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Abstract
Accurate forecasting of streamflow data over daily timescales is a critical problem for the long-term management of water 
resources, agricultural uses, and many more purposes. This study proposes a new hybrid approach that combines the Robust 
Local Mean Decomposition (RLMD) method and the Artificial Neural Network (ANN) method for the prediction of stream-
flow data. Monthly streamflow data were split into the training and the testing part firstly and threefold cross-validation was 
performed to obtain a more reliable model. After building of the model using the training data, the proposed model was 
tested on the testing data. Also to compare the performance of the RLMD–ANN model and the Support Vector Regression 
(SVR) model, Long Short-Term Memory Networks (LSTM) were used for forecasting of subband signal and streamflow 
data. Also, the hybrid Empirical Mode Decomposition (EMD) model and hybrid Autoregressive Integrated Moving Aver-
age (ARIMA) model were used for comparison of the proposed model. Therefore, the RLMD–ANN model was compared 
with RLMD–SVR, RLMD–LSTM, EMD–ANN, Additive–ARIMA–ANN, ANN, SVR, and LSTM models. The numerical 
results of the study were assessed concerning the Mean Square Error (MSE), Mean Absolute Error (MAE), Determination 
Coefficient (R2), Correlation Coefficient (R), and Kruskal–Wallis test was used to indicate whether the results are statically 
significant. One- to three-ahead forecast and one–two inputs were applied to the models. The mean one-ahead forecasting 
performance of the three folds was calculated for two inputs with MSE, MAE, R2, and R parameters as 0.0060, 0.0522, 
0.7342, and 0.8532 respectively. The obtained results show that the novel RLMD–ANN model is a reliable, efficient, and 
high-performant model for forecasting streamflow data.

Keywords  Forecasting · Streamflow data · Robust Local Mean Decomposition (RLMD) · Artificial Neural Networks 
(ANN) · Support Vector Regression (SVR) · Long Short-Term Memory Networks (LSTM) · Empirical Mode 
Decomposition (EMD)

1  Introduction

Accurate and precise estimation of river flows has a criti-
cal role in reservoir management, risk assessment, drought 
prediction, flood displacement, disaster management, and 
water planning. Therefore, many researchers have been 
studying this topic for the last past decades (Yaseen and 
El-Shafie 2015; Yaseen et al. 2016, 2017; Wang et al. 2017; 
Sahoo et al. 2019; Alobaidi et al. 2020; Kasiviswanathan 
et al. 2016; Tongal and Booij 2018; Humphrey et al. 2016; 
Ni et al. 2019; Freire et al. 2019; Nourani et al. 2017; Hadi 

and Tombul 2018; Zuo et al. 2020; Solomatine et al. 2008; 
Siddiqi et al. 2021; Niu and 2021). However, it is difficult to 
forecast river flow data because of having complex, nonlin-
ear, dynamical, and chaotic disturbances, and the random-
ness behavior. Forecasting models are defined in two catego-
ries as process based and data driven based (Box and Jenkins 
1970). Process-based techniques require information about 
the physical properties of the process. In these techniques, 
processes are analyzed in two stages. The first stage is the 
determination of mathematical models; the second stage is 
the obtaining of numerical solutions.

In the mathematical modeling phase, the process is 
defined by mathematical equations. Then, an accurate and 
efficient numerical solution of these equations is realized. It 
is important to understand the process theoretically in these 
models with assumptions involving approaches with more 
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data requirements. In case of a lack of information about the 
process to be modeled, it is not possible to realize process-
based models. Data-based techniques are defined as black-
box models. These models are empirical, based on obser-
vations, simple, and easier to implement. Also, it does not 
require physical information about the process. Data-driven 
techniques based on statistical data and linear approaches 
have been applied for time series modeling and forecasting 
including Box Jenkins, Autoregressive (AR), Moving Aver-
age (MA), and Autoregressive Moving Average (ARMA). 
Because river flow data are nonlinear and non-stationary 
in nature, these methods are not suitable for forecasting 
river flow data. For this reason, Machine Learning methods 
(ML), Random Forest, Fuzzy Rule-Based systems, Bayes-
ian Regression, Artificial Neural Networks, Genetic Algo-
rithms, Adaptive neural fuzzy inference systems (ANFISs), 
Complex Networks and Deep learning algorithms, and Long 
short-term memory network (LSTM) with their combination 
with good generalization capability and adaptability have 
been widely used in recent years (Yaseen and El-Shafie 
2015; Yaseen et al. 2016, 2017; Wang et al. 2017; Sahoo 
et al. 2019; Alobaidi et al. 2020; Kasiviswanathan et al. 
2016; Tongal and Booij 2018; Humphrey et al. 2016; Ni 
et al. 2019; Freire et al. 2019; Nourani et al. 2017; Hadi and 
Tombul 2018; Zuo et al. 2020; Solomatine et al. 2008; Sid-
diqi et al. 2021; Niu and Feng 2021; Ghorbani et al. 2020, 
2021).

Forecasting of subband signals obtained from decomposi-
tion of the original signal according to multiscale features 
can be simpler than the original signal, because, hydrologi-
cal time series including streamflow data have highly nonsta-
tionary character and have periodic oscillations terms with 
noise components. Also preprocessing of streamflow data 
can reveal the hidden pattern in the data giving important 
information. Therefore, the application of suitable data pre-
processing methods to the original signal combining ML 
models can improve the forecasting performance of data-
driven models using advantages of feature extraction detect-
ing hidden structure in raw (not processed) time-series data.

In the literature, there are studies based on hybrid models 
to forecast streamflow data by using Fourier Transform (FT) 
(Yu et al. 2018), Wavelet Transform (WT) (Kasiviswanathan 
et al. 2016; Freire et al. 2019; Nourani et al. 2017; Hadi 
and Tombul 2018), Empirical Mode Decomposition (EMD) 
(Kisi et al. 2014), Ensemble Empirical Mode Decomposition 
(EEMD) (Ali et al. 2020) and Singular Spectrum Analysis 
(SSA) (Marques et al. 2006; Yu et al. 2017), Variational 
Mode Decomposition (VMD) (Zuo et al. 2020; Purohit et al. 
2021) methods at the pre-processing stage of the data. These 
hybrid or ensemble methods seem to largely increase the 
forecasting performance.

Also, hybrid models were proposed using ARIMA 
and exponential smoothing models (ETS) with machine 

learning methods for forecasting studies, and statistically 
promising results were obtained for the used data sets 
(Panigrahi and Behera 2017; Purohit et al. 2021).

Some studies in the literature show that the decom-
position of the raw data directly into subbands without 
dividing it firstly into training and testing data has led to 
a problem. This problem is the use of future information 
in establishing hybrid models (Zhang et al. 2015). In this 
case, since the training data contain information from the 
future in the data set, it becomes a hindcasting problem 
rather than a real forecasting problem. Therefore, the cor-
rect preprocessing is important to obtain reliable results 
for the determination of the hybrid model. In this study, 
the data set has been first divided into training and testing 
data and then decomposed into subbands and threefold 
cross-validation is used.

EMD method is based on local time scale during decom-
position stage using the envelopes of extremely determined 
by a spline. This leads to a problem called the end effect. 
Similar to EMD, the DWT method suffers from boundary 
effect due to the necessity of computing the convolution, 
requiring the non-existent values beyond the boundary. Also, 
the DWT method needs to define the mother wavelet and the 
number of decomposition levels. Recently, although a robust 
VMD method is applied for the decomposition of time series 
data to eliminate the boundary effect as an advantage, the 
disadvantage of VMD is that its number of decomposition 
levels is specified empirically (Kasiviswanathan et al. 2016; 
Freire et al. 2019; Nourani et al.  2017; Hadi and Tombul 
2018; Zuo et al. 2020; Niu and Feng 2021; Box and Jenkins 
1970; Ghorbani et al. 2020, 2021; Yu et al. 2018; Kisi et al. 
2014; Ali et al. 2020; Marques et al. 2006; Yu et al. 2017; 
Panigrahi and Behera 2017; Zhang et al. 2015; Dragomiret-
skiy and Zosso 2014; Smith 2005).

According to literature studies (Yaseen and El-Shafie 
2015; Yaseen et al. 2016, 2017; Wang et al. 2017; Sahoo 
et al. 2019; Alobaidi et al. 2020; Kasiviswanathan et al. 
2016; Tongal and Booij 2018; Humphrey et al. 2016; Ni 
et al. 2019; Freire et al. 2019; Nourani et al. 2017; Hadi 
and Tombul 2018; Zuo et al. 2020; Solomatine et al. 2008; 
Siddiqi et al. 2021; Niu and Feng 2021; Box and Jenkins 
1970; Ghorbani et al. 2020, 2021; Yu et al. 2018; Kisi et al. 
2014; Ali et al. 2020; Marques et al. 2006; Yu et al. 2017; 
Panigrahi and Behera 2017; Purohit et al. 2021; Zhang et al. 
2015; Dragomiretskiy and Zosso 2014); to eliminate the 
boundary effect, robust decomposition models are proposed. 
The robust Local Mean Decomposition (RLMD) method is 
used for extraction of mixed component signals to mono-
component signals called product functions and their asso-
ciated demodulation signals from a time series signal (Liu 
et al. 2017; Smith 2005). This approach provides the most 
attractive feature according to other adaptive signal process-
ing methods, such as the EMD, VMD, and DWT.
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In this study, a novel hybrid model with a skilled, reliable, 
and efficient decomposition approach based on the RLMD 
method is developed to evaluate the capability of streamflow 
forecasting performance as well as to broaden the model's 
use in hydrologic time series forecasts.

The main contributions of the proposed approach are as 
follows:

1.	 The forecasting performance of the RLMD preprocess-
ing technique was investigated. Firstly, the streamflow 
data have been divided into training and testing data. 
Then, the training and the testing data have been decom-
posed into subbands using the RLMD method.

2.	 To train the subband data, the ANN, SVR, LSTM mod-
els have been used for the realization of the forecasting 
model.

3.	 The EMD preprocessing method widely used literature 
has been performed for the comparison of streamflow 
forecasting performance with the RLMD method.

4.	 Also the ANN, SVR, LSTM, and hybrid Additive-
ARIMA-ANN models have been applied for forecast-

ing streamflow data and compared the performance of 
all models.

5.	 In the literature forecasting studies, time-series data are 
divided into training and testing parts. The training part 
is obtained from the first part of the data (in many stud-
ies it is taken as 70% of the data), and the testing part of 
the data is obtained from the remainder of the data. But 
when the training part of the data has a complex pattern, 
the testing performance occurs higher or when the train-
ing part of the data is a non-complex pattern, the testing 
performance occurs lower. This situation doesn’t show 
the true performance of the model. To overcome this 
problem, threefold cross-validation has been performed.

6.	 Also, the Kruskal–Wallis test was used to determine 
whether the forecasted time series data met the statisti-
cal significance criteria for each model.

Application of proposed novel model for 1–3 months 
ahead forecasting streamflow data using RLMD method 
is seen in Fig. 1.

Fig. 1   The proposed RLMD-based hybrid forecasting model for stream flow data
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The rest of the paper is organized as follows. Section 2 
gives information about the study area and the data. Sec-
tion 3 provides a brief review of the RLMD and EMD 
decomposition methods and ANN, SVR, and LSTM 
approaches for streamflow estimation. Section 4 describes 
the estimation results obtained by the RLMD–SVR, 
RLMD–ANN, RLMD–LSTM, EMD–ANN, ANN, SVR, 
LSTM, Additive–ARIMA–ANN hybrid models using the 
proposed approach. Finally, Sect. 5 concludes the paper.

2 � Study Area and Data

The mean monthly streamflow in (m3/s) data have been con-
tinuously gauged over the 47 years, between 1965 through 
2011, hence consisting of 564 successive numbers are used 
as the material of this study. The region where data have 
been gauged has been from the Simav River at Kocadere Sta-
tion lies between 28° 24′ 21'' East and 40° 15′ 51'' North, in 
the Susurluk basin in the South Marmara Region in Turkey.

The drainage basin from which the data have been 
recorded is shown in Fig. 2. This data set has been obtained 

from Electrical Power Resources Survey Administration 
(EIEI), in Turkey (as seen in Fig. 3) (Smith 2005). The 
drainage area at this site is 21611.2 km2.

The basin is a hydrologically rich complex due to the 
number of tributaries joining the river and the presence of 
lakes. As a result, streamflow data from this study area were 
employed in this study.

Fig. 2   Basin of Kocadere in Turkey (https://​www.​dsi.​gov.​tr/​faali​yetler/​akim-​gozlem-​yilli​klari, (accession date February, 2020))

Fig. 3   Streamflow data measured on Simav River

https://www.dsi.gov.tr/faaliyetler/akim-gozlem-yilliklari
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The streamflow data have been normalized at first. Nested 
threefold cross-validation has been performed to get the 
advantages of this approach for the evaluation of model per-
formance (Hyndman and Athanasopoulos 2018; Bergmeir 
and Benítez 2012).

In this method, it begins with a small subset of data for 
training goals and then forecasts further data points. Then 
the accuracy for the forecasted data points is checked. After 
this, the same predicted data sets are included in the next 
training data and subsequent data points are forecasted. 
In this study, the data have been split into parts as seen in 
Fig. 4. Then three different models have been built. The first 
model has been trained on 282 of the data elements and 
tested on 94 of the following data elements. The second 
model has been trained on the 376 of the data elements and 
tested on 94 of the following data elements. The third model 
has been trained on the 470 of the data elements and tested 
on 94 of the following data elements. Model performances 
have computed the average of the performance parameters 
threefold.

In many literature studies, the number of subbands for 
forecasting has been defined according to the stopping 

criteria. But this criterion executes the decomposition (for 
example for the EMD technique) till the residue signal is so 
monotonic that has a near to zero frequency. This computa-
tion takes time and processing load.

In this study, the streamflow data have been decomposed 
into three subbands using EMD and RLMD methods. 
Although these data have been decomposed into more sub-
bands according to the stopping criteria used in EMD and 
RLMD methods, it has been observed that it is sufficient to 
decompose these data into three subbands because when 
the normalized frequency spectrum obtained from the Fou-
rier transform of the streamflow data is examined, as can be 
seen in the Fig. 5, there are main harmonic peaks in three 
fundamental frequencies, low, medium, and high frequency 
in the spectrum.

In addition, the forecasting performance of the models 
that are decomposed into more subbands during the building 
model has been also examined. However, according to the 
obtained results, it has been seen that there has been no more 
improvement than the forecasting performance of the data 
decomposed into three subbands. Thus, computer processing 
load and complexity are reduced.

Fig. 4   Training and testing data for the proposed forecasting model for threefold
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2.1 � Empirical Mode Decomposition Method

The Empirical Mode Decomposition (EMD) method is an 
adaptive signal decomposition technique and decomposes 
a signal into different simple components called Intrinsic 
Mode Functions (IMF). This method doesn’t require any 
condition about stationarity and linearity of the processed 
data. The signal is defined as the sum of the IMF compo-
nents and the residual signal, as depicted by Eq. 1 (Huang 
et al. 1999).

where k is the number of IMFs and r(t) is the residue term.
The IMF of a signal must satisfy the following 

conditions.

•	 The numbers of the maximum or minimum points and 
zero-crossing points in the whole data set have to be 
equal to each other or must differ by one element only.

•	 The envelopes defined by local maxima at any point and 
envelopes defined by local minima should have an aver-
age of zero.

In this method, the signals in the time axis are treated as 
a combination of repetitive and original oscillations with a 
local mean of zero and scattered symmetrically around it.

The first step is to extract the maxima and minima or 
zero crossing points of x(t).

In the second step, by handling both the maxima and the 
minima by interpolations, the upper and lower envelopes of 
the signals are obtained.

(1)x(t) =

k∑

i=1

IMFi + r(t)

In the third step, the average of the upper and lower 
envelopes (xmax(t), xmin(t)) is computed for the entire time 
period by Eq. 2.

In the fourth step, the average signal is subtracted from 
the actual signal as given by Eq. 3 below to obtain the detail 
signal, d(t).

In the fifth step, Check whether d(t) is an IMF or not. 
The detail signal is treated as if it has been a new original 
signal, and the process steps are repeated until the termina-
tion criterion is reached.

In this study, for an objective achievement as high esti-
mation accuracy as possible, on both the training and test-
ing parts of the streamflow data, a two-level decomposition 
process has been performed and three subsets including 
two subsets of IMF and R have been obtained (it is seen in 
Fig. 6).

2.2 � Robust Local Mode Decomposition

Smith pioneered local mean decomposition (LMD), which is 
an adaptive time–frequency signal decomposition approach 
for estimating the instantaneous frequency and amplitude of 
signals (Smith 2005). LMD is also an effective and promis-
ing method for processing multicomponent AM–FM signals. 
LMD converts amplitude modulated (AM) and frequency 
modulated (FM) signals into a series of product functions 
(PFs). A product of an envelope signal and an FM signal 
yields each of the PFs. LMD possesses a number of potential 
characteristics; in particular, this method doesn’t require any 
condition about stationarity and linearity of the processed 
data like EMD, but according to these techniques LMD has 
an advantage that avoids the limitation of uncertain negative 
instance frequency occurring in Hilbert Transform (Liu et al. 
2017; Smith 2005) because LMD calculates the instantane-
ous amplitude and frequency data without using HT.

The procedure of this algorithm is briefly summarized 
as below:

The first step is to extract the maxima and minima of 
x(t) signal. The extreme points are denoted ase(ki) , where 
ki=k1, k2, ... is the time index of extrama and the corre-
sponding extreme values are denoted as x(e(k)) (xmin, 
xmax) where k = 1, 2, 3,....
In the second step, by handling both the maxima and the 
minima local mean and local magnitudes are obtained.

(2)m(t) =
[
xmax(t) + xmin(t)

]
∕2

(3)d(t) = x(t) − m(t)

(4)m(t) =
1

2

[
e
(
ki
)
+ e

(
ki+1

)]

Fig. 5   Normalized Frequency spectrum obtained from Fourier Trans-
form of streamflow data



3459Iranian Journal of Science and Technology, Transactions of Civil Engineering (2022) 46:3453–3472	

1 3

Fig. 6   a. Training subband 
signal decomposed by the EMD 
method. b. Testing subband 
signal decomposed by the EMD 
method

(a)

(b)
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where m(t) is the local mean of successive maxima and 
minima, t ∈ (ki, ki+1)

 where a(t) is the local magnitude of successive maxima 
and minima, t ∈ (ki, ki+1)

In the third step, the local mean and local magnitude 
values between successive extrema are interpolated with 
straight line.
In the fourth step, smoothing the interpolated local 
mean and local magnitude using moving averaging (MA) 
approach controlled by the fixed subset size ( �∗ ) between 
successive extrama is produced to give the continuous 
local mean function m̂(t) and amplitude function â(t).
In the fifth step, prototype PF is obtained as given by 
Eq. 6

an FM signal is obtained as given by Eq. 7

In the sixth step, if calculated m̂(t) is close to 1, then 
s(t) is defined as purely normalized FM. Ifm̂(t) ≠ 1 , h(t) ) 
may be considered the original signal and the above pro-
cedures should be continued until the goal signal s(t) is 
generated (N is the final number of iterations), where the 
corresponding envelope function m̂(t) is equal to one.
In the seventh step, instantaneous amplitude of PF is 
calculated as given by Eq. 8

PF is constructed given by Eq. 9

In the eighth step, residual signal is constructed in the 
equation as given by Eq. 10

If residual signal r(t) is monotonic (one-trend, has no fre-
quency), then LMD terminates. Otherwise, steps 1–8 repeat 
on r(t).

LMD has the benefit of not allowing for negative fre-
quency in the decomposed subseries. The edge effect on the 
entire segment of data is much decreased in LMD due to 
the lack of a spline fitting procedure, but this technique may 
still suffer from end effect and mode mixing disruptions. To 
eliminate the disadvantages of LMD, the RLMD method is 
proposed (Smith 2005; Liu et al. 2017; Ren et al. 2012). The 

(5)a(t) =
1

2

[
e
(
ki
)
− e

(
ki+1

)]

(6)h(t) = x(t) − m̂(t)

(7)s(t) =
h(t)

m̂(t)

(8)a(t) =
∏

â(t)

(9)c(t) = a(t)s(t)

(10)r(t) = x(t) − c(t)

approach in the RLMD method to eliminate the disadvan-
tages of the LMD method is as follows.

Boundary condition: The proposed robust LMD uses 
the mirror extension method (Smith 2005) to find symmetry 
locations for the left and right ends of the signal (Hagan 
et al. 1996; Liu et al. 2017; Ren et al. 2012).

Envelope estimation: An ideal subset size ( �∗ ) is deter-
mined based on statistical theory and specified in ref detailed   
(Smith 2005; Liu et al. 2017; Ren et al. 2012).

Sifting stopping criterion: The RLMD approach, which 
is discussed in  (Smith 2005; Liu et al. 2017; Ren et al. 2012) 
defines the objective function to characterize the zero-base-
line envelope signal.

In this study, on both the training and testing parts of 
the streamflow data, the decomposition process using the 
RLMD method has been performed and three subsets includ-
ing PFs have been obtained (it is seen in Fig. 7).

2.3 � The Method of Artificial Neural Networks

Artificial neural networks are information processing sys-
tems that are inspired by biological neural networks and 
share some of their performance characteristics similar 
to biological neural networks. Recent ANN research has 
revealed that it is capable of strong pattern categorization 
and is widely used in the estimation of data on account of 
its advantages like the ability to handle nonlinear structures 
and parallel and serial processing capability. One of the 
major application areas of ANNs is the forecasting task. 
Because as opposed to the traditional model-based methods, 
thanks to these features, ANNs are data-driven self-adaptive 
approaches and nonlinear models and therefore can produce 
more realistic solutions to real-life problems.

In an ANN structure, the sum and activation functions 
and the learning strategy of the processor elements, the 
learning rule used, and the topology as a result of the con-
nection of process elements determine the model of the net-
work. Artificial neural cells (neurons) come together and 
form their ANN. Neurons are not gathered randomly. Cells, 
in general, constitute a three-layer network in which they 
are arranged in parallel in each layer. These are the input, 
inner (hidden), and output layers (Hagan et al. 1996; Haykin 
1994).

The multilayer perceptron (MLP) model commonly used 
form of ANN consists of an input layer, one or more hid-
den layers, and an output layer. The input layer's processor 
components act as a buffer, distributing input signals to the 
hidden layer's processing elements.

Each one of these elements takes the input data by mul-
tiplying them by the weight coefficients which show the 
efficiency of the input over the hidden neuron into the sum 
function. Next, these sum functions are passed through a 
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Fig. 7   a Training subband 
signal decomposed by the 
RLMD method. b Testing sub-
band signal decomposed by the 
RLMD method

(a)

(b)
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transfer function and the output value of that neuron is cal-
culated as defined below equation:

where j is the number of neuron, i is the number of inputs, ai 
is the input signal, wij is the weight coefficient, and θ is the 
bias term (or threshold).

These operations are repeated for all of the processors 
in this layer. The processor elements in the output layer 
also act as interlayer elements, and the network output 
values are calculated.

The output of neurons in the output layer is calculated 
in a similar way. The sum of squared differences between 
the desired and actual values of the output neurons E may 
be calculated using the equation below.

where ydj is the target (actual) output value.
The number of input parameters and hidden neurons in 

an ANN model have a significant impact on the model's 
predicting ability. However, only a little number of study 
has been done on the best architecture for the ANN model. 
As a result, in this study, from one to twelve numbers of 
neurons in the hidden layer using ‘for’ loop in Matlab pro-
gram have been set in the architecture of the ANN, and the 
optimum architecture of the model has been determined 
based on the giving minimum mean square error between 
forecasted and streamflow data for training performance. 
Also, determination of the number of the hidden layer is 
very important not to have too many hidden layers to avoid 
overfitting. Therefore, to avoid overfitting, the number of 
hidden layers is defined as one in this study.

The information flow in the forward direction in the 
MLP model. Because of this feature of the MLP model, 
it is also known as feed-forward ANN. One of the advan-
tages of this model is to use different learning algorithms 
to train the network. According to the training algorithm 
used, the weights of the network are changed until the 
error between the output of the network and the desired 
output is minimized. Backpropagation Neural Network is 
the term given to the MLP model when it is supervised by 
a learning algorithm (BPNN). The most often used ANN 
model in time series estimation is the BPNN, which is a 
feed-forward network. In our study, the BPNN feed-for-
ward network structure has been used.

Because the purpose of the network is to provide an 
output for each input, MLP–ANN is based on a super-
vised learning technique. The MLP–ANN learning takes 
place in two stages. At first, in the forward calculation 
stage, the output of the network is computed. In the second 

(11)yj = f

(
∑

i

wijai + �

)

(12)E(w) =
∑(

ydj − yi
)2

stage, the backward calculation stage, the weights are cal-
culated according to the difference between the expected 
output and the output of the network. The learning rule of 
MLP–ANN is called the backpropagated MLP learning 
rule because it is carried out in this way by backpropagat-
ing. Different learning methods are utilized to train the 
network in the ANN. For the forecasting of streamflow 
data, the Levenberg–Marquardt (LM) learning method is 
utilized, which has a computational speed performance 
advantage in the ANN. The LM algorithm is similar to the 
Quasi-Newton method based on the least-squares calcula-
tion and the maximum neighborhood approach. LM has 
second-degree training speed without the use of a Hessian 
matrix (Marquardt 1963). The weights are updated accord-
ing to the following formula:

where J is the Jacobian matrix, I is an identity matrix, � is a 
constant, and E(w) is the error function calculated with the 
equation (Marquardt 1963).

2.4 � The Method of Support Vector Regression

Support vector machine (SVM) analysis is a common 
machine learning method and used for classification and 
regression problems. The statistical learning theory for 
support vector regression was first established by Vladimir 
Vapnik et al. (1995). Support Vector Regression is the use 
of SVMs in regression (SVR). Because it uses kernel func-
tions, SVR is a nonparametric approach that may balance the 
trade-off between lowering empirical error and the complex-
ity of the resulting fitted function, reducing the possibility of 
overfitting. SVR has recently been widely used in forecast-
ing studies leading to good predictive results in time series 
analysis.

In the SVR method, it is tried to minimize the error rate 
by keeping the error in a regression within a certain thresh-
old value with hyperplanes. Let's assume that the data set 
meets the following conditions.

In this equation, xi represents the input vector of D dimen-
sional space, yi denotes the output vectors that correspond 
to these input vectors, whereas w denotes the hyperplane's 
normal, as well as the weight vector and b the deflection.

In linear support vector regression, it is assumed that 
there is a linear relationship between xi and yi . The goal is 
to create a function f(x) that can calculate the predicted value 

(13)
wij(t + 1) = wij(t) + wij(t)

wij =
[
JT (w)J(w) + �I

]−1
JT (w)E(w)

(14)
(
x1, y1

)
,
(
x2, y2

)
, ...,

(
xi, yi

)
, x ∈ RD, y ∈ R

f (x) = w.xi + b
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yi within a predetermined distance ∈ (error tolerance) using 
the actual value xi , which is each training input data. Errors 
are ignored in the regression procedure as long as they are 
less than ∈ , but any deviation more than is not accepted.

A convex optimization problem is defined by Eq. 14.
The optimum regression function can be found by mini-

mizing the expression 1
2
‖w‖2 , considering the assumption 

in Eq. 15

It's impossible to find a function f(x) that meets this con-
straint for all data. The elasticity variables ξ+ and ξ− are 
utilized for each point ( ξ+ ≥ 0 , ξ− ≥ 0 ) to eliminate this 
problem.

where C is a constant value which has an effect of penalty 
loss when an error occurs during the training and the value 
of it is bigger than zero. Using the Lagrange multiplier to 
minimize the error function subject to constraints, the fol-
lowing equation is obtained.

In this equation for ∀i, �−
i
≥ 0, �+

i
≥ 0,�−

i
≥ 0,�+

i
≥ 0

For the optimal solution, the partial derivative of Lp with 
respect to the variable w, b, ξ+ and ξ− is performed.

According to obtained results from Eq. 18, Lp is maxi-
mized with respect to �+

i
 and �−

i
.and the prediction function 

is obtained as below equation:

For indices i matching the criterion 0 ≤ � ≤ C and ξ+ = 0 
or ξ− = 0 , S support vectors exist.

The same stages are repeated with the classifier that can-
not be separated linearly in nonlinear regression, and the 
solution is achieved similarly to linear regression Vapnik 

(15)
|||yi −

(
w.xi + b

)||| ≤∈

(16)

yi −
�
w.xi + b

�
≤∈ +ξ+�

w.xi + b
�
− yi ≤∈ +ξ−

f (x) = C
L∑
i=1

�
ξ+ + ξ−

�
+minimize

1

2
w2

(17)Lp = C

L∑

i=1

(
ξ+ + ξ−

)
+

1

2
w2 −

L∑

i=1

(
�+
i
ξ+ + �−

i
ξ−
)

−

L∑

i=1

�+
i

(
∈ +ξ+ + yi − f

(
xi
))

−

L∑

i=1

�−
i

(
∈ +ξ− − yi − f

(
xi
))

(18)
�Lp

�w
= 0,

�Lp

�b
= 0,

�Lp

�ξ+
= 0,

�Lp

�ξ−
= 0

(19)
f (x) =

L∑
i=1

�
�+
i
− �−

i

�
xix + b

b = f
�
xs
�
− ∈ −

L∑
m∈S

�
�+
m
− �−

m

�
xmxs

1995; Fan et al. 2005, 2006; Huang et al. 2006). Moving 
data to the property space or utilizing the kernel function 
give the answer. In Eq. 14, the nonlinear kernel function 
K(xi, xj) = �(xi)�(xj) is replaced by the dot product x i.x j to 
achieve nonlinear regression.

Thus, the forecasting function can be written as follows:

In the proposed study, training data are used for the build-
ing of support vector regression model. During the building 
of the model, Radial basis kernel function is used. Different 
kernel functions have been tried for the forecasting model. 
The best performance has been obtained by the SVR model 
with a radial basis kernel function.

2.5 � The Method of Long Short‑Term Memory 
Networks

Long short-term memory networks (LSTMNs) are a type 
of Recurrent Neural Network (RNN) that can learn long-
term dependencies. This model, first proposed by Hochreiter 
& Schmidhuber (1997), is widely used today. The LSTM 
model was created to solve long-term dependence concerns 
by capturing nonlinear data patterns and recalling knowl-
edge from the past (Hochreiter and Schmidhuber 1997).

Therefore, LSTM has been successfully applied to a 
large number of time series problems. As shown in Fig. 8, 
there are three types of gates in the LSTM structure, includ-
ing input, forget and output. The 'x' and ' + ' symbols in the 
model represent addition and multiplication operations. The 
arrow points in the direction of the information flow. The 
memory structure's initial layer determines to delete unnec-
essary data from the cell state.

The number of forgetting gates determines how much 
information is lost and how much is carried on to the next 
level. The sigmoid function is used for this operation, 
which returns a number between 0 and 1. 0 indicating that 
no information will be transmitted, whereas 1 indicates that 
all information must be transmitted. The following step is 
to decide what data should be saved. The sigmoid function 
at the entrance gate is used to accomplish this. The “tanh” 
function then creates a Cy valued vector of candidate val-
ues. After then, the two procedures are integrated. Following 
this, the memory cell's new state information is computed. 
Finally, the system's output is computed. These operations 
can be mathematically stated as:

(20)f (x) =

L∑

i=1

(
�+
i
− �−

i

)
K
(
xi, x

)
+ b

(21)ft = �
(
Wf

[
ht−1, xt

]
+ bf

)
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As demonstrated in Eq. 21, ft is the forget gate's output.

Ct shows the update status in LSTM networks. Long-term 
memory is updated in this step by adding new information 
to sections of long-term memory. The update status is cal-
culated by adding the values of the forget gate layer and the 
input gate layer.

As shown in Eq. 25, the last layer of LSTM networks 
passes through a sigmoid layer that determines how much 
the cell state affects the output. The cell state is transferred 
via the tanh activation function and multiplied by the exit 
gate output, as shown in Eq. 26 (Hochreiter and Schmidhu-
ber 1997).

In this study, early stopping criteria were used to prevent 
overfitting for the modeling of the ANN, SVR and LSTM 
approaches.

2.6 � Parameters Used for Performance Criteria

The statistical criteria commonly used for compar-
ing the forecasting accuracies of the hydrologic data by 

(22)it = �
(
Wi.

[
ht−1, xt

]
+ bi

)

(23)Cy = tanh
(
Wc.

[
ht−1, xt

]
+ bc

)

(24)Ct = ft∗Ct−1 + it∗Cy

(25)Ot = �
(
Wo.

[
ht−1, xt

]
+ bo

)

(26)ht = Ot*tanh
(
Ct

)

various models are the mean absolute error (MAE), the 
mean square error (MSE), the determination coefficient 
(R2,Nash–Sutcliffe (NSEC)), and the correlation coeffi-
cient (R). In the forecasting of monthly streamflow study, 
these parameters have been used to evaluate the perfor-
mances of the ensemble models. In this study in each-fold 
MSE, MAE, R2, and R parameters have been calculated 
during the training and testing stage. Overall training and 
testing performances have been calculated from the mean 
of MSE, MAE, R2, and R parameters obtained during the 
training and testing phase of each fold.

The Mean Square Error (MSE): MSE is the arithme-
tic average of the squares of the differences of the observed 
time-series data from the forecasted by the model used and 
is defined by Eq. 27 below.

The Mean Absolute Error (MAE): MAE is the arith-
metic average of the absolute differences of the observed 
time series data from the forecasted by the model used and 
is defined by Eq. 28 below.

Determination Coefficient (R2, Nash–Sutcliffe Effi-
ciency Coefficient (NSEC)): R2 is a measure that quan-
titatively reflects the accuracy of the forecasted data 
obtained by the model because it equals 1 minus the sum 
of squares of differences of the observed time-series data 
from the forecasted by the model used divided by the sum 

(27)MSE =
1

N

N∑

i=1

(
Xobserved,i − Xestimated,i

)2

(28)MAE =
1

N

N∑

i=1

||| Xobserved,i − Xestimated,i
|||

Fig. 8   LSTM Unit
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of squares of differences of the observed data from their 
mean. R2 is defined by Eq. 23 below. The second term in 
Eq. 23 approaches zero for a powerful model, and it tends 
to 1 for an insignificant model. Therefore, R2 approaches 
1 for a good model, while it tends toward zero for a weak 
one.

Correlation Coefficient (R): It is an indication of the 
degree and trend of whether there is a linear relationship 
between the observed and estimated time series data. R takes 
values between − 1 and + 1. If R is close to zero, there is no 
relationship between the two data sets, if it is close to + 1 
there is a strong positive relationship, and if it is close to − 1, 
there is a negative relationship between the two data sets. R 
is defined by Eq. 30.

Here, �X and �X denote the mean and standard deviation 
of the X data set, while �Y and �Y indicate the mean and 
standard deviation of the Y data set.

3 � Forecasting Results

3.1 � Forecasting Results by the RLMD–ANN, RLMD–
SVR and RLMD–LSTM model

In the first stage of the study, to evaluate the forecast-
ing performance of streamflow data RLMD–ANN and 
RLMD–SVR models have been performed with five steps 
including data decomposition by the RLMD and forecasting 
by the ANN and SVR.

Step 1. The original normalized (amplitude of data is 
adjusted as a 0–1 range) streamflow data were split into two 
groups: training and testing data.

Cross-validation on a rolling basis has been used to test 
the data set and evaluate the model performance. The data 
have been split into 6 parts. In the first fold, 282 elements 
of the data set (1–3th parts) have been used for the training 
phase and 94 following values (4th parts) have been used 
for the testing phase. In the second fold, 376 elements of the 
data set (1–4th part) have been used for the training phase 
and 94 of the following values (5th parts) have been used 
for the testing phase. In the third fold, 470 elements of the 
data set (1–5th part) have been used for the training phase 
and 94 of the following values (6th parts) have been used 
for testing phase.

(29)R2 = 1 −

∑N

i=1

�
Xobserved,i − Xestimated,i

�2

∑N

i=1

�
Xobserved,i −mean ofXobserved,i

�2

(30)R =
1

N − 1

N∑

i=1

(
Xi − �X

�X

)(
Yi − �Y

�Y

)

Step 2. The training and the testing data have been decom-
posed into three subband components defined as product 
functions using the RLMD and are named PF1–PF3. The 
effects of various RLMD decomposition levels on model 
efficiency have also been investigated to optimize to get the 
best result. The best results have been obtained for three 
subband decomposition levels as described in the method 
section.

Step 3. The ANN, SVR and LSTM models have been 
applied to the decomposed streamflow data for forecasting 
1–3 months ahead of the PFs using one to three inputs dur-
ing the training phase for the building of forecasting model.

During the design of ANN, the MLP network performed 
with supervised LM (Levenberg–Marquardt) learning algo-
rithm has been designed with a single hidden layer. In the 
hidden layer, different neurons combination (from one–two 
twelve) has been tried to get the best forecasting result 
described in the method section with detailed. The goal of 
mean square error has been set to 0.0001 for stopping crite-
ria during training of ANN.

During the design of SVR, the model selection of SVR 
has been concerned with two key issues as the selection 
of appropriate kernel function and the determination of the 
optimal parameters of SVR. At first, different kernel func-
tions have been tried to evaluate the forecasting performance 
of the RLMD–SVR model and the best results have been 
obtained by the radial basis kernel function. Therefore, the 
radial basis kernel function has been used for this study. For 
the latter, the most popular strategy for solving SVM issues, 
the Sequential Minimal Optimization (SMO) algorithm was 
employed to find the best parameters (Fan et al. 2005; Platt 
1999).

During the design of LSTM, in this study, the different 
numbers of memory units (between 32 and 256) and Deep 
Neural Network layers were tried while creating LSTM 
architecture. Accordingly, the first layer consists of the 
sequence input layer and the second layer consists of the 
LSTM layer. There are 128 memory elements in the LSTM 
layer. The third layer is the fully connected layer. 10–50 
units were tested in this layer and 10 units were used in this 
study. The fourth layer is the Dropout layer. In this study, 
the dropout value was determined as 50%. The fifth layer is 
the one unit fully connected layer, and this output is applied 
as an input to the regression layer.

During the training of the network, the maximum epoch 
value was determined as 200, the initial learning rate was 
determined as 0.002, the learning rate drop range was deter-
mined as 100, and the drop factor was determined as 0.1 by 
trial and error, and Adam learning algorithm was used.

MSE, MAE, R2, and R statistical performance param-
eters have been calculated during the forecasting of each 
PFs and forecasted streamflow data that are the sum of PFs. 
One to three numbers of inputs obtained from subbands of 
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streamflow data have been performed to show forecasting 
performance. Four and more inputs have been tried for fore-
casting streamflow data. However, no further improvement 
in forecasting performance has been seen after three inputs.

For one input; xt, for two inputs; xt−1, xt and for three 
inputs; xt−2, xt−1, xt have been used to one-ahead forecast the 
value of xt+1 of time series of data. Therefore, the forecast-
ing was performed recursively. The forecasting process is 
summarized in Table 1.

Step 4. Constructed forecasting model during training 
phase applied to testing subband PFs data.

Step 5. The forecasted streamflow data have been obtained 
by the summation of all the predicted PFs (PF1– PF3).

The obtained results are summarized in Tables 2, 3 and 
4 for one- to three-input RLMD–ANN, RLMD–SVR, and 
RLMD–LSTM models for one- to three-ahead forecasting.

As seen in Tables 2 and 3, the best forecasted results 
have been achieved using three inputs to the RLMD–ANN 
model according to the performance measures. Also fore-
casting performance of RLMD–ANN model is better than 
RLMD–SVR and RLMD–LSTM models. As the number of 
forward forecasting steps (two- and three-ahead forecast-
ing) increases, the performance of the RLMD–LSTM and 
RLMD–SVR model decreases significantly compared to the 
RLMD–ANN model.

The scatter plots of one month ahead forecasted stream-
flow data obtained from RLMD–ANN model using the one-
three inputs are shown in Fig. 9.

It is clear from Fig.  10 and Tables  2 and 3 that the 
forecasted data closely follow the observed monthly time 
series obtained from the RLMD–ANN method. Also, the 
RLMD–ANN model has been outperformed the other 
RLMD–SVR and RLMD–LSTM model.

3.2 � Forecasting Results for Computational 
Intelligence Methods and Hybrid Models

In this study to evaluate the performance of the proposed 
approach, ANN, SVM, and LSTM computational intelli-
gence models, an EMD-based hybrid model and one of the 
statistically based hybrid time series forecasting methods 
Additive-ARIMA were considered.

During the design of ANN, SVM, and LSTM models, the 
same procedure as in the RLMD–ANN, RLMD–SVM, and 
RLMD–LSTM have been performed.

Also, the same structure and design procedures have been 
carried out in the EMD–ANN model as in the RLMD–ANN 
model.

In addition, the Additive-ARIMA–ANN model from 
the hybrid approaches was obtained as stated in Refer-
ences (Panigrahi and Behera 2017; Zhang et  al. 2015), 
and the performance of the method was compared with the 
RLMD–ANN model. The average of one-input and one-
ahead forecasting performance of three folds is shown in 
Table 4.

The Kruskal–Wallis test was applied to test whether the 
forecasted data using the proposed model has similar sta-
tistical properties to the observed data. Table 5 presents 
the test results (p values) for the Kruskal–Wallis test. The 
null hypothesis in which there is no statistically significant 
difference between observed and forecasted data should be 
accepted if p values are above 0.05.

As can be seen from the table, all p values calculated from 
ANN, SVR, LSTM, EMD–ANN, Additive–ARIMA–ANN, 
RLMD–ANN, RLMD–SVR, and RLMD–LSTM models are 
above 0.05. It has been observed that there is no statistically 
significant difference between observed and forecasted data 
for all models.

4 � Discussion and Conclusion

When the literature studies are examined, many studies 
forecast streamflow data using machine learning algo-
rithms and hybrid approaches (Yaseen and El-Shafie 2015; 
Yaseen et al. 2016, 2017; Wang et al. 2017; Sahoo et al. 
2019; Alobaidi et al. 2020; Kasiviswanathan et al. 2016; 
Tongal and Booij 2018; Humphrey et al. 2016; Ni et al. 
2019; Freire et al. 2019; Nourani et al. 2017; Hadi and 
Tombul 2018; Zuo et al. 2020; Solomatine et al. 2008; 
Siddiqi et al. 2021; Niu and Feng. 2021; Ghorbani et al. 
2020, 2021; Apaydin and Sibtain 2021; Chu et al. 2021; 
Cheng et al. 2020).

Table 1   One- to three-ahead 
forecasting process

One- to three-ahead forecast

One-ahead forecast Two-ahead forecast Three-ahead forecast

One input
 x̂(t) = f (x(t − 1)) x̂(t) = f (x(t − 2)) x̂(t) = f (x(t − 3))

Two inputs
 x̂(t) = f (x(t − 1), x(t − 2)) x̂(t) = f (x(t − 2), x(t − 3)) x̂(t) = f (x(t − 3), x(t − 4))
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When the hybrid studies in the literature are examined, 
it has been tried to increase the prediction performance by 
using preprocessed methods such as Wavelet transform, 
Empirical Mode Decomposition, Additive ARIMA, etc. 
(Freire et al. 2019; Nourani et al. 2017; Zuo et al. 2020; 
Kisi et al. 2014; Yu et al. 2017; Panigrahi and Behera 2017; 
Ibrahim et al. 2022). According to our review of the litera-
ture, it is shown that a variety of forecasting techniques have 
been utilized. However, none of the forecasting techniques 
have been demonstrated to be superior to the others in terms 
of overall performance.

In this study, the effect of the RLMD model on the pre-
diction performance was analyzed and the forecasting per-
formance of the RLMD preprocessed hybrid models was 

Table 4   One-input–one-ahead mean of forecasting performance for 
each fold

Models MSE MAE R2 R

ANN 0.0363 0.1390 0.5066 0.7405
SVR 0.0107 0.0665 0.5013 0.7230
LSTM 0.0441 0.1581 −0.6282 0.4354
Additive–ARIMA–ANN 0.0130 0.0672 0.4102 0.7427
EMD–ANN 0.0102 0.0726 0.5320 0.7415
RLMD–ANN 0.0094 0.0649 05.505 0.7480

Fig. 9   Scatter plots of one-
ahead forecasting with RLMD–
ANN model for a one input and 
b two inputs

Fig. 10   One-ahead forecasted 
data obtained from one-input 
RLMD–ANN model with 
Relative Error chart calculated 
with 
RelativeError =

|||
forecasteddata−realdata

realdata

||| 
formula
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compared with the ANN, SVR, LSTM, the EMD based 
hybrid, and the Additive-ARIMA-based hybrid models. 
Here, MSE, MAE, R2, and R performance parameters were 
used to investigate the efficiency of applied models.

The obtained performance parameters shown in 
Tables 2 and 3 indicate that the forecasting performance 
of the RLMD-based ANN model is much better than 
RLMD-based SVR and LSTM models for one to two-
ahead forecasting. For example, while the MSE, MAE, 
R2, and R values have been obtained as 0.0060, 0.0522, 
0.7342, and 0.8532 in the RLMD–ANN method for two-
input and one-ahead forecasting, it has been obtained as 
0.0385, 0.1396, 0.6738, and 0.8222, respectively, in the 
RLMD–SVR method and 0.0088, 0.0695, −0.0826 and 
0.6118, respectively, in the RLMD–LSTM method. Also, 
the MSE, MAE, R2, and R values have been obtained as 
0.0094, 0.0649, 0.5505, and 0.7480 in the RLMD–ANN 
method for one-input–one-ahead forecasting, and it has 
been obtained as 0.0359, 0.1346, 0.5194, and 0.7397 in 
the RLMD–SVR method and 0.0110, 0.0737, 0.3312 
and 0.7392, respectively, in the RLMD–LSTM method. 
In three folds and different input–output combinations, 
the obtained MSE and MAE values are lower in the 
RLMD–ANN model than in the RLMD–SVR model, 
and the obtained R2 and R values are bigger than in 
RLMD–SVR and RLMD–LSTM models.

The performance of the RLMD-based ANN model has 
been slightly better than EMD-based ANN model for one-
ahead forecasting in one-input model. While the MSE, 
MAE, R2, and R values have been 0.0094, 0.0649, 0.5505, 
and 0.7480 in the RLMD–ANN method for one-input and 
one-ahead forecasting, it has been obtained as 0.0102, 
0.0726, 0.5310, and 0.7415, respectively, in the EMD–ANN 
method.

In addition, the MSE, MAE, R2, and R performance 
results for one-input and one-ahead forecasting were 
obtained as 0.0363, 0.1390, 0.5066, and 0.7405 for ANN, 

0.0107, 0.0665, 0.5013, and 0.7230 for SVR, 0.0441, 0.1581, 
−0.6282, and 0.4354 for LSTM, 0.0130, 0.0672, 0.4102 and 
0.7427 for Additive-ARIMA–ANN models, respectively, as 
seen in Table 4. When these results are examined, it is seen 
that the performance of the RLMD–ANN model is signifi-
cantly better than the LSTM model and it is better than other 
models.

The Kruskal–Wallis method was used for the analysis of 
whether the forecasted and observed time series had simi-
lar distributions, and it was seen that the forecasted data 
obtained with all the applied models in this study were sta-
tistically similar to the observed data as seen in Table 5.

The LSTM approach took a much longer time than the 
ANN and SVR procedures in terms of computational time 
for the computational intelligence techniques employed in 
this study. In addition, the SVR algorithm required longer 
on average time than the ANN technique. The computa-
tional complexity of most machine learning models, such as 
LSTM, SVR, and ANN models, increased as the value and 
number of employed model parameters increased. The three 
machine learning models may be ranked in terms of general 
modeling performance in this study as follows: ANN, SVR, 
and LSTM, based on the aforementioned findings.

The findings show that the RLMD–ANN model can 
predict the streamflow data within acceptable limits. The 
suggested model can provide a variety of development and 
application methods with various hydrological data.

A new hybrid decomposition model called RLMD–ANN 
is proposed in this study, where the streamflow data have 
been decomposed into subbands by RLMD methods. The 
main goal is to obtain better forecasting performance using 
the skilled, robust, efficient, and reliable model. For this aim, 
firstly, threefold cross-validation has been applied for the 
training and the testing data. The testing data are completely 
unused during the training stage and development of the 
model. Secondly, the optimal number of subband levels has 
been searched by analyzing the Fourier domain of the data 

Table 5   p values of Kruskal–Wallis test at 95% significance level for one-ahead forecast for all folds

*H0 represents a hypothesis based on the significant difference between mean predicted and observed values

Models p value *H0 Models p value *H0 Models p value *H0

The first fold The second fold The third fold

ANN 0.3514 Reject ANN 0.5209 Reject ANN 0.4511 Reject
SVR 0.3872 Reject SVR 0.4212 Reject SVR 0.387 Reject
LSTM 0.4222 Reject LSTM 0.4743 Reject LSTM 0.4567 Reject
EMD–ANN 0.3706 Reject EMD–ANN 0.4355 Reject EMD–ANN 0.4526 Reject
Additive–ARIMA–ANN 0.3387 Reject Additive–ARIMA–ANN 0.4870 Reject Additive–ARIMA–ANN 0.4519 Reject
RLMD–ANN 0.3549 Reject RLMD–ANN 0.5061 Reject RLMD–ANN 0.4538 Reject
RLMD–SVR 0.3504 Reject RLMD–SVR 0.5055 Reject RLMD–SVR 0.4515 Reject
RLMD–LSTM 0.4465 Reject RLMD–LSTM 0.4511 Reject RLMD–LSTM 0.4530 Reject
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and by using stopping criteria. Also, to eliminate the dis-
advantages (end effect, boundary effect) of decomposition 
methods like EMD, DWT, etc., the RLMD method has been 
proposed for decomposition of the data to obtain the hidden 
structure of streamflow data.

In summary, the RLMD–ANN model offers the important 
advantage of avoiding using future streamflow information. 
By using the optimal number of subbands, the RLMD–ANN 
model saves time and computation resources. Numerical 
results demonstrate that the optimal decomposition ensem-
ble model, RLMD–ANN, can be an important tool for fore-
casting highly nonstationary, nonlinear streamflow data. 
This model can be used reliably not only for the prediction 
of streamflow data but also for the prediction of other time 
series such as rainfall, evaporation, temperature, etc.

In future studies, to increase the streamflow forecasting 
performance, different hydro-meteorological data can also 
be used in the prediction study and the prediction perfor-
mance can be analyzed according to different input numbers.

In this study, estimating each subband signals separately 
require a computational processing load. However, in future 
studies, the RLMD method can be used not to obtain sub-
band signals, but to extract features for input to model in 
forecasting studies.
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