
Vol.:(0123456789)1 3

Iranian Journal of Science and Technology, Transactions of Civil Engineering (2022) 46:4763–4782 
https://doi.org/10.1007/s40996-022-00865-2

RESEARCH PAPER

Optimization of Construction Program Schedule Plans Based 
on Multi‑Objective Optimization Theory

Yibiao Liu1,2   · Hongqun Cheng3   · Chenchen Liu1,2

Received: 14 July 2021 / Accepted: 8 March 2022 / Published online: 1 April 2022 
© The Author(s), under exclusive licence to Shiraz University 2022

Abstract
Multiple sub-projects in a construction program (CP) generally involve overlapping construction times and serious resource 
conflicts, and the decision-making environment is complex and changeable. Optimizing the schedule plan is an effective way 
to ensure that the mandatory CP duration is met. Based on multi-objective optimization theory, an optimization model for 
CP schedule plans is established to achieve CP duration optimization and resource leveling. An improved adaptive NSGA-II 
algorithm (IANSGA-II) is proposed to enhance the convergence, uniformity, and spread of the optimization results. An opti-
mization process for CP schedule plans is presented based on the proposed model and algorithm. A case study of a geological 
disaster treatment program is conducted, and an optimized schedule plan set containing three schedule plans is obtained 
based on the proposed model and algorithm. The case study shows that the proposed optimization model and algorithm are 
reasonable and adaptive. Compared with the results of the standard NSGA-II and adaptive NSGA-II (ANSGA-II), the Pareto 
solutions obtained by the IANSGA-II dominate up to 75.6% of the solutions of the ANSGA-II and 91.8% of the solutions of 
the NSGA-II. This proves that the uniformity and spread of the Pareto solutions obtained by the IANSGA-II are better than 
those of the other two algorithms. In addition, a metric that can characterize convergence shows that the IANSGA-II has 
the best convergence. Two theoretical cases show that the proposed algorithm will also work in higher-dimensional search 
spaces. Optimizing the schedule plan of CPs based on the proposed process will provide decision-makers with more schedule 
plans to adapt to different decision-making environments.

Keywords  Construction program · Schedule plan · Improved adaptive NSGA-II · Multi-objective optimization · Duration 
optimization · Resource leveling

List of symbols
T 	� Mandatory duration
N	� Number of sub-projects
M	� Number of resource types
i, j	� The j th work package in the i th 

sub-project

ni	� Number of work packages in the i th 
sub-project

k	� The k th type of resource
t	� The t th unit of work time
Rk(t)	� Maximum total supply of resource k in the 

t th unit of work time
ri,j,k(t)	� Total amount of resource k consumed by 

work package i, j
Si,j	� Start time of work package i, j
f1	� Duration optimization objective function
f2	� Resource leveling objective function
ωi	� Priority of each sub-project
Di	� Duration of the i th sub-project
d	� A row vector composed of the duration of 

each work package
D	� Total duration of a schedule plan
�	� Total variance of the resource consumption 

of a schedule plan
rk	� Average consumption of resource k
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P
0	� Initial schedule plan set

P
i	� Schedule plan set i

pop	� Total number of initial schedule plans
S	� Start time set of each work package cor-

responding to each schedule plan
�	� Total variance set of each resource con-

sumption corresponding to each schedule 
plan

TE	� A row vector composed of the earliest pos-
sible start time of each work package

TL	� A row vector composed of the latest end 
time of each work package

rand	� A random number vector
Pc	� Crossover probability
Pcmax , Pcmin	� Maximum/minimum crossover probability
Pm	� Mutation probability
Pmmax , Pmmin	� Maximum/minimum mutation probability
n	� A constant obtained by a computer 

experiment
gencount	� Number of generations
Fi	� The i th layer of nondominated sets
C(A,B)	� C Metric, where A and B are the two sets 

of Pareto optimal solutions obtained by the 
two algorithms

a, b	� Elements corresponding to A and B
�	� � Metric
NP	� Number of Pareto optimal solutions
df  , dl	� Euclidean distances between the extreme 

solutions and the boundary solution
di , d	� The Euclidean distance between a pair of 

solutions and the average value of these 
distances

xi	� Independent variable in ZDT1 and ZDT3
m	� Number of independent variables

1  Introduction

A CP is composed of multiple sub-projects with shared 
resources and overlapping construction times (Ferns 1991). 
There are a number of factors affecting the decision-making 
environment of a CP. The process and method of achiev-
ing the program schedule objectives are highly uncertain 
(Lima et al. 2019; Wang and Yuan 2017). However, progress 
indexes are generally mandatory, especially for programs 
that affect livelihood, such as programs that address geologi-
cal disasters (Adam et al. 2017). The characteristics above 
make it difficult to select a feasible schedule plan. A feasible 
schedule plan should reasonably consider the duration and 
resource consumption level based on a fixed total invest-
ment. Therefore, the optimization of a CP schedule plan is 
a multi-objective optimization problem, which is NP-hard 

(Liu and Wang 2020). The contradiction and incommensu-
rability between the duration optimization and resource lev-
eling objectives cause the optimized schedule plan to vary. 
A diverse range of optimized schedule plans is beneficial in 
choosing a schedule plan under an uncertain environment.

Considerable research into duration optimization and 
resource leveling has already been reported. Duration opti-
mization generally refers to optimizing the schedule plan to 
shorten the duration under resource constraints (Naik and 
Kumar 2015). The critical path method (CPM) is widely 
used (Moselhi 1993), but it insufficiently considers the com-
plex time relations and logical relations of CPs. Therefore, 
duration optimization models based on mixed-integer pro-
gramming were proposed by Floudas and Lin (2005) and 
Nolz (2021). However, CPs usually have a large number 
of variables and constraints, resulting in the low efficiency 
of such analytical methods. In recent years, various meta-
heuristic algorithms have been applied to solve the duration 
optimization problem for CPs (El-Abbasy et al. 2017; Kaveh 
and Ilchi Ghazaan 2017; Qiao and Yang 2019; Zheng et al. 
2004). For instance, when optimizing the duration of a large 
infrastructure maintenance program, Antoniol et al. (2005) 
compared the optimized results of the genetic algorithm with 
those of the simulated annealing algorithm. This proved that 
the genetic algorithm performed better.

Resource availability can significantly affect the construc-
tion process. Particularly for CPs such as pre-fabricated 
construction systems, improving resource allocation and 
scheduling in terms of project time, cost, and the life cycle 
assessment (LCA) can identify and eliminate process waste 
and improve resource efficiency (Heravi et al. 2021, 2020a). 
Resource leveling is generally measured by the maximum 
resource usage, resource consumption variance, and other 
indexes (Ponz-Tienda et al. 2013). For the resource leveling 
problem of simple engineering projects, the optimal solution 
is commonly obtained using analytical methods such as the 
branch-and-bound method (Ponz-Tienda et al. 2017). For 
the resource leveling problem of CPs, the optimal solution 
can also be obtained by using mate-heuristic algorithms due 
to the complexity of the problem (Li and Demeulemeester 
2015; Piryonesi et  al. 2019; Prayogo et  al. 2018). For 
instance, Gaitanidis et al. (2016) applied the hybrid evolu-
tionary algorithm to perform resource leveling for an actual 
large construction project, a 50,000 DWT ship.

When preparing schedule plans for CPs, it is necessary to 
consider both duration optimization and resource leveling. 
An indirect approach is to convert the multi-objective prob-
lem into a single-objective optimization problem and then 
solve it (Cococcioni et al. 2018). The principle of the indirect 
method is to linearly weigh multiple targets and solve them 
based on a single-objective optimization algorithm (Alrifai 
et al. 2010; Qi et al. 2010). Converting the multi-objective 
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optimization problem into a single-objective optimization 
problem is conducive to simplifying and efficiently solving 
the problem. However, the method has the essential short-
coming that it cannot provide multiple optimized schedule 
plans to select from (Lin et al. 2015). Therefore, this method 
is not conducive to determining the schedule plans of CPs.

Generally, a shorter duration corresponds to a larger 
resource consumption variance. The optimization of the 
duration and resource leveling cannot be achieved simul-
taneously. Therefore, the solution to the multi-objective 
optimization problem is not unique. It is necessary to find 
the Pareto optimal solution set to adapt to different deci-
sion-making environments. Another approach to solving the 
problem directly is calculating and obtaining a set of sched-
ule plans for a CP based on multi-objective optimization 
theory. Multi-objective evolutionary algorithms (MOEAs) 
are commonly adopted to obtain the Pareto optimal solutions 
of multi-objective optimization problems. Many methods 
have been proposed, such as the NSGA (Srinivas and Deb 
1994) and NSGA-II (Deb et al. 2002). Based on the NSGA-
II, Kar et al. (2021) developed an optimum material pro-
curement schedule by integrating the construction program 
and budget using the NSGA-II, which aided in completing 
the project within the stipulated time and budgeted cost. 
In addition, Heravi et al. (2020b) adopted the NSGA-II to 
identify the cost-optimal options for designing a residential 
nearly zero-energy building in a city. These studies showed 
the usability of the NSGA-II. The NSGA-II is a fast non-
dominated sorting algorithm with an elite strategy, which 
is improved by the NSGA algorithm and performs better in 
solving multi-objective optimization problems. The algo-
rithm has the following three main features: (1) the popula-
tion is ranked by nondominated sorting to reduce the com-
putational complexity; (2) the elite strategy is introduced to 
improve the accuracy of the optimization results; and (3) 
a crowdedness comparison is used to ensure the diversity 
of the population. The algorithm has been applied to the 
duration-cost optimization (Fallah-Mehdipour et al. 2012; 
Zahraie and Tavakolan 2009), the time-robustness optimi-
zation (Wang and Lian 2020), and the duration-resource 
leveling optimization of engineering projects (Heon Jun 
and El-Rayes 2011). However, the genetic operators of this 
algorithm are set to certain values by default, which results 
in the poor convergence, uniformity, and spread of the Pareto 
optimal solutions. Therefore, Gu and Chen (2015) improved 
the genetic operators by using the number of iterations to 
make appropriate adjustments to the crossover and muta-
tion probabilities and created an ANSGA-II. However, the 
adaptive operators require too many subjectively determined 
coefficients (Li 2017; Yan et al. 2021). Reducing the number 
of subjectively determined coefficients in the adaptive opera-
tors simplifies the algorithm and improves its performance 

(Claesen and De Moor 2015; Fatyanosa and Aritsugi 2020). 
Therefore, it is necessary to design concise and dynamically 
adaptive genetic operators to improve the NSGA-II to solve 
schedule plan optimization problems for CPs.

This paper establishes a schedule plan optimiza-
tion model for CPs to perform duration optimization and 
resource leveling based on the multi-objective optimization 
theory. For the schedule optimization process, an improved 
adaptive nondominated sorting genetic algorithm named the 
IANSGA-II is proposed. The optimal schedule plan set of 
CPs is then determined, and it meets the demands of differ-
ent decision-making environments. The remainder of this 
paper is organized according to the general research frame-
work shown in Fig. 1.

Section 2 constructs a schedule plan optimization model 
for CPs based on multi-objective optimization theory. Sec-
tion 3 proposes the IANSGA-II to solve the model and sys-
tematically introduces the overall framework of the algo-
rithm, its improvements, and its operation process. Section 4 
illustrates the adaptability of the method with a case study 
of a geological disaster treatment program. Section 5 dis-
cusses the optimization results and proves that the conver-
gence, uniformity, and spread of the Pareto optimal solu-
tions obtained by the proposed method are better than those 
obtained by the other two existing algorithms. In addition, 
two theoretical cases are considered in Sect. 5 to illustrate 
the adaptability of the proposed algorithm to higher-dimen-
sional search spaces. Finally, several conclusions and direc-
tions for future work are derived based on the optimization 
process.

2 � Schedule Plan Optimization Model for CPs 
Based on Multi‑objective Optimization 
Theory

2.1 � Problem Description

A CP contains N  sub-projects, the mandatory duration is 
T  , and M types of resources are consumed. A schematic 
diagram of the composition and resource consumption of a 
CP is shown in Fig. 2. To meet the mandatory duration and 
resource leveling requirements, the following assumptions 
are adopted when modeling the schedule optimization of 
CPs:

(1)	 Resource k ( k ∈ [1,M] ]) is consumed ri,j,k(t) by work 
package i, j of sub-project i ( i ∈ [1,N] , j ∈

[
1, ni

]
 , 

where ni is the number of work packages in the i th sub-
project). The resources considered have critical impacts 
on the schedule plan and are consumed throughout the 
duration of the CP.
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(2)	 The maximum total supply of resource k in the t  th 
unit of work time is Rk(t) . There will be no design 
changes during project implementation. The types and 
quantities of resources consumed per unit time by the 
work packages of each sub-project are already deter-
mined.

(3)	 The project schedule is not affected by other factors, 
except for the constraints of resources, mandatory 
duration, and logical relationships of the work pack-
age.

(4)	 When establishing a schedule plan for the CP, the 
decision-maker assigns a priority to each sub-project 
according to the importance of the sub-project.

2.2 � Schedule Plan Optimization Model

Based on multi-objective optimization theory, an objec-
tive function suitable for optimizing the schedule of CPs 
is formulated, and the corresponding schedule optimization 
model is proposed.

2.2.1 � Objective Function

Duration optimization and resource leveling are closely 
related to the start time Si,j of the work package i, j . 
Therefore, the start time Si,j of each work package in 
the CP is selected as an independent variable of the 

Fig. 1   General research frame-
work
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objective function. The mapping relationship between 
the objective and independent variables is expressed as 
F
(
f1
(
S1,1, S1,2,… Si,j,… , SN,ni

)
, f2

(
S1,1, S1,2,… Si,j,… , SN,ni

))
 , 

and the objective functions are explained as follows:

(1)	 Duration optimization objective function.

In a single-objective optimization problem with duration 
optimization as the objective, the duration calculation fol-
lows the CPM, which means that the path with the longest 
time is the critical path. Taking the time of the critical path 
as the duration, the optimization objective function of the 
duration is established as Eq. (1).

Fig. 2   Schematic diagram of the composition and resource consumption of a CP
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where ωi is the priority of a sub-project and Di is the dura-
tion of the i th sub-project; Di is the difference between the 
maximum end time of all work packages and the minimum 
start time of all work packages for the sub-project.

When conducting multi-objective optimization, directly 
setting the duration as an integer will cause the distribution 
of the final Pareto frontier to be too narrow. According to 
Assumption (4), minimizing the sum of the weighted dura-
tion of each sub-project is taken as the duration optimiza-
tion objective to enhance the spread of the Pareto frontier 
distribution and reflect the importance of each sub-project. 
S
∗ is defined as

(1)
minf1

(
S1,1, S1,2,… Si,j,… , SN,ni

)
=

N∑
i=1

�iDi

=

N∑
i=1

�i ⋅
(
max

(
Si,1 + di,1, Si,2 + di,2, ..., Si,j + di,j,… , Si,ni + di,ni

)
−min

(
S1,1, S1,2,… Si,j,… , SN,ni

))

(2)S
∗ = argmin f1(S1,1, S1,2,… Si,j,… SN,ni)

By substituting S∗ into Eq. (3), the total duration of the 
CP is obtained.

where d is a row vector composed of the duration of each 
work package and its size is 1 ×

∑N

i=1
ni . D is the total dura-

tion of a CP, taken as the difference between the maximum 
end time and the minimum start time of all work packages.

(3)D = max
(
S
∗+d

)
−min

(
S
∗
)

(2)	 Resource leveling objective function.

Many indicators can represent resource leveling, 
including the resource consumption variance, the maxi-
mum resource usage, the sum of the absolute deviations 

in resource usage, etc. Damci and Polat (2014) compared 
nine different indicators for solving the resource leveling 
problem, and the sum of the squares of the deviations in 
resource usage for a determined time interval provided the 
best solution in their study. The resource consumption vari-
ance works in the same way as the sum of the squares of the 
deviations in resource usage for a determined time interval 
because they differ by only a constant coefficient. There-
fore, resource leveling is measured by resource consumption 
variance in this paper. The degree of resource leveling has a 
negative correlation with the variance of resource consump-
tion. For CPs, the resource leveling objective is to minimize 
the sum of the resource consumption variance of each kind 
of resource in the total duration. The resource leveling objec-
tive function is shown as Eq. (4).

where � is the total variance of resource consumption under 
the schedule plan and rk is the average consumption of the k 
th resource in the total duration D of the CP.

2.2.2 � Optimization Model

According to the description of the optimization problem 
and its four assumptions, the optimization model of a CP 
is as follows:

 where the first function is the objective function. The con-
straints in Model (5) are explained as follows:

(1)	 (1) rk(t) ≤ Rk(t) is a resource constraint, which means 
that the consumption of the k th resource in the t th unit 

(4)

min f2
�
S1,1, S1,2,… Si,j,… , SN,ni

�
= min �

�
S1,1, S1,2,… Si,j,… , SN,ni

�

=
1

D

M�
k=1

⎛⎜⎜⎝

D�
t=1

�
N�
i=1

ni�
j=1

ri,j,k(t) − rk

�2⎞⎟⎟⎠

(5)

min F
�
f1
�
S1,1, S1,2,… , Si,j,… , SN,ni

�
, f2

�
S1,1, S1,2,… , Si,j,… , SN,ni

��
s.t.

rk(t) ≤ Rk(t), t ∈ [1,D], k ∈ [1,M]

D ≤ T

TEi,j ≤ Si,j
Si,j + di,j ≤ Si,j+1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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time rk(t) shall not exceed the supply of the resource in 
the t th unit time Rk(t) . The calculation method of rk(t) 
is shown in Eq. (6); its value equals the sum of all work 
packages' consumptions of the k th resource in the t th 
unit time.

where

(2)	 TEi,j ≤ Si,j indicates that the start time Si,j of work pack-
age i, j cannot be before the earliest start time TEi,j.

(3)	 Si,j + di,j ≤ Si,j+1 represents the predecessor constraint. 
Work package i, j of sub-project i is the predecessor of 
its work package i, j + 1 . Work package i, j + 1 must be 
started after work package i, j ends.

3 � Schedule Plan Optimization for CPs Based 
on the IANSGA‑II

The NSGA-II (Deb et al. 2002) can yield the Pareto opti-
mal solution set for general multi-objective optimization 
problems. However, the crossover and mutation operators 
are set as fixed values during the iteration. In dealing with 

(6)rk(t) =

N∑
i

ni∑
j

ri,j,k(t)

(7)

ri,j,k(t) =

{
ri,j,k(t), Si,j ≤ t ≤ Si,j + di,j

0, t > Si,j + di,j
k ∈ [1,M]

the schedule plan optimization problem for a CP, such a 
setting will make it difficult for the algorithm to converge. 
Most importantly, the number of optimized schedule plans 
obtained from the Pareto optimal solutions will be smaller, 
and they will be unable to fully meet different decision-
making environment requirements. The existing adaptive 
method of the ANSGA-II (Gu and Chen 2015) attempts to 
adjust the crossover and mutation operators appropriately 
according to the number of iterations. However, the designed 
adaptive operators require excessive subjectively determined 
coefficients, causing inconvenience in solving the problem.

This paper designs adaptive operators with fewer subjec-
tively determined coefficients and improves the convergence, 
uniformity, and spread of the distribution of the Pareto opti-
mal solutions. The operators are inserted into the NSGA-
II to form the IANSGA-II, which efficiently optimizes the 
schedule plan of a CP. The optimization process and related 
instructions are shown in Fig. 3.

First, we collect the data of the CP, determine the work 
breakdown structure, and develop an initial schedule plan set 
based on the logical relationships of the work packages. The 
initial schedule plan set is then optimized, including making 
adjustments, performing iterative optimization, and other 
steps. Finally, the optimized schedule plan set is obtained. 
The following is a detailed description of the optimization 
process of the CP schedule plan.

(1)	 Collect the data of the CP and determine the work 
breakdown structure.

Fig. 3   Optimization process of the CP schedule plan based on the IANSGA-II
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	   The data of the CP are collected to determine the 
work breakdown structure. After the work breakdown 
structure is determined, the number of sub-projects, 
the work packages in each sub-project, and the logi-
cal relationships of each work package are clarified​. 
Finally, the resource constraints, the mandatory dura-
tion constraint, and the start time constraints of the 
model are obtained.

(2)	 Develop an initial schedule plan set
	   Based on the logical relationships determined for 

each work package, an event diagram is drawn to deter-
mine the earliest possible start time and the latest end 
time of each work package. The start time of the work 
package can be adjusted within the total float. The ini-
tial schedule plan set is generated according to Eqs. 
(8)–(10).

where P0 is the initial schedule plan set, pop is the 
total number of initial schedule plans, S is the start 
time set of each work package corresponding to each 
schedule plan, and � is the total variance set for each 
resource consumption corresponding to each schedule 
plan. Additionally,

where TE is a row vector of size 1 ×
∑N

i=1
ni composed 

of the earliest possible start times of the work packages; 
TL is a row vector of size 1 ×

∑N

i=1
ni composed of the 

latest end times of the work packages; and 

(8)P
0 =

�
P
0
1
,P0

2
,… ,P0

pop

�T
= [S,�] =

⎡⎢⎢⎢⎣

S1 �1

S2 �2

⋮ ⋮

Spop �pop

⎤⎥⎥⎥⎦

(9)

S =
�
S1, S2,… , Spop

�T

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

TE + (TL − d − TE). ∗ rand1

�
1,

N∑
i=1

ni

�

TE + (TL − d − TE). ∗ rand2

�
1,

N∑
i=1

ni

�

⋮

TE + (TL − d − TE). ∗ randpop

�
1,

N∑
i=1

ni

�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)

� =
�
�1, �2,… , �pop

�T
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

D
P
0
1

M∑
k=1

⎛⎜⎜⎝

D
P
0
1∑

t=1

�
N∑
i=1

ni∑
j=1

ri,j,k(t) − rk

�2⎞⎟⎟⎠
1

D
P
0
2

M∑
k=1

⎛
⎜⎜⎝

D
P
0
2∑

t=1

�
N∑
i=1

ni∑
j=1

ri,j,k(t) − rk

�2⎞
⎟⎟⎠

⋮

1

D
P
0
pop

M∑
k=1

⎛
⎜⎜⎝

D
P
0
pop∑

t=1

�
N∑
i=1

ni∑
j=1

ri,j,k(t) − rk

�2⎞
⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rand

�
1,
∑N

i=1
ni

�
 is a random number vector of size 

1 ×
∑N

i=1
ni , where the random number values range 

from 0 to 1. The symbol “ . ∗ ” represents the multiplica-
tion of the elements at the corresponding positions in 
the two vectors.

(3)	 Optimization of the schedule plans
	   The initial schedule plan set obeys only the logi-

cal relationships among the work packages and the 
mandatory duration requirement, which does not limit 
its resource consumption. Moreover, the duration and 
resource leveling performance of the schedule plans 
in the set may not be optimal, and they may need to 
be further optimized. The optimization process of the 
initial schedule plan set includes four steps: adjusting 
the initial schedule plan set, generating a new sched-
ule plan set, iteratively adjusting the new schedule set 
based on the adjusted initial schedule plan set, and 
finally obtaining the optimized schedule plan set. The 
four steps are described in detail as follows:

	 (i)	 Adjustment of the initial schedule plan set.
		    The objective function in Model (5) is taken 

as the fitness function. Each sub-project is given 
a specific priority according to its importance. 
The fitness value of each plan in the initial 
schedule plan set is calculated, and the non-
dominated ranking of each plan is carried out 
after error normalization. Then, the crowding 
distance comparison method of the NSGA-II 
is used to obtain and save the adjusted initial 
schedule plan set Pi(i = 0) . Through this opera-
tion, the distribution of individuals in the same 
layer is made more uniform.

	 (ii)	 Generation of a new schedule plan set.
		    The initial schedule plan set is selected, 

crossed, and mutated. In the process of crosso-
ver and mutation, adaptive operators are pro-
posed to prevent the premature or slow conver-
gence of the algorithm, as shown in Eq. (12). 
The new schedule plan set thus obtained is 
denoted as Pi

�

(i = 0) . The adaptive operators 
are explained below.

		    The original NSGA-II sets the crossover and 
variation probabilities as constants, and this 
method is prone to having premature conver-
gence (i.e. falling into locally optimal solu-
tions) or difficulty in ultimately converging. To 
avoid this problem, the crossover and mutation 
operators should be larger in the early stage to 
prevent the algorithm from falling into locally 
optimal solutions and gradually decrease as the 
algorithm runs to promote the convergence of 
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the algorithm. Based on this rule, we improve 
the form of the tan-sigmoid activation function, 
which is often used to organize neural networks, 
and propose new adaptive operators.

		    The tan-sigmoid function (Olgac and Karlik 
2011) is expressed as follows:

		    By making appropriate transformations and 
introducing the three variables of crossover 
probability ( Pc ), mutation probability ( Pm ), 
and the number of generations ( gencount ) of 
the algorithm, Eq. (12) can be derived.

where gencount is the number of generations, 
Pcmax is the maximum crossover probabil-
ity, Pcmin is the minimum crossover probabil-
ity, and Pc is the (gencount + 1) th-generation 
crossover probability.Pm is the (gencount + 1) 
th-generation mutation probability, Pmmax is the 

(11)tansig(x) =
2

1 + e−2x
− 1

(12)

⎧⎪⎨⎪⎩

Pc = Pcmax −
�
Pcmax − Pcmin

�
⋅

�
2

1+e−n⋅gencount
− 1

�

Pm = Pmmax −
�
Pmmax − Pmmin

�
⋅

�
2

1+e−n⋅gencount
− 1

�

maximum mutation probability, and Pmmin is the 
minimum mutation probability. n is a constant 
that can be obtained by computer experiments.

		    Determine the adaptive operators requires 
determining the maximum and minimum cross-
over and mutation probabilities and an unknown 
coefficient, and the unknown coefficient can be 
obtained by simple computer experiments.

	 (iii)	 Adjustment of the new schedule plan set.
		    We combine Pi(i = 0) and Pi

�

(i = 0) , conduct 
nondominated sorting and obtain several lay-
ers of nondominated sets F1,F2,… . Then, the 
crowding distance is calculated and sorted, and 
optimal individuals are selected to form a new 
schedule plan set P1(i = 1) . The principle of 
optimal individual selection is as follows: first, 
sort by nondominated sets and select schedule 
plans from the nondominated set F1 . If the num-
ber of schedule plans in F1 is not less than pop , 
select only the first pop schedule plans from F1 ; 
otherwise, select schedule plans from F2 , F3 … 
in turn until the number of schedule plans in the 
new set equals that in the original set.

		    Set i = i + 1 . Then, the schedule plan set 
that needs to be selected, crossed, mutated, and 

Table 1   Resource consumption of the CP

Sub-project Work package Name of the work package Consumption of 
resource K per unit 
time

Duration Predecessor 
work pack-
age

1
(Sub-project of frame anchors)

1, 1 Slope trimming 6 4 –
1, 2 Preparation of anchors 10 2 –
1, 3 Preparation of plants 2 6 –
1, 4 Construction lofting 4 8 1, 1
1, 5 Anchor engineering 12 6 1, 2、1, 4
1, 6 Frame construction 4 8 1, 2
1, 7 Planting in frame 10 4 1, 1、1, 3

2
(Sub-project of ecological bags 

combined with anchors)

2, 8 Slope trimming 14 4 –
2, 9 Removal of unstable rocks 6 6 –
2, 10 Preparation of ecological bags 4 2 –
2, 11 Anchor engineering 6 2 2, 8
2, 12 Construction of ecological bags 10 8 2, 10
2, 13 Construction of epoxy coating steel strands 14 6 2, 10
2, 14 Construction of monitoring points 8 4 –
2, 15 Monitoring stresses and displacements 12 8 2, 14

3
(Sub-project of rail anti-slip piles)

3, 16 Preparation of rails and grouted rubbles 4 4 –
3, 17 Borehole digging 2 6 –
3, 18 Repair the existed retaining wall 8 2 3, 16
3, 19 Construction of a new retaining wall 6 2 3, 16
3, 20 Drainage work 10 2 3, 16
3, 21 Welding and lifting rails 10 4 3, 17
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evaluated is replaced with a new schedule plan 
set P1(i = 1).

	 (iv)	 Determination of the optimized schedule plan 
set.

		    The operations in (ii) and (iii) are repeated 
until the maximum generation number is 
reached. Note that when repeating operation 
(ii), the schedule plan set used for the selec-
tion, crossover, and mutation operations is the 
updated schedule plan set. The final set that has 
completed nondominated sorting is denoted as 
P
gencount(i = gencount) . The schedule plan set in 

layer F1 is selected as the Pareto optimal solu-
tion set, which is the optimized set for selecting 
schedule plans for the CP.

4 � Case Study

4.1 � Case Background

A case study is conducted on the schedule plan optimization 
of a geological disaster treatment program on the national 
highway G318 in China. This highway passes through 

mountainous areas in southwestern China, and geological 
disasters occur frequently. The total cost of the program 
reached 54.23 million. This program involves a total of 21 
disaster sections with a total length of 106 km, including 14 
rock collapse problems, mainly treated by frame anchors 
and ecological bags combined with anchors, and 7 land-
slide problems, mainly treated by rail anti-slip piles. The 
technological process and logical relationships are shown in 
Table 1. Only human resource leveling and the optimization 
of the project duration are considered.

According to different treatment methods, this CP is 
divided into three sub-projects numbered 1, 2, and 3. All 
the sub-projects jointly consume the amount of human 
resources K  . The maximum supply of K  per unit work 
time is RK(t) = 50 , and the mandatory duration of this CP 
is T = 20 . The event diagram and the resource consump-
tion of each sub-project are shown in Fig. 4 and Table 1, 
respectively.

4.2 � Initial Schedule Plan Set

The initial schedule plan set is generated by Eq. (8), and we 
set pop = 5000 . Due to the large number of plans in the set, 
only two of the initial schedule plans in it are listed here.

Fig. 4   Event diagram of the CP
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(1)	 Initial schedule plan 1

Each work package starts at the earliest possible start time 
in this plan. The initial schedule plan and its resource con-
sumption are shown in Fig. 5a (the work package number in 
Fig. 5a omits the sub-project number, as in the later figures).

As shown in Fig. 5a, the total duration of the CP is 18 
units of work time. The consumption of K in the first 10 
units of work time exceeds the limit of 50, and the variance 
of resource consumption is as high as 784.4183. Therefore, 
this initial schedule plan does not meet the resource con-
straints, and the plan needs to be further optimized.

Fig. 5   a Initial schedule plan 1 
and its resource consumption, 
b initial schedule plan 2 and its 
resource consumption
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(2)	 Initial schedule plan 2.

The initial schedule plan and its resource consumption are 
shown in Fig. 5b Under this schedule plan, the total dura-
tion of the CP is 19 units of work time. The resource con-
sumption of K is within the resource limit during the total 

duration, but the resource consumption variance is 69.5906. 
The initial schedule plan satisfies the resource constraints; 
it cannot be determined whether it is optimal, and further 
optimization is needed.

Fig. 6   a Pc − gencount curve, b 
Pm − gencount curve

(a)

(b)
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4.3 � Schedule Plan Optimization Based 
on the IANSGA‑II

The three sub-projects are assigned priority values according 
to their risk levels. Among the slopes to be treated, those that 
are treated by frame anchors (sub-project 1) have the highest 
risk level, followed by those treated by rail anti-slip piles 
(sub-project 3). The slopes to be treated by ecological bags 
combined with anchors (sub-project 2) have the lowest risk 
level. Therefore, the importance ranking of the sub-project 
priorities is 1 > 3 > 2, and the priority values are assigned as 
0.5, 0.3, and 0.2, respectively. The proposed IANSGA-II is 
used to optimize the initial schedule plan set, and optional 
optimized schedule plans are provided.

According to the optimization process of CP, we calcu-
late each plan's fitness value in the initial schedule plan set, 
adjust the initial plan set, and update the adjusted initial 
schedule plan set. The computer experiment to determine 
the coefficient n in Eq. (12) is analyzed as below.

4.3.1 � Determination of the Coefficient n in the Adaptive 
Operators

The coefficient n in Eq. (12) is a factor that determines the 
performance of the algorithm, and a reasonable value for 
it is obtained through a computer experiment. Considering 

the needs of the case study, combined with Gonçalves 
et al. (2008)'s recommended values for the crossover and 
mutation probabilities, we set Pcmax = 0.9 , Pcmin = 0.6 , 
Pmmax = 0.0625 , and Pmmin = 0.01 . When gencount is small, 
n should make Pc and Pm close to their maximum values 
and make them converge to the minimum values slowly 
as gencount grows. When the total number of generations 
is 100, we take n = 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 for the 
experiment according to the above rule. After comparing 
the variation trend of the crossover probability ( Pc) and 
mutation probability ( Pm ) with the generation ( gencount ) 
under different n values, the experimental results are shown 
in Fig. 6a and b.

It can be seen from Fig. 6a and b that when n ≥ 0.1 , Pc 
and Pm decrease too quickly with the increase in gencount . 
In the early stage of the algorithm, small Pc andPm values 
are not conducive to maintaining population diversity. When 
n = 0.01 , Pc and Pm are still large when gencount = 100 , 
which is not conducive to the convergence of the algorithm. 
When n = 0.05 , Pc and Pm decrease slowly with the increase 
in gencount and converge to the values Pcmin and Pmmin at 
gencount = 100 , so n = 0.05 is recommended as a suitable 
value.

Fig. 7   Pareto optimal solutions 
for the multi-objective optimi-
zation of the CP
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4.3.2 � Optimization Results

In the IANSGA-II, we take n = 0.05 , pop = 5000 , and 
gencount = 100 . The algorithm is run 30 times, and the 
Pareto optimal solutions obtained in each run are further 
nondominated sorted. The solutions in the F1 layer are taken 
as the final Pareto optimal solutions, which are shown in 
Fig. 7.

Figure 7 shows that the Pareto optimal solutions are more 
uniformly distributed. The fractional portion of the objec-
tive function f1 is a result of prioritizing the sub-projects 
beforehand. Since the duration is generally an integer, it is 
processed according to Eq. (3) to obtain the total duration 
of the CP.

As shown in Fig. 8, the schedule plan with the smallest 
variance in resource consumption under the same duration is 
selected as the optimized schedule plan, as shown in Table 2. 

The optimized plans and their resource consumptions are 
shown in Fig. 9. The resource consumption per unit work 
time of each plan is relatively uniform, and the consumption 
does not exceed the limit.

5 � Discussion

5.1 � Comparisons Among the Optimized Schedule 
Plans

Three optimized schedule plans were obtained during the 
case study. Further discussion of these schedule plans is as 
follows:

(1)	 It can be seen from Fig. 8 that when the duration is 
18, the resource consumption variance corresponding 

Fig. 8   The total duration and 
resource consumption variance 
of each optimized schedule plan

Table 2   Optimized schedule plans

Optimized sched-
ule plan

Duration Resource consump-
tion variance

Start time of each work 
package in sub-project 1

Start time of each work 
package in sub-project 2

Start time of each work 
package in sub-project 3

1 18 106.0351 0, 0, 2, 4, 12, 4, 8 0, 3, 2, 4, 7, 12, 0, 10 0, 1, 6, 4, 4, 6
2 19 21.5906 0, 0, 1, 4, 13, 3, 9 0, 3, 0, 7, 5, 13, 2, 11 0, 2, 6, 4, 10, 6
3 20 15.4105 0, 0, 0, 4, 14, 6, 10 0, 3, 3, 7, 6, 14, 8, 12 0, 2, 5, 4, 4, 6
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to each schedule plan is generally large. When the dura-
tion is 19 or 20, the resource consumption variance cor-
responding to each schedule plan does not clearly differ.

(2)	 It can be seen from Table 2 that the resource consump-
tion variance of the optimized schedule plan decreases 
with increasing duration. The variance of the resource 
consumption of the optimized schedule plan with a 
duration of 19 decreased significantly compared with 
that of the optimized schedule plan with a duration of 
18.

(3)	 The second optimized schedule plan is the most suit-
able under the mandatory duration constraint. It not 
only limits the delay time but also dramatically reduces 
the variance of the resource consumption.

5.2 � Extended Evaluations of IANSGA‑II Performance

To verify the adaptability of the IANSGA-II for solving 
the optimization problem of the schedule plans of CPs, the 
Pareto optimal solutions obtained by the NSGA-II (Deb 
et al. 2002) and ANSGA-II (Gu and Chen 2015) are selected 
as references in comparing the convergence, uniformity, and 
spread of the solutions. In addition, based on the ZDT1 and 
ZDT3 problems (Zitzler et al. 2000), the effect of changing 
the dimensionality of the search space on the computational 
cost of the IANSGA-II is explored by changing the number 
of independent variables.

(1)	 Evaluation of convergence.

The convergence of multi-objective optimization algo-
rithms can be compared using the C metric (Zitzler et al. 
2000), which is calculated as

where A and B are the two sets of Pareto optimal solutions 
obtained by the two algorithms and a and b are the elements 
in A and B , respectively. The value C(A,B) = 1 indicates that 
all solutions in B are dominated by or equal to solutions in A . 
The value C(A,B) = 0 means that no solution in A dominates 
solutions in B.

The parameters of each algorithm are taken to be the same 
as those in the case study and are run 30 times separately to 
obtain the respective Pareto optimal solutions. Since C(A,B) 
is not necessarily equal to 1 − C(B,A) , six sets of C metrics 
are calculated to compare the convergence of the three algo-
rithms, which are shown in Fig. 10. The statistics of C are 
shown in Table 3.

Figure 10 shows that the Pareto solutions obtained by 
the IANSGA-II cover a large proportion of those obtained 
by the ANSGA-II and NSGA-II. Table 3 shows that the 
IANSGA-II converges better than the other two methods, 
and the ANSGA-II converges slightly better than the NSGA-
II in terms of the maximum, minimum, median, and mean 

(13)C(A,B) =
|{b ∈ B;∃a ∈ A, a ≺ b}|

|B|

Fig. 9   a Optimized schedule plan 1 and its resource consumption, b 
optimized schedule plan 2 and its resource consumption, c optimized 
schedule plan 3 and its resource consumption
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Fig. 10   Box plots based on the C metric

Table 3   Statistics of the C 
metric

C Maximum value Median value Mean value Minimum value

C(IANSGA − II,ANSGA − II) 0.756 0.552 0.574 0.409
C(ANSGA − II, IANSGA − II) 0.707 0.436 0.422 0.104
C(IANSGA − II,NSGA − II) 0.918 0.564 0.590 0.326
C(NSGA − II, IANSGA − II) 0.592 0.449 0.428 0.250
C(ANSGA − II,NSGA − II) 0.903 0.589 0.561 0.168
C(NSGA − II,ANSGA − II) 0.832 0.418 0.445 0.103

Table 4   Statistics of the � 
metric

Note: + represents significant differences between the calculated results of the Δ for the IANSGA-II and the 
other two algorithms

Algorithm � Tukey test

Maximum value Median value Mean value Minimum value

IANSGA-II 1.920 1.901 1.904 1.884  + 
ANSGA-II 1.957 1.925 1.928 1.912 \
NSGA-II 1.957 1.934 1.934 1.918 \
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values of the C metric. The Pareto solutions obtained by the 
IANSGA-II dominate up to 75.6% of the solutions of the 
ANSGA-II and 91.8% of the solutions of the NSGA-II. The 
ANSGA-II and NSGA-II dominate only 70.7 and 59.2% of 
the solutions of the IANSGA-II, respectively. Therefore, the 
IANSGA-II has better convergence in solving the optimiza-
tion problem of CP schedule plans.

(2)	 Evaluation of the uniformity and spread of the Pareto 
optimal solutions.

The uniformity and spread of the Pareto optimal solutions 
also affect the adaptability of the multi-objective optimi-
zation algorithm for solving optimization problems of CP 
schedule plans. Based on the Euclidean distance (Deb et al. 
2002), Eq. (14) is used to comprehensively evaluate the uni-
formity and spread of the Pareto optimal solutions.

where NP is the number of Pareto optimal solutions, df  and 
dl are the Euclidean distances between the extreme solutions 
and the boundary solution of the obtained Pareto optimal 
solutions, and di and d are the Euclidean distance between 
a pair of solutions and the average value of these distances, 
respectively. Equation (14) shows that when the uniformity 

(14)� =
df + dl +

∑Np−1

i=1

���di − d
���

df + dl +
�
Np − 1

�
d

and spread of the obtained Pareto optimal solutions are bet-
ter, � is closer to 0.

The parameters of each algorithm are taken to be the 
same as those in the case study and are run 30 times sepa-
rately to obtain the respective Pareto optimal solutions. The 
� values of all algorithms are shown in Table 4.

Table 4 shows that the mean, maximum, and minimum 
values of �IANSGA−II are all smaller than �ANSGA−II and 
�NSGA−II . The Kolmogorov–Smirnov test is used to verify 
the normality of the distributions of the � values obtained by 
the three algorithms, and all of them conform to the normal 
distribution. Furthermore, the Tukey method is used for post 
hoc analysis. The results show that the comparisons of the 
� values of the IANSGA-II with those of the ANSGA-II 
and NSGA-II are significantly different. The results prove 
that the distribution of the obtained Pareto optimal solutions 
is wider and more uniform when the proposed IANSGA-II 
algorithm is applied.

(3)	 Effect of the dimensionality of the search space on the 
time cost of the IANSGA-II

Two theoretical problems, ZDT1 and ZDT3 (Zitzler et al. 
2000), are chosen to further explore the influence of the 
dimensionality of the search space on the time cost of the 
algorithm. The two problems are shown in Eqs. (15) and 
(16), respectively. ZDT1 and ZDT3 have a convex Pareto 
front and a discontinuous Pareto front, respectively. ZDT3 

Fig. 11   Relationships between 
the time cost of the IANSGA-II 
and m
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can reflect the discrete property of the optimization results 
of the schedule plans of CPs well.

 where xi ∈ [0, 1] , and m represents the number of independ-
ent variables. The effect of the dimensionality of the search 
space on the time cost of the IANSGA-II can be explored by 
changing the value of m.

Critical works affect the scheduling result, and the num-
ber of critical works in CPs can be controlled within a lim-
ited range, so m is set to vary from 10 to 100. For each value 
of m , the IANSGA-II is run 30 times. The relationships 
between the time cost and m are shown in Fig. 11. Figure 11 
shows that the time cost of each algorithm grows with the 
increase in the dimensionality of the search space. However, 
the time cost grows approximately linearly, and the growth is 
small. The time cost at m = 100 is only twice that at m = 10 
in both problems, which shows that the IANSGA-II is not 
sensitive to the problem, and the IANSGA-II is also appli-
cable in solving multi-objective optimization problems with 
higher-dimensional search spaces.

6 � Conclusions and Future Work

Under a fixed investment, optimizing the schedule plan is 
a key way to guarantee that CPs will achieve the program 
objectives within the mandatory construction duration. In 
the management of CPs, objectives such as duration opti-
mization and resource leveling are incommensurable, and 
a number of uncertain factors affect the success of the pro-
gram. Enhancing the diversity of the optimization schedule 
plan set is conducive to adapting to different decision-mak-
ing environments. Based on multi-objective optimization 
theory, we studied the schedule plan optimization problem 
for CPs, and the conclusions are as follows:

(1)	 (1) Based on multi-objective optimization theory, a 
schedule plan optimization model for CPs with the 
objective of duration optimization and resource leve-
ling was established. Under the mandatory duration and 
resource constraints, minimizing the weighted sum of 
the difference between the maximum end time and the 

(15)ZDT1

⎧
⎪⎨⎪⎩

f
�
x1
�
= x1

g
�
x2,… , xm

�
= 1 + 9 ⋅

m∑
i=2

xi∕(m − 1)

h(f , g) = 1 −
√
f∕g

(16)ZDT3

⎧
⎪⎨⎪⎩

f
�
x1
�
= x1

g
�
x2,… , xm

�
= 1 + 9 ⋅

m∑
i=2

xi∕(m − 1)

h(f , g) = 1 −
√
f∕g − (f∕g)sin(10�f )

minimum start time of all work packages was taken as 
the objective function of duration optimization. Mini-
mizing the sum of resource consumption variance was 
taken as the resource leveling objective function.

(2)	 The NSGA-II was improved, and an optimization pro-
cess for a CP schedule plan was proposed. Adaptive 
operators were proposed based on the tan-sigmoid 
function. The new operators were inserted into the 
NSGA-II. Thus, a self-adaptive multi-objective evo-
lutionary optimization algorithm, IANSGA-II, was 
proposed. This algorithm can be used to optimize the 
schedule plan set of a CP.

(3)	 Three optimized schedule plans were selected from 
among the Pareto optimal solutions in the case study, 
indicating that the proposed model and algorithm are 
reasonable and adaptive. The proposed model and algo-
rithm provided more references for selecting a CP sched-
ule plan in different decision-making environments.

(4)	 Comparisons with the NSGA-II and ANSGA-II showed 
that the Pareto solutions obtained by the IANSGA-II 
dominate up to 75.6% of the solutions of the ANSGA-
II and 91.8% of the solutions of the NSGA-II. The � 
metric of the IANSGA-II was the smallest. Therefore, 
the convergence, uniformity, and spread of the Pareto 
solutions of the proposed IANSGA-II were improved. 
The good adaptability of the IANSGA-II for solving the 
optimization problem of CP schedule plans was proven.

The duration optimization and resource leveling methods 
are only applicable to the optimization management of CPs 
under a fixed investment. However, this study ignored the 
construction quality and cost, which are also important parts 
of the management of CPs. It is necessary to further consider 
the goal of "duration-resources-cost-quality" optimization to 
complement the multi-objective optimization theory of CPs.
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