These earthquakes correspond to 
the mean return period of 475 ( DE ) and 2475 years ( MCER ) 
(ASCE41-17 2017).

In order to assess the seismic response of the structure, a 
nonlinear static procedure or POA is adopted in this article. 
Different methods have been proposed to conduct the POA 
recently (Shayanfar et al. 2019). Among the various meth-
ods, herein, the displacement coefficient method is employed 
(Hasan et al. 2002). In POA, the structure is subjected to 
increasing lateral loads until a predefined target displacement 
is reached. The monitored node for this displacement con-
trol analysis is taken as the center of mass for the roof story. 
The target displacement is calculated as follows according to 
ASCE41-17 2017:

where C0 , C1 , and C2 are the coefficients defined thoroughly 
in ASCE 41–17, Sa is the spectral response acceleration, g is 

(1)�t = C0C1C2Sa
T2
e

4�2
g
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the gravity acceleration, and Te is the effective fundamental 
period defined as:

where Ti is the fundamental elastic period, Ki is the elastic 
lateral stiffness, and Ke is the effective lateral stiffness. Since 
the determination of the target displacement is dependent on 
the bilinearization of the pushover curve, an iterative process 
might be necessary. In POA, the vertical distribution of the 
seismic forces is considered to be proportional to the shape 
of the fundamental mode:

where Cvx represents the vertical distribution factor at each 
story level and wx and wi denote the portion of the total 
weight of the structure located at floor level x and i , respec-
tively. hx and hi are the height from the base to floor level 
x and i , respectively. The parameter k is obtained by the 
following equation:

Additionally, spectral acceleration ( Sa ) can be calculated 
for the two performance levels as follows (ASCE41-17 2017):

where SX1 = FvS1 , SXS = FaSs , Ts = SX1∕SXS , T0 = 0.2Ts , 
B1 = 4∕[5.6 − ln(100�)].

(2)Te = Ti

√
Ki

Ke

(3)Cvx =
wxh

k
x∑ns

i=1
wih

k
i

(4)k =

⎧⎪⎨⎪⎩

1 T ≤ 0.5 sec

2 T ≥ 2.5 sec

0.5 T + 0.75 else

(5)

Sa = SXS

[(
5

B1

− 2

)
T

Ts
+ 0.4

]
if 0 < T < T0

SXS∕B1 if T0 < T < Ts

SX1∕(B1T) if Ts < T < TL

TLSX1∕(B1T
2) if T > TL

In the above equations, T is the fundamental period of the 
structure, SXS is the spectral response acceleration parameter at 
short periods, SX1 is the spectral response acceleration param-
eters at a 1-s period, Fa and Fv are the site coefficients, and � 
is the effective viscous damping ratio. A site with highly seis-
micity in Los Angeles (latitude: 34.05 longitude: − 118.24) is 
considered in this study. Ss and S1 are determined based on the 
11.4.2 provision of ASCE 7–16. Also, Fa and Fv are obtained 
from Table 11.4–1 and Table 11.4–2 of ASCE 7–16, respec-
tively. These values are tabulated in Table 1. The damping 
ratio ( � ) of the structures is assumed to be 5%.

It is worth mentioning that SXS and SX1 are the notation used 
in the code for the selected seismic hazard, either DE or MCE. 
The site parameters for the MCE (denoted by SMS and SM1 ) 
are determined first, and the corresponding values for the DE 
(denoted by SDS and SD1 ) are obtained by the following equa-
tions (ASCE7-16 2016):

3  Metaheuristic Algorithms

In this research, four metaheuristics consisting of WSA, 
IWSA, PSO, and ECBO are employed for the optimization 
process. In the following subsections, these algorithms are 
briefly explained.

3.1  Water Strider Algorithm

The water strider algorithm is a novel population-based 
metaheuristic inspired by the life cycle of water striders 
that uses swarm intelligence. This algorithm employs 
territorial behavior, mating style, intelligent ripple com-
munication, feeding mechanism, and succession of water 
strider insects to establish an efficient optimization algo-
rithm that is competitive to many renowned classical opti-
mization algorithms as well as the modern ones despite 
using simple mathematical equations. Water striders 
(WS) establish territories which are often inhabited by 
two WSs, one female and one male (keystone). Using a 
ripple communication system, the keystone sends ripples 
to the female WS to mate. The probability of attraction or 
repulsion from the female WS is supposed to be p = 50% . 

(6)

{
SDS =

2

3
SMS

SD1 =
2

3
SM1

Table 1  Seismic design parameters of site class D, risk category II, 
and located in Los Angeles

Hazard level Fa Fv SS(g) S
1
(g) TL(s)

BSE-2 N ( MCER) 1.2 1.7 1.974 0.703 8
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The next position of the keystone based on the reaction of 
the female is obtained as:

The length of R equals the distance between the male 
and female WS:

where WSt
i
  and WSt

F
 represent the male and female WS 

positions in the tth cycle, respectively. If the keystone’s fit-
ness is not improved in the new position, it moves towards 
the best candidate solution. There, the fitness value of the 
keystone is evaluated again. In case it decreases, a new WS 
will be generated to substitute it. These steps are repeated 
for other keystones as well. When all keystones’ positions 
are updated, the WSs are assigned to new territories to start 
another loop. For a more comprehensive study of the steps 
of the algorithm, the reader can refer to (Kaveh and Dadras 
Eslamlou 2020).

3.2  Improved Water Strider Algorithm (IWSA)

There are two techniques incorporated in WSA to make it 
a more suitable global optimization algorithm. The first 
idea is based on OBL initially proposed by Tizhoosh for 
machine learning (Tizhoosh 2005), and the second idea is 
inspired by the mutation operator utilized in the GA.

Generalized space transformation search (GSTS) is uti-
lized as the new formulation for OBL (Zhang and Jin 2020) 
to be applied to the initial population to provide a more 
promising search space for IWSA. The initial population 
plays an important role in the efficiency of the metaheuristic 
algorithms. In fact, random initialization might increase the 
probability of searching fruitless regions of search space. 
Utilizing OBL increases the ability of the optimization algo-
rithms in terms of search space exploration and near-opti-
mum exploitation of the search space. Moreover, in order to 
enhance the convergence speed, employing random numbers 
and their opposite is more beneficial than using pure ran-
domness to generate initial estimates in the absence of prior 
knowledge about the solutions, as this method searches in 
two directions simultaneously (Rahnamayan et al. 2008).

To strengthen the exploration ability of the standard 
WSA algorithm, a mutation operator is added to enrich the 

(7)

{
WSt+1

i
= WSt

i
+ R.rand; if mating happens(with probability of p)

WSt+1
i

= WSt
i
+ R.(1 + rand); otherwise

(8)R = WSt−1
F

−WSt−1
i

algorithm to search more promising regions of the search 
space and assist it in escaping local optimums, which is an 
important issue in metaheuristics. The mutation technique 
is applied on the best-so-far solution in each iteration with 
a probability called pro.

Regarding the computational complexity of the IWSA, let 
C be the number of cycles that the algorithm needs to run, T  
the number of territories, and N the population size (number 
of water striders); then, the computational complexity of the 
IWSA can be calculated as follows: In the initialization part 
of the algorithm, the complexity of randomly initiating the 
population corresponds to O(N) complexity and evaluating 
their opposites requires O(N) complexity as well which leads 
to O(2N) complexity for the initialization of IWSA. Then, for 
the updating part of the algorithm, the complexity is at least 
O(CT) and at most O(3CT) depending on the fitness of the 
keystone (similar to the standard WSA). Furthermore, after 
this updating process, the mutation operator is applied which 
corresponds to O(0) or O(CT) computational complexity 
based on the probability of the mutation. Therefore, the com-
putational complexity of IWSA is between O(2N + CT) and 
O(2N + 4CT).

In this study, similar to the source article, the number of 
WSs and the territories are set as nws = 50 and nt = 25 for 
both WSA and IWSA algorithms.

3.3  Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is one of the most 
well-known classical metaheuristics introduced by Ken-
nedy and Eberhart. In PSO, the candidate solutions, so-
called particles, are randomly initiated in the search space, 
and their positions are updated regarding the velocity of 
each particle. It is assumed that particles remember their 
best experienced position so far ( xbest i ), and the whole 
swarm’s best position ( xgbest ) as yet. Each particle’s 
velocity is updated based on the following equation (Ken-
nedy and Eberhart 1995):

where xk
i,j

 and vk
i,j

 represent the jth component of the position 
and velocity vector of the ith particle in the kth iteration, 
respectively. r1 and r2 are two random numbers generated in 
[0,1]. c1 and c2 are constant numbers representing the cogni-
tive and social behavior parameters, respectively. w is the 
inertia weight which is chosen to decrease linearly from 0.9 

(9)
vk+1
i,j

= wvk
i,j
+ c1r1

(
xbestk

i,j
− xk

i,j

)
+ c2r2

(
xgbestk

j
− xk

i,j

)
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to 0.4 during the optimization (Eberhart and Shi 2000). The 
time step is considered to be unit. Thus, the particles’ posi-
tions are updated as:

In this study, the internal parameters of PSO are set as: 
c1 = c2 = 2 , and the population size is set to 50 as in WSA 
and IWSA algorithms.

3.4  Enhanced Colliding Bodies Optimization (ECBO)

Colliding bodies optimization (CBO) is a multi-agent 
algorithm that originated from collision laws in physics. In 
this algorithm, each candidate solution is called a collid-
ing body (CB). The population is divided into two groups 
of stationary and moving groups, and the collision occurs 
between them to obtain a new position for each candidate 
solution. Enhanced colliding bodies optimization (ECBO) 
was introduced to improve the performance of CBO in 
terms of convergence speed and avoiding local optimums. 
In order to enhance the convergence rate, a memory is used 
to save some of the historically best solutions by defining 
a memory called colliding memory (CM). The CBs saved 
in CM are added to the population in each iteration, and 
the same number of current worst CBs is deleted. To help 
the CBO algorithm evade local optimums, a probability 
like pro is introduced, and for each CB, with a probability 
of pro , one of its components is regenerated randomly. 
Herein, the internal parameters of ECBO are selected as: 
Populationsize = 50, pro = 0.3 . For a more comprehensive 
explanation of the ECBO algorithm, the reader may refer 
to Kaveh and Ilchi Ghazaan 2014.

4  Performance‑Based Seismic Design 
Optimization Procedure

In this section, the formulation for PBSDO is presented. 
The optimization procedure can be mathematically 
expressed as follows:

Find {X} = [x1, x2,… , xng]

(10)xk+1
i,j

= xk
i,j
+ vk+1

i,j

(11)to minimizeW({X}) =

ng∑
i=1

xi

nm(i)∑
j=1

�jLj

subjected to:

{
gj({X}) ≤ 0, j = 1, 2,… , nc

ximin ≤ xi ≤ ximax

where {X} is 

the design variables vector chosen from the 267 wide 
flange sections provided in the AISC database. The sec-
tions are sorted based on their cross-section areas in the 
first place and for equal cross-sectional areas, the moment 
of inertia ( Ix ) sorts the list. W({X}) represents the weight 
of the structure, ng is the number of design groups, nm(i) 
is the number of members associated with the ith group, 
and �j  and Lj indicate the density of the material and the 
length of the jth member, respectively. gj({X}) represents 
the design constraints of the problem specified by the 
standard codes, and nc is the number of constraints. ximin  
and ximax are the lower bound and the upper bound of the 
variable xi , respectively. For constraints handling, the 
well-known penalty approach is utilized here. Thus, the 
objective function is redefined as follows:

where P({X}) is the penalized weight or objective function 
to be minimized and � represents the penalty coefficient 
which is set as a large number (equal to 100 herein as being 
suitable for the problems). G denotes the sum of the viola-
tions of the design constraints and is calculated as follows:

(12)P({X}) = (1 + �G) ×W({X})

Fig. 1  Geometry of frames’ connections for constructability
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where gi is the ith constraint considered and n is the number 
of constraints of the problem.

5  Optimization Constraints

To ensure that the desired design is obtained, five types of 
constraints consisting of seismic and non-seismic ones are 
taken into account during the optimization.

5.1  Non‑Seismic Constraints

Non-seismic constraints include geometric and strength 
constraints that are checked here before conducting the 
POA.

5.1.1  Geometric Constraint

In order to make the structure constructable, certain geo-
metric constraints must be met during the optimization 
process as seen in Fig. 1. Therefore, Eq. (14) is checked 
in each node to make sure the beams and columns dimen-
sions are compatible. In the following equations, (bbeam)i 
and (bcolumn)i are the flange width of the ith beam and col-
umn, respectively, and nBC is the number of beam-column 
connections. (dn+1)j and (dn)j are the depth of the jth col-
umn at the (n + 1)th and nth story. In addition, nCC and ns 
show the number of column-column connections and the 
number of stories in the structure, respectively.

5.1.2  Strength Constraint

In terms of strength constraint, all of the structural mem-
bers are assessed whether they sustain the following grav-
ity load combination (ASCE7-16 2016):

(13)G =

n∑
i=1

max
(
gi, 0

)

(14)

g1 =

{
(bbeam)i∕(bcolumn)i − 1 ≤ 0;i = 1, 2,… , nBC

(dn+1)j∕(dn)j − 1 ≤ 0;j = 1, 2,… , nCC;s = 1, 2,… , ns − 1

(15)Q
type1

G
= 1.2DL + 1.6LL

where DL and LL denote the dead load and live load, respec-
tively ( DL = 2500kgf∕m,LL = 1000kgf∕m ). The strength 
constraint is expressed by flexural moment-axial force inter-
action relation according to (AISC360-16 2016):

where Mux and Muy are the required flexural strength in 
respect to the strong and weak axes, respectively; Mnx and 
Mny are the nominal flexural strength in respect to the strong 
and weak axes, respectively; Pu and Pn denote the required 
and nominal axial strength, respectively, �c is the resistance 
factor ( �c = 0.9 for tension or compression), and �b is the 
flexural resistance factor equal to 0.9.

5.2  Seismic Constraints

According to ASCE 41–17, the gravity loads assigned to 
the structure before starting the POA are considered to be:

where DL is the dead load and LL is the effective live load 
equal to 25% of unreduced design live load.

5.2.1  Inter‑Story Drift Ratio Constraint (IDR)

The IDR constraint is calculated for each performance 
level by the following equation:

where ns indicates the number of stories, di
k
 denotes the IDR 

of the kth story for performance level of i , and di
all

 is its 
allowable value. The allowable IDRs are considered to be 
2.5% and 5% for the LS and CP performance level, respec-
tively, as recommended by FEMA-365 2000.

5.2.2  Deformation‑Controlled Members Constraints

Plastic hinge distribution plays an important role in perfor-
mance-based design by showing the element-level behav-
ior of structures. In addition, the element-level perfor-
mance can predict collapse mechanisms and the formation 

(16)

g2 =

⎧
⎪⎨⎪⎩

Pu

2𝜑cPn

+
�

Mux

𝜑bMnx

+
Muy

𝜑bMny

�
− 1.0 ≤ 0.0if

Pu

𝜑cPn

< 0.2

Pu

𝜑cPn

+
8

9

�
Mux

𝜑bMnx

+
Muy

𝜑bMny

�
− 1.0 ≤ 0.0if

Pu

𝜑cPn

≥ 0.2

(17)Q
type2

G
= DL + LL

(18)g3 =
di
k

di
all

− 1 ≤ 0.0i = LS, CP; k = 1, 2,… , ns
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of soft stories during extreme events. Herein, the plastic 
hinge growth of the frames of this study has been inves-
tigated for each defined performance level. The criteria 
by which the performance levels are determined are in 
accordance with ASCE 41–17 provisions for structural 
steel components. According to this standard, members 
that are able to show inelastic behavior are classified as 
deformation-controlled and their rotation must satisfy the 
following relation:

In the above equation, �i
j
 and �i

AC,j
 denote the absolute 

value of the rotation of the jth plastic hinge, and its accept-
ance criterion for the ith performance level, respectively. 
Considering the compactness of the sections used herein, 
the acceptance criteria for this study are provided in 
Table 2 where PG represents the axial force component of 
the gravity load obtained by exerting Qtype2

G
 , and the yield 

rotation of the members, �y , is calculated by the following 
formulas (ASCE41-17 2017):

(19)g4 =
�i
j

�i
AC,j

− 1 ≤ 0; j = 1, 2,… , nei = LS, CP

where

(20)

⎧⎪⎪⎨⎪⎪⎩

�y =
MpeL(1 + �)

6EI
for beams

�y =
MpceL(1 + �)

6
�
�bE

�
I

for columns

� =
12EI

L2GAs

⎧⎪⎪⎨⎪⎪⎩

𝜏b = 1.0 for
�P�
Pye

≤ 0.5

4�P�
Pye

�
1 −

�P�
Pye

�
for

�P�
Pye

> 0.5

(21)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

MCE = Mpe for beams

MCE = Mpce =

⎧⎪⎪⎨⎪⎪⎩

Mpe

�
1 −

�P�
2Pye

�
for

�P�
Pye

< 0.2

Mpe

9

8

�
1 −

�P�
Pye

�
for

�P�
Pye

≥ 0.2 for columns

Table 2  Acceptance criteria for 
nonlinear procedures

Modeling parameters Acceptance criteria 
(plastic hinge rotation 
(Rad))

LS CP

Beams bf

2tf
≤ o.30

√
E

Fye

and
h

tw
≤ 2.45

√
E

Fye

9�y 11�y

Columns in compression bf

2tf
≤ o.30

√
E

Fye

and

for
PG

Pye

< 0.2
h

tw
≤ 2.45

√
E

Fye

(1 − 0.71
PG

Pye

)

for
PG

Pye

≥ 0.2
h

tw
≤ 0.77

√
E

Fye

(2.93 −
PG

Pye

) ≤ 1.49

√
E

Fye

a = 0.8

(
1 −

PG

Pye

)2.2

(0.1
L

ry
+ 0.8

h

tw
)
−1

− 0.0035 ≥ 0

b = 7.4

(
1 −

PG

Pye

)2.3

(0.5
L

ry
+ 2.9

h

tw
)
−1

− 0.006 ≥ 0

0.75b b

Columns in tension for
|PG|
Pye

< 0.2 9�y 11�y

for
|PG|
Pye

≥ 0.2

a = 13.5

(
1 − 5∕3

|PG|
Pye

)
�y ≥ 0

b = 16.5

(
1 − 5∕3

|PG|
Pye

)
�y ≥ 0

a b
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In the above equations, E is the modulus of elasticity, Fye 
is the expected yield stress, L denotes the length of the beam 
or column members, MCE is the expected flexural strength 
of the member, I is the moment of inertia of the beam or 
column members, G is the shear modulus, As is the effective 
shear area of the cross section, Mpe is the expected plastic 
moment capacity of the section about the bending axis cal-
culated as Mpe = ZFye ( Z denotes the plastic section modu-
lus), P is the axial force in the member at the target displace-
ment, and Pye shows the expected axial yield force of the 
member ( = AgFye ). Herein, the value of � is set equal to zero 
as permitted by the code for the sections and mathematical 
modeling of this study. Moreover, the expected values of the 
parameters are set equal to their original values.

5.2.3  Force‑Controlled Members Constraints

According to ASCE 41–17 and ignoring the lateral-torsional 
buckling, the columns that their modeling parameter, a , as 
provided in Table 2, is equal to zero or where PG∕Pye > 0.6 , 
shall remain elastic for flexure, and are not expected to 
develop ductile behavior. Hence, they are considered force-
controlled in this study. These columns shall also satisfy the 
following constraint in addition to the criteria of Table 2:

where P denotes the required axial force of the column, Mx 
and My are, respectively, the required bending moments 
about the x - and y-axis, and all calculated at the target dis-
placement. PyLB represents the lower bound of the axial 
yield strength of the member ( = AgFyLB ), MpLBx and MpLBy 
are the lower bound plastic moment capacity of the section 
about the x - and y-axis, respectively. MpLBx and MpLBy can 
be obtained using Eq. (21). Also, the lower bound values of 
the parameters are set to their original values in the article.

To reduce the computational cost due to excessive num-
bers of pushover analyses, firstly, the non-seismic con-
straints are checked, and then, in case of zero penalty, the 
algorithm proceeds to assess the seismic constraints. Also, 
it is noteworthy to mention that the candidate solutions are 
rejected if they do not satisfy the non-seismic constraints by 
applying a large penalty coefficient ( � = 109 ); otherwise, 
POA is performed to determine the IDR and deformation 

(22)

g5 =

⎧
⎪⎪⎨⎪⎪⎩

�P�
2PyLB

+
Mx

MpLBx

+
My

MpLBy

− 1 ≤ 0 for
�P�
PyLB

> 0.2

�P�
PyLB

+
8

9

�
Mx

MpLBx

+
My

MpLBy

�
− 1 ≤ 0 for

�P�
PyLB

≥ 0.2

or force-controlled members' constraints. The proposed 
method’s flowchart is depicted in Fig. 2.

6  Simulation

Two structures consisting of 6- and 12-story MRFs are stud-
ied here for PBSDO. Considering the practical aspects of the 
construction and the symmetry of the structures, the frames 
are grouped into 9 and 24 design variables, as shown in 
Fig. 3. Since the objective function evaluation is costly and 
time-consuming, the MaxNFE of 20,000 is considered the 
algorithms’ termination criterion for the two frames. In each 
iteration, a vector of design variables, herein columns and 
beams’ sections, is returned to OpenSees (Mazzoni et al. 
2006) so as to calculate the model response under lateral 
loadings that are incremented to reach the target displace-
ment. To this end, the distributed plasticity simulation has 
been adopted, and the fiber model is employed to simulate 
the nonlinear behavior. The bilinear constitutive model is 
then used for nonlinear behavior via steel01 uniaxial mate-
rial with a 3% strain-hardening ratio. The element nonlin-
earBeamColumn is utilized with the intended w-sections 
assigned; also, the number of integration points is assumed 
to be 7 along each element. The connections of all the 
frames are assumed to be fully restrained, and for the sake 
of reducing the computation burden, deformation of panel 
zones and nonlinear behavior of connections have been ide-
alized using equalDof command. In order for diaphragms, 
herein beams, to simulate rigid behavior, a constraint is 
employed in the horizontal direction between beams’ nodes 
so that rigid diaphragm behavior realizes. After computing 
the eigenvalues of the model and deriving the fundamental 
period, gravity analysis is done. Afterwards, POA is applied 
to compute the models’ seismic constraints for a specific 
target displacement determined according to the intended 
performance level.

Mechanical properties of the steel are assumed as 
shown in Table 3:

The estimated coefficients for the target displacement 
for each frame are provided in Table 4. It is worth men-
tioning that C0 was calculated using Table 7–5 of the 
ASCE 41–17, and the other two coefficients were approxi-
mately estimated by a process of trial and error for these 
structures.

Iranian Journal of Science and Technology, Transactions of Civil Engineering (2023) 47:987–1006 995



 

1 3

7  Results and Discussions

In this section, the results of designing the two frames by 
the algorithms are discussed. The  1st example is run 10 
times independently, and 6 independent runs were carried 
out for the  2nd one to provide reasonable statistical results.

7.1  6‑story Frame

The first example is a 3-bay, 6-story frame depicted in 
Fig. 3a. The design variables include 6 groups for columns 
and 3 groups for beams as demonstrated in Fig. 3a. The best 

designs achieved by the algorithms without any constraint 
violations are shown in Table 5. As can be seen, the best 
design of IWSA (bolded in the table) is 4.2 and 10% better 
than its standard version and PSO, respectively. In addition, 
it is 3.5% lighter than the best result of ECBO. For a better 
insight into the performance of the three algorithms in the 
ten runs, the average optimized weight is also provided in 
Table 5. As shown, the average optimized weight of IWSA 
is 21171.56 kg which is 6.2% and 9.8% lighter than WSA 
and PSO, respectively. This shows the superiority of the 
IWSA over its standard version and PSO in the optimization 

Fig. 2  Flowchart of the pro-
posed method
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process. However, the mean result of ECBO is slightly bet-
ter than IWSA. This number, along with a low value of the 
standard deviation of ECBO, shows the satisfactory perfor-
mance of this metaheuristic in the ten independent runs.

The convergence curves for the best design of the algo-
rithms are shown in Fig. 4. It can be seen that the IWSA has 
the highest convergence rate in comparison with the other 
metaheuristics. It is worth mentioning that despite begin-
ning the optimization with a similar initial solution to the 

WSA, the higher convergence rate of IWSA is evident in 
later stages of the optimization. This demonstrates that the 
strategies utilized in IWSA were instrumental in enhancing 
the convergence speed of the algorithm.

Fig. 3  Schematic of the two 
frames considered for PBSDO; 
a the 6-story frame b the 
12-story frame

Table 3  Mechanical properties of the considered steel

Young’s modulus Yield stress Density Poisson’s ratio

210GPa 235MPa 7850kg∕m3 0.3

Table 4  Coefficients for calculating the target displacement

6-story frame 12-story frame

C
0

1.42 1.5
C
1

1 1
C
2

1 1

Table 5  The best design achieved by the algorithms for the 6-story 
frame

Groups PSO ECBO WSA IWSA

C1 W40 × 149 W44 × 262 W30 × 124 W30 × 99
C2 W24 × 76 W18 × 76 W30 × 90 W30 × 90
C3 W16 × 100 W12 × 40 W18 × 50 W24 × 68
C4 W33 × 152 W33 × 118 W27 × 178 W30 × 116
C5 W27 × 114 W30 × 99 W27 × 102 W30 × 99
C6 W24 × 76 W30 × 90 W24 × 76 W18 × 60
B1 W27 × 84 W21 × 55 W24 × 84 W30 × 99
B2 W21 × 93 W27 × 84 W27 × 84 W24 × 76
B3 W21 × 48 W18 × 46 W18 × 46 W18 × 55
Weight (kg) 22,006.28 20,520.36 20,663.18 19,797.15
Mean (kg) 23,464.25 21,039.98 22,560.24 21,171.56
Worst (kg) 25,889.75 22,972.59 24,923.44 23,054.64
SD 1315.39 776.24 1267.66 919.26
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The IDR for the best design by IWSA is shown in Fig. 5, 
which shows that the final design also meets the drift ratio 
constraints. However, the values for the IDR of the frames 

are far from their allowable threshold which can be con-
strued that this constraint has not controlled the design.

Figure 6 shows the rotation of plastic hinges for the best 
solution obtained for the 6-story frame (the left and the 
right bar plot belong to the columns and beams, respec-
tively). In this figure, the numbering for columns and 
beams is started from the first story up to the last one and 
from left to right. For each column, the numbering begins 
with the lower plastic hinge and then the upper one, and 
for each beam, it begins with the left plastic hinge to the 
right one. For each plastic hinge, the existing value of 
the rotation is divided by the maximum allowable value 
of rotation ( �∕�A.C ) so that the values of the vertical axis 
are normalized for a better insight. This figure illustrates 
that the rotation of hinges has not exceeded the allowable 
values. However, this value for the CP performance level 
controls the designing process.

The strong column-weak beam (SCWB) criterion 
is checked using the following equation according to 
(AISC341-16 2016):

where 
∑

Mpb denotes the sum of plastic moments in the 
beams projected at the centerline of the column and 

∑
Mpc 

is the sum of plastic moments in the column below and 
above the joint at the intersection of the beam and column 
centerline. The SCWB graph for the best design is plotted in 
Fig. 7. In this figure, Nij denotes the jth node of the ith story, 
counting from left to right. The values for 

∑
Mpb∕

∑
Mpc are 

directly affected by the design and classification of variables 
and are determined at the CP performance level. The values 
denoting the ratio of the leftmost nodes are slightly less than 
the rightmost ones; this conclusion is drawn based on the 
higher axial load of the right columns at CP performance 
level, which increases this ratio. The difference grows more 
noticeable as the section sizes reduce. It can be seen that in 
each beam-column intersection, the value of 

∑
Mpb∕

∑
Mpc 

is less than unity, showing that this criterion is met for the 
best design achieved by IWSA algorithm.

7.2  12‑story Frame

The second example evaluates a 4-bay, 12-story frame. The 
schematic of the frame, along with the groupings of columns 
and beams, is shown in Fig. 3b. This example is a more 
complex problem than the first one and consists of 24 design 

(23)

∑
Mpb∑
Mpc

≤ 1

Fig. 4  Convergence history for the best design of the 6-story frame

Fig. 5  Inter-story drift ratio for the best design obtained by IWSA 
algorithm for the 6-story frame
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variables and numerous seismic constraints which makes it 
an arduous task for metaheuristics to converge to a feasible 
solution. For this example, WSA and PSO could not obtain 
an acceptable result without constraint violation in the six 
independent runs. Furthermore, since the optimization of 
this structure entails much more time than the first structure, 
and considering the outperformance of IWSA and ECBO in 
the previous problem, the sheer further studies of these two 
algorithms is justified.

Table  6 shows the best design obtained by IWSA 
and ECBO and the average value of the optimized 
weight. As shown, the best design of IWSA weighs 
68,663.54 kg (bolded in the table), whereas this value for 
ECBO equals 77,628.72 kg. In other words, IWSA has out-
performed ECBO by 11.6% in the best optimization process. 
In terms of the average optimized weight, Table 6 shows 
that IWSA has also performed better than ECBO in the six 
optimization runs since the mean value of IWSA is 10% less 
than ECBO.

Fig. 6  Plastic hinges rotation for the best design of the 6-story frame
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The best design convergence curve is depicted in Fig. 8. 
It is seen that IWSA has a faster convergence rate than 
ECBO to a large extent. For such a complex problem, a 
mechanism is required for an optimization algorithm to 
escape from the local optimum and to navigate it towards 
the near-optimal solution. This mechanism is designed in 
IWSA by the mutation of the best-so-far solution which 
assists it to approach the optimal solution rather than get-
ting trapped in local optimum or searching fruitless areas 
of the search space.

Fig. 7  Strong column-weak beam ratio plot for the best design of the 
6-story frame

Table 6  The best design achieved by the algorithms for the 12-story 
frame

Groups ECBO IWSA

C1 W36 × 260 W40 × 167
C2 W36 × 245 W27 × 146
C3 W30 × 173 W24 × 117
C4 W27 × 94 W18 × 97
C5 W16 × 77 W18 × 97
C6 W14 × 68 W12 × 65
C7 W40 × 183 W44 × 290
C8 W40 × 167 W44 × 290
C9 W33 × 387 W44 × 262
C10 W36 × 150 W18 × 158
C11 W36 × 135 W10 × 88
C12 W21 × 68 W10 × 68
C13 W40 × 199 W40 × 249
C14 W36 × 194 W36 × 210
C15 W36 × 182 W33 × 141
C16 W27 × 187 W24 × 117
C17 W18 × 97 W14 × 82
C18 W8 × 67 W10 × 60
B1 W24 × 103 W12 × 45
B2 W16 × 67 W27 × 102
B3 W40 × 167 W16 × 100
B4 W21 × 93 W18 × 86
B5 W14 × 82 W14 × 82
B6 W12 × 50 W10 × 54
Weight (kg) 77,628.72 68,663.54
Mean (kg) 83,832.74 75,484.83
Worst (kg) 90,934.18 81,320.42
SD 5571.95 4777.42

Fig. 8  Convergence history for the best design of the 12-story frame

Fig. 9  Inter-story drift ratio for the best design obtained by IWSA 
algorithm for the 12-story frame
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The IDR of the best design of the IWSA algorithm is 
depicted in Fig. 9, demonstrating that it has satisfied this 
constraint successfully.

In Figs. 10 and 11, the plastic hinge rotation of col-
umns and beams is demonstrated. As can be seen, the 
orange bars (CP performance level) are near their maxi-
mum allowable values for both the columns and beams 
plastic hinges while for the most of the plastic hinges, the 
LS bars are far from their maximum allowable values. 

This shows that the plastic hinges rotation for the CP 
performance level dominates the optimization process.

In Fig. 12, the SCWB criterion is investigated for the 
best design of IWSA. This figure demonstrates that the 
SCWB criterion is satisfied for most of the nodes except 
a few nodes belonging to the  9th and  10th story. Since the 
strong column-weak beam criterion has not been explicitly 
taken into account as a design constraint, a few columns 
exhibit a ratio larger than unity. For the design of spe-
cial moment frames, this criterion should be assumed as 

Fig. 10  Plastic hinges rotation of columns for the best design of IWSA for the 12-story frame
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a constraint, and thus after achieving a final design with 
no violation of constraint, this criterion would also be 
satisfied.

7.3  Hinge Formation of the Optimal Designs

Since the CP performance-level acceptance criteria were the 
predominant constraints in the optimization process for the 
two frames considered, the distribution of the rotation of 
elements' endings at CP performance level is of interest to 
us. Figure 13 illustrates the amount of rotation ratio for each 

element with respect to its corresponding yield rotation, �y . 
The red circle in this figure denotes the location in which 
the maximum rotation ratio has occurred in either the beams 
or columns. By observing this figure, one can discern the 
critical elements in the frames which have undergone a large 
deformation, and the critical elements that can potentially 
induce soft story mechanism can be identified for prospec-
tive rehabilitation purposes.

Fig. 11  Plastic hinges rotation of beams for the best design of IWSA for the 12-story frame
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8  Conclusion

The recently developed metaheuristic algorithm called 
IWSA was tested in a complex performance-based design 
optimization problem with system- and component-level 
seismic and non-seismic constraints, and the results were 
compared to its standard version and two other well-estab-
lished metaheuristic algorithms, namely PSO and ECBO. 
Two MRFs were studied in this article with 9 and 24 discrete 
design variables for PBSDO to challenge the four algorithms 
and illustrate their computational performance. The follow-
ing conclusions can be drawn based on the results of this 
paper:

• For both of the problems, the CP performance level gov-
erned the optimization process. This can be construed 
that while CP tends to occur in the aftermath of stronger 

earthquakes and less frequently than the LS perfor-
mance level, the allowable damage level is so strict that 
its imposed design controls those of the LS performance 
level.

• The acceptance criteria for the plastic hinge rotation of 
the members at the CP performance level were the active 
constraint.

• The comparison of the metaheuristics shows that the 
IWSA algorithm is superior to its standard version and 
PSO in terms of accuracy of the final result as well as the 
required number of structural analyses.

• IWSA is competitive with one of the most successful, 
state-of-the-art metaheuristic algorithms, ECBO.

• An acceptable average value and standard deviation for 
the independent runs for the two examples clearly proved 
that the algorithm is also robust without sensitivity to the 
initial random population generated.

Fig.12  Strong column-weak beam ratio plot for the best design of the 12-story frame
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• The mechanisms embedded in IWSA were useful for 
a successful optimization process. The GSTS as an 
opposition-based learning method guided the algo-
rithm towards more promising areas of the search 
space, thereby increasing the convergence speed of 
the algorithm. The mutation technique utilized in 
IWSA also did a successful job in assisting IWSA to 
achieve a near-optimum solution, especially in the sec-
ond example. Therefore, we can utilize these mecha-
nisms in other metaheuristic algorithms to attempt to 
enhance their performance.

Furthermore, IWSA can also be applied in a different 
framework such as reliability-based design optimization 
(RBDO) problems, especially system reliability problems 
in which the failure domain involves non-convex functions 
with various constraints. These topics are of interest for 
prospective studies in this respect.

Funding No funds, grants, or other support was received.

Fig. 13  Elements rotation ratios with respect to yield rotation, �y , 
for the two optimally designed frames at CP performance level (the 
active constraint) denoted by the blue circles; a) the 6-story frame b) 

the 12-story frame. The red circle shows the hinge in which the maxi-
mum rotation has occurred
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