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Abstract
A cost optimization methodology for the main constituents of multistory asymmetrical-plan steel buildings comprising of 
composite castellated floor systems and 3-D steel moment-resisting frames with considering their structural interaction is 
proposed in this paper. The seismic performance of asymmetrical-plan steel buildings is prone to stress concentration, tor-
sion, and coupled lateral-torsional effects. It is possible that altering the mass distribution of the asymmetrical-plan buildings 
by increasing the cost of floor solutions results in fitter stiffness properties with a lower cost such that the total cost of the 
building is reduced. To examine, the validity of this proposition the optimization method performs in two phases. In the first 
phase, a fine-tuned vibrating particle system algorithm optimally designs individual composite castellated floor systems of 
asymmetrical-plan steel buildings and provides a required search space. In the second phase, the ant colony system (ACS) 
algorithm with  ASrank strategy explores the resulting search space to determine the optimal distribution of the floor solu-
tions in the floor bays of the building, which in conjunction with its equivalent framing design, leads to the optimal resultant 
solution. An ant memory mechanism is incorporated into the formulation of the ACS algorithm to reduce the computational 
cost. A new graph-based procedure for mapping arbitrary structural topology into the MTSP network is introduced. The 
unifying of the two-phase functions of the method facilitates the controlling of the principal beam-girder vibrational mode 
of the floor systems. The solutions of two examples demonstrate that the programmed optimization method could efficiently 
optimize the floor systems and 3-D frames of asymmetrical steel buildings by examining their interaction. The distribution 
of least-cost floor solutions proved to be the optimal floor distribution. In many intermediate solutions, increasing the cost 
of the floor solutions results in a reduction in the total cost of the asymmetrical-plan steel buildings.

Keywords Cost optimization · Optimum seismic design · Asymmetrical-plan steel buildings · Composite castellated floor 
systems · Meta-heuristic algorithms · Ant colony system (ACS) · Fine-tuned vibrating particle system (FT-VPS)

1 Introduction

Optimization problems are classified into two main catego-
ries: problems with discrete and problems with continuous 
design variables. The coincidence of both discrete and con-
tinuous variables in practical problems is most likely to hap-
pen and is classified as mixed problems. For most real-world 
optimization problems, the design variables have discrete 
nature. Exploring optimal solutions when dealing with dis-
crete variables is a hard problem (Arora et al. 1994).

Metaheuristics are high-level computational intelligence 
techniques that obtain near-global solutions for optimum 
design problems within an algorithmic framework. They are 
recognized as unified optimization solvers for both kinds 
of discrete and continuous problems. Although they could 
find near-global solutions for real size problems, their per-
formance is debilitated by issues such as parameter tuning, 
slow rate of convergence, and the requisite for a considerable 
computational time due to execution of significant function 
evaluations (Siarry and Metaheuristics 2016).

In this paper, two of the robust metaheuristic algorithms 
have been utilized. The first metaheuristic is a fine-tuned 
version of the vibrating particle system (FT-VPS) algorithm. 
The FT-VPS enhances the performance of VPS (Kaveh and 
Ghazaan 2017) by escaping from local optima, an approach 
that applies to steel–concrete composite structures. The 

 * Ali Kaveh 
 alikaveh@iust.ac.ir

1 School of Civil Engineering, Iran University of Science 
and Technology, P.O. Box, 16846-13114 Narmak, Tehran, 
Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s40996-021-00806-5&domain=pdf


1970 Iranian Journal of Science and Technology, Transactions of Civil Engineering (2022) 46:1969–1995

1 3

second algorithm is inspired by the autocatalytic mecha-
nism observed in ant colonies. A graph-based procedure 
for mapping arbitrary structural topology into the modified 
traveling salesman problem (MTSP) is introduced (Wilson 
1998). After the formation of the MTSP graph that reflects 
the structural topology, the ant colony system (ACS) algo-
rithm (Dorigo et al. 1999) incorporated with the  ASrank strat-
egy (Bullnheimer et al. 1999) is adopted to solve the cost 
optimization problems.

The resultant mass of steel buildings is mainly influenced 
by the design of flooring systems and becomes more promi-
nent in structures with large spans requirements. The attach-
ment of composite castellated beams (CB) and composite 
deck slabs (DS) through the welded shear studs produce an 
ideal resource of flooring systems for structures with long-
span requirements. Researchers have proved that optimizing 
the main parts of the composite castellated floor systems 
(i.e. DS and CB) separately and combining the least-cost 
solutions do not necessarily give rise to the optimal resultant 
floor system. Due to the structural interaction of the main 
constituents of the composite floor systems, the optimal 
resultant solution will be obtained when the optimization of 
composite CBs performed for costlier DSs except the cheap-
est one (Kaveh and Fakoor 2021; Kaveh and Ghafari 2016).

The same notion may be valid for the optimum design 
of asymmetrical-plan steel buildings. Asymmetrical-plan 
steel buildings have a higher tendency to suffer torsion and 
stress concentration, due to eccentricity between the center 
of mass and center of resistance. The equation of motion 
of asymmetrical steel buildings is a function of both mass 
distribution and stiffness properties that are coupled through 
the stiffness matrix resulting in a coupled lateral-torsional 
motion. It is possible that increasing the cost of floor sys-
tems decreases the distance between the centers of mass and 
rigidity, increasing the symmetry of the structure. Increasing 
the structural symmetry alleviates the torsional effect and 
stress concentrations due to the asymmetry of the structure. 
In other words, a specific mass distribution with higher cost 
may lead to an equivalent stiffness property with the lower 
cost such that the total cost of the building is reduced. Con-
sequently, the optimality of these systems by optimizing the 
floor systems separately without considering the framing 
design would be at issue.

As the preliminary steps clarify the posed uncertainty, 
we have proposed an optimization methodology capable of 
distributing numerous distinct sets of design solutions to 
floor bays of asymmetrical-plan steel buildings and design-
ing the corresponding 3-D frames for individual distribution. 
The optimization method is to compare the total cost of each 
set of floor distributions to determine the optimal combina-
tion of the main constituents of the asymmetrical-plan steel 
buildings’ composite castellated floor systems and rigidly 
connected steel frames.

Actualizing such a proposal is an intricate task. Availabil-
ity of a search space containing various feasible solutions 
with different costs for distinct floor bays of the asymmetri-
cal steel buildings is a necessity. Therefore, the optimization 
method is directed to operate in two phases:

In the first phase, the FT-VPS optimizes distinct floor 
bays of the steel buildings that possess different dimensions 
and loading conditions (i.e. simply the state) simultaneously 
and not only for the least-cost DS but also for the set of up 
to 15 costlier DSs. In the next phase, the ACS algorithm 
with  ASrank strategy explores the resulting search space for 
finding the optimal distribution of the floor solutions whose 
equivalent framing design leads to the least-cost steel build-
ing. The design of framing members for the distributions of 
floor solutions is performed by the auto-selection property 
of SAP2000 in an integrated optimization framework.

On one hand, plenty of researches have been conducted in 
the field of optimal design of composite steel–concrete floor 
systems, but the majority of them have just considered either 
an individual composite beam or a single floor bay. In some, 
it is assumed that optimal solution would be repeated in all 
floor bays of the building, or the effects of adjacent bays 
are simulated by uniform loads. However, these assump-
tions do not hold in reality. On the other hand, the focus 
of many studies is the optimization of 3-D steel frames. In 
these papers, the optimization of the flooring systems has 
been neglected and invariant area loads are considered for 
the floor systems. Notably, the first mode of vibration of 
composite floor systems is a function of both interior beams 
and girders designs. As a result, a unified optimum design 
of composite floor systems and 3-D steel frames enables 
the control of the principal beam-girder mode of vibration.

Poitras et  al. (2018) proposed a new trajectory 
metaheuristic algorithm entitled peloton dynamics optimi-
zation (PDO) that mathematically mirrors the mutual energy 
benefits of drafting that occurs during a bicycle race. The 
PDO algorithm performed consistently for three non-com-
posite steel deck floor systems and proved to be better than 
particle swarm optimization (PSO) and harmony search 
(HS) algorithms. Kaveh and Ghafari (2018), in an optimi-
zation study of simply supported composite CBs, conclude 
that applying semi-rigid connections and non-commercial 
cutting shapes could reduce the cost by up to 25% and 35%, 
respectively. Kaveh and Shokohi (2015) implemented pop-
ulation-based meta-heuristic algorithms for optimum design 
of three simply supported non-composite perforated beams 
by the rules of the European standard. They considered both 
circular and hexagonal cutting shapes for optimization. The 
results demonstrate that castellated beams are more econom-
ical than cellular beams. They also optimized non-composite 
perforated beams by the natural forest regeneration (NFR) 
algorithm. The results prove that the NFR performs better 
than other metaheuristics considering both aspects of cost 
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minimization and convergence rate (Kaveh and Shokohi 
2016).

Safari et al. (2021) optimally designed planar steel frames 
by a differential evolution (DE) based algorithm. The solu-
tion of the examples indicates that DE can perform as well 
as other metaheuristic algorithms. Hasansebi and Kazemza-
deh Azad (2019) examined the performance of the adaptive 
dimensional search (ADS) algorithm, which uses an efficient 
performance-oriented methodology for discrete sizing opti-
mization of spatial steel frames. The comparison of the algo-
rithm with other metaheuristics demonstrates that the ADS 
algorithm could be efficiently employed for the optimization 
of real-size steel frames. Kaveh et al. (2017) optimized the 
weight of a 6-story regular 3-D steel moment-resisting frame 
by nine metaheuristic algorithms. The frame is analyzed 
under the combined effects of gravity and seismic loads 
distributed by modal response spectrum analysis (MRSA). 
They considered three expected levels of ductility for the 
frames, namely ordinary moment frame (OMF), intermedi-
ate moment frame (IMF), and special moment frame (OMF). 
For all levels of ductility, the HS algorithm was capable of 
minimizing the weight of the frame to a higher degree. Nota-
bly, the weight of the OMF is lower than the IMF and SMF 
by 2.9% and 7.1%, respectively. Hasancebi et al. (2010) com-
pared the performance of seven metaheuristic algorithms 
in optimizing the weight of moment resisting spatial steel 
frames. The optimization algorithms are computerized in 
Borland Delphi and are automated to interact with SAP2000. 
Although metaheuristics are problem dependent, evolution 
strategies and simulated annealing algorithms proved to 
be the most effective methods, considering both aspects of 
weight minimization and convergence rate.

For fulfilling the aim of this study, efficient optimization 
algorithms with reasonable computational costs must be 
applied. Regarding this empirical subject, the theory is not 
considerable guidance. As the solver of the mixed optimiza-
tion problem of the first phase, the FT-VPS algorithm that 
specifically targets the optimization of composite steel–con-
crete floor systems and enhances the performance of its 
inceptive version (VPS) proved to be a suitable algorithm.

Kaveh and Ghazaan (2017) proved the superiority of the 
VPS algorithm in comparison to the other metaheuristics for 
optimization of truss and planar steel frame structures. The 
results of numerous independent runs performed using the 
benchmark examples indicate the reliability and efficiency of 
the VPS algorithm for solving the constrained optimization 
problems of skeletal structures. Kaveh and Fakoor (2021) 
proved the superiority of the VPS algorithm for practical 
optimization of an individual composite castellated floor 
system with perimeter composite castellated beams com-
pared to other non-deterministic optimization methods. To 
improve the performance of the VPS algorithm and secure 
more reliable solutions, we have conceived fine-tuning 

mechanism to escape from local optima. The convergence 
plots of the first phase of the test examples that are depicted 
after the onset of the fine-tuning mechanism prove the effi-
ciency of the implemented approach.

The problem of cost optimization of asymmetrical-plan 
steel buildings with composite castellated floor systems has 
not been solved by existing metaheuristic algorithms before. 
By considering the nature of the design variables, cost, and 
constraint functions the well-known ACS algorithm with 
 ASrank strategy that could directly manipulate the discrete 
variables is adopted as the solver for the combinatorial opti-
mization problem of the second phase. Although it is dif-
ficult to tune ant-based algorithms, we have succeeded in 
setting the most suitable algorithm parameters.

The performance of ant-based optimization techniques 
is proved to be better than evolutionary methods. Although 
both ACO and GAs are population-based metaheuristics, it 
is only ACO that stores the information in pheromones that 
represent the collective memory of all individuals of the 
colony from all generations. Despite the GAs, ACO refrain 
from an unproductive search in less promising regions due 
to poor initial solutions via combining learned information 
explored by the entire colony and the initial value of phero-
mone trails (Camp et al. 2005). Camp et al. (2005) utilized 
the ACO algorithm for size optimization of planar steel 
frames. They proved that the ACO, in comparison to genetic 
algorithms (GA), is capable of obtaining lighter solutions 
by up to 14% in fewer frame analyses. Aydogdu and Saka 
(2012) optimized symmetrical-plan and asymmetrical-plan 
3-D steel frames by ACO algorithm for studying the effect 
of wrapping on the optimal solutions. The results reveal that 
the ACO algorithm could efficiently optimize the spatial 
steel frames. It could be observed that the inclusion of the 
wrapping effects increases the weight of both symmetrical-
plan and unsymmetrical-plan steel frames by 9% and 12%, 
respectively.

Some recent advancements in the practical application of 
metaheuristic algorithms in the optimal design of structural 
engineering problems are reviewed in the upcoming litera-
ture. In computationally expensive optimization problems 
in which only a few runs are affordable, the small number 
of independent runs becomes highly valuable. Kazemzadeh 
Azad (2019, 2021) developed a solution for exploiting the 
available computing power entitled monitoring convergence 
curve (MMC) for dealing with such problems. The MMC 
monitors the convergence curve of the succeeding runs of 
the implemented algorithm at certain intervals based on the 
information of the previous run. The test examples reveal 
the effectiveness of the MMC considering both aspects of 
quality and stability of the optimal solutions of truss and 
frame structures. Hasansebi et al. (2011) effectively opti-
mized the member size of high-rise steel buildings utiliz-
ing evolution strategy integrated parallel algorithm. They 
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defined an index in the form of (a × b) for measuring the 
effect of computational cluster size on the execution time 
of the algorithm where (a) stands for the number of proces-
sors in each computer and (b) for the number of computers. 
The results reveal that the maximum parallel processing 
speed up ratio between 12.2 and 16.8 is obtained by uti-
lizing a cluster size with the index of (4 × 8). Kazemzadeh 
Azad et al. (2013, 2014) proposed an upper bound strategy 
(UBS) for decreasing the number of structural analyses for 
computationally expensive structural optimization problems. 
The UBS prevents the fitness calculation of newly gener-
ated solutions unless their net cost does not exceed the fit-
ness of the interim optimum solution. The results indicate 
that UBS is capable to decrease the number of structural 
analyses up to 97.1% and 70% in medium and large-scale 
3-D steel frames, respectively. Kaveh and Ghazaan (2018) 
optimized the weight of irregular spatial steel frames by 
CBO, ECBO, VPS, and a hybrid algorithm based on VPS 
(MDVC-UVPS). The results reveal that the MDVC-UVPS 
and VPS ranked first and second in performance assessment 
of the algorithms, respectively. Implementation of the UBS 
in the initial iteration of the optimization process with a 
high amount of infeasibilities of the candidate solutions is 
less efficient. Kazemzadeh Azad (2018) prescribed a non-
algorithmic procedure that is seeding the initial population 
with feasible solutions for overcoming this deficiency. The 
proposed procedure seeds the initial population by the larg-
est cross-section and an intermediate section which leads to 
the lightest feasible design in the discrete design pool.

As the building becomes more asymmetrical the det-
rimental effects of torsion and stress concentration will 
increase. In addition, the seismic performance of asym-
metrical-plan steel buildings is influenced by the coupled 
lateral-torsional effects. Hence, if a search space containing 
multiple design solutions with various costs for distinct floor 
bays of a steel building were accessible, the optimality of the 
least-cost heuristics (i.e. distribution of least-cost solutions 
to all the floor bays) and determination of stiffness proper-
ties to such mass distribution would be questionable. The 
proposed method examines the validity of such a proposition 
for rigidly connected steel buildings with composite castel-
lated floor systems.

Firstly, the optimization method generates the prerequi-
site search space throughout the first phase of its operation. 
Next, it becomes capable to determine the optimal distribu-
tion of design solutions to the floor bays of the building in 
a way that their equivalent framing design gives rise to the 
least-cost resultant steel building.

In the first phase, the optimization method simultaneously 
optimizes individual floor bays of the building which pos-
sess distinct states. In addition to determining optimal design 
variables that directly lead to a reduction in material costs 
(i.e. root beam of CBs), the method applies supplementary 

structural techniques for further reduction in the final cost 
of each floor state. Besides considering costlier DSs, these 
techniques comprise optimizing the shape parameters of 
hexagonal perforations and defining the optimal number of 
floor divisions (i.e. interior beams). Inclusion of partial com-
posite action, infilling certain openings, and specifying cam-
ber are supplementary techniques that prevent an increase in 
the cost of composite CBs (Kaveh and Fakoor 2021).

Bearing in mind that the design of low-cost systems 
without compromising the integrity of the structure is an 
essential issue in an optimal design process, a robust design 
procedure forms the set of 28 constraints of the composite 
CBs optimization problems (Kaveh and Fakoor 2021). Both 
the optimization and design procedures of composite castel-
lated floor systems are coded in MATLAB.

In the second phase, the ACS algorithm with  ASrank strat-
egy explores the resulting search space to determine the opti-
mal distribution of design solutions for the floor bays of the 
building, such that corresponding proportions of framing 
members lead to an optimal resultant structure. The optimi-
zation process of this phase is compiled in MATLAB (MAT-
LAB, Version 9.7 R2019b, The MathWorks, Inc., Natick, 
Massachusetts, United States) and is automated to interact 
with SAP2000 (CSI SAP2000 Integrated Software for Struc-
tural Analysis and Design, Version 19.2.0, Computers and 
Structures Inc., Berkeley, California) that performs gravita-
tional and seismic design of the steel frames in an integrated 
practice. The seismic design is performed according to the 
MRSA procedure. In addition to the strength and deflec-
tion constraints imposed on each set of candidate framing 
members by SAP2000, the optimization method facilitates 
the controlling of vibrational constraints for the supporting 
girders of composite castellated floor systems.

All things considered, a comprehensive cost optimiza-
tion methodology comprising of three modules for main 
constituents of asymmetrical-plan steel buildings including 
composite deck slabs, composite castellated interior beams, 
and spatial moment-resisting steel frames without exclud-
ing their structural interactions is proposed in this research.

This paper is divided into 6 sections: In Sect. 2, the prin-
ciples and features of the proposed optimization method are 
elaborated on. Section 3 formulates the mathematical state-
ments of the optimal design problems. In Sect. 4, the imple-
mented optimization algorithms are presented. In Sect. 5, 
the performance of methodology is verified by implement-
ing two design examples, and finally, Sect. 6 concludes the 
paper.



1973Iranian Journal of Science and Technology, Transactions of Civil Engineering (2022) 46:1969–1995 

1 3

2  Definitions and Concepts

2.1  Deck Slab Optimization Module

The proposed optimization method has been enabled to work 
with two of Canam (2006) composite deck profiles namely 
P-3623 and P-2432. Each deck profile is fabricated by the 
combination of three invariant deck thicknesses (td) and six 
slab depths (ts) providing a set of 18 DS sections. In the 
first iteration of the design procedure, one interior beam is 
considered for candidate DS which divides the bay into two 
parts. Then, the constraint check and cost calculation are 
performed based on the resulting span (B). The cost function 
is adjusted to be a function of a number of floor divisions 
(nfd). Thus in the next iteration, one interior beam is added 
and the parametric optimization is repeated for the resulting 
new span. This process is repeated for the available deck slab 
sections. Ultimately, feasible DSs will be sorted based on 
their cost in ascending order. The lightweight concrete and 
shored spans are disregarded in the current work. The deck 
slab optimization module is applied for distinct floor bays 
of unsymmetrical-plan steel buildings.

2.2  Composite Castellated Beam Optimization 
Module

To improve the performance of the VPS algorithm and 
secure more reliable solutions, we have conceived 'fine-
tuning mechanism' to escape from local optima. The perfor-
mance of the fine-tuning mechanism is such that after the 
optimization of CBs for the first nr feasible DSs, the solu-
tions are collected based on the number of floor divisions. 
For each collection, the solution of the interior beams with 
the least cost is identified and substituted for all the members 
of the group. The objective function of the new solutions is 
then reobtained and if they prove to be fitter than their previ-
ous record, replacements occur.

FT-VPS selects the design variables of composite CBs 
intelligently in such a way that the manufacturing cost turns 
out to be minimized. While this is the main concern of the 
majority of articles, the proposed method also examines sev-
eral procedures for further reduction of the total cost of the 
composite castellated floor systems. If the assumption of 
full composite action is violated, the optimization method 
is enabled to design partially composite CBs. This process 
could prevent the rise of the additional steel cost. The infill-
ing holes’ technique works in a way that if any of the tee 
sections or the web posts violate the beam–column interac-
tion equation, the corresponding hole would be covered by 
a single plate with the same thickness as the posts. If the 

number of filled holes exceeds half of the total number of 
holes a penalty would be imposed for the candidate beam. 
This technique recompenses the constraint violation without 
additional penalty up to half of the perforations. The camber 
specifying mechanism works in a way that if a composite 
CB violates any of the total deflection constraints, before 
foisting additional penalty a camber equal to the value of 
the self-weight deflection would be specified. Afterward, the 
assessment of violated criteria would be repeated.

The optimization procedure of composite CBs is per-
formed for a certain number of costlier deck slabs. The com-
posite CB optimization module is applied for all the floor 
bays of the buildings which possess individual geometry and 
loading condition (i.e. state).

2.3  Steel Building Optimization Module

In this phase, each of the floor bays of the asymmetrical-plan 
buildings, regardless of their states, could be specified as an 
individual design variable. Nevertheless, it is still their state 
that defines their equivalent search space. Taking construc-
tional considerations into account, it is possible to consider 
an arbitrary number of floor bays with a similar state, as the 
same design variable. Although the utilization of CBs makes 
the construction of longer spans possible without increasing 
the weight of the structures, the reentrant corners of their 
hexagonal holes are bases for stress concentration ergo lim-
iting their use in environments with high levels of seismic 
excitations (Fares et al. 2016). Consequently, CBs are not 
considered as seismic load-bearing members and the plain 
webbed beams have been utilized as the horizontal seismic 
members of 3-D framing assembly in the current study.

The ACS algorithm with  ASrank strategy searches for the 
optimal mass distribution of the MDF dynamic system that 
together with its equivalent stiffness properties results in the 
optimal design solution. The focus of the current study is 
limited to the internal forces of beams and columns, beams 
deflections, and girders vibration of the spatial steel frames. 
Structural evaluation and fitness calculation is one of the 
steps of the optimization process with the ACS algorithm 
(Table 2). In this step, the primary program (MATLAB) 
is incorporated with a novel attribute associated with the 
integrated optimization procedure that is fully automated to 
interact with SAP2000 (i.e. replica). The primary program 
calculates the applied loads to the beam members of the 
frames corresponding to each set of the candidate solution 
of the floor systems and transfers the loads to the replica. 
Earthquake loads are calculated based on the MRSA pro-
cedure by the replica. Afterward, the replica automatically 
assigns the most economical previously defined section lists 
to the frame objects. After the completion of the analysis and 
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design procedure of framing members, the replica delivers 
the number of failed elements to the primary program.

At this step, the primary program could evaluate arbitrary 
constraints whose evaluation could not be performed directly 
by the replica. In the current study, the primary program 
facilitates the examination of the vibrational constraints of 
floor bays based on the principal combinatory beam-girder 
mode. The main program calls for the geometric properties 
and nodal displacements of the girders from the replica and 
calculates their deflections at the points where the interior 
beams are connected. It also calculates maximum deflec-
tions of the connected interior composite CBs based on the 
Benitez method (1998). The required data is obtained and 
the natural frequencies and required damping ratios based 
on Murrie’s method (1991) are calculated respectively. The 
vibrational constraints are to be evaluated for the supporting 
girders and the number of failed elements updated subse-
quently. Afterward, the primary program calls for the surface 
area of the framing members to calculate the total weight 
of the 3-D frames. At the last stage, the primary program 
calculates the fitness of the candidate steel building. The 
'primary/replica interaction' of the optimization framework 
in the second phase is illustrated in Table 1.

It is known that the overall computational time of struc-
tural evaluations consumes 85–95% of the total computing 
time of an optimal design process. In order not to squander 
time, an "ant memory mechanism" is incorporated into the 
formulation of ACS algorithm that saves unique solutions 
explored by the ants. At the beginning of each iteration, the 
refurbished positions are checked in the ant memory matrix, 
to avoid repetition. Incorporating such a mechanism prevents 

a repetition of structural evaluations and, hence saving a 
considerable amount of computational cost. The ant memory 
matrix also provides a range of feasible floor distributions 
with various costs, which could be utilized considering the 
constructional considerations.

The load path in steel building determines the unidirec-
tional sequence of the practical optimization process. The 
load path and the resulting sequence of the optimization 
process are illustrated in Fig. 1.

For decoupling the main constitutes of steel buildings, 
namely composite castellated floor systems and moment-
resisting steel frames, firstly the optimization of distinct 
floor systems of the building is performed. In the next step, 
the ant colony in each iteration of the ACS algorithm dis-
tributes the specific discrete variables of the floor solutions 
in the floor bays of the steel building. The floor distribution 
explored by each ant converts to the equivalent concentrated 
and uniform loading. The corresponding loads are applied to 
individual girders and edge beams of the spatial steel frame 
according to the general procedure depicted in Fig. 2.

3  Problem formulation

For the most complex structural systems, the entire design 
project must be broken down into several subproblems 
which are then treated independently. Each subproblem 
can be posed as a problem of optimization. The number of 
sub-optimization problems are obtained by the following 
expression as 1 +

∑n

i=1
(ni

r
+ 1), where n denotes the number 

Table 1  Primary/replica interactive performance

Primary assignments (MATLAB) Replica assignments (SAP2000)

Load erasing command
 

Erasing previous loads

Calculation of loads of frame beams Hold
Sending loads of the frame beams

 
Applying loads to frame members

Analysis command
 

Perform analysis

Design command
 

Perform design

Call for the number of failed elements
  

Sending the number of failed elements

Call for the girders sectional properties
  

Sending the girder sectional properties

Call for the girder nodal displacement
  

Sending the girder nodal displacements

Evaluation of the vibrational constraints Hold
Updating the number of failed elements Hold
Call for the sectional properties of frame elements

  
Sending the sectional properties of frame elements

Calculation of the total frame weight Hold
Calculation of the fitness of steel building Hold
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of floor states and ni
r
≤ 15 is the number of feasible DSs 

for each state. The renowned three stages of mathematical 
formulation for sub-optimization problems are outlined in 
detail in the following literature. It must be noted that the 
problem formulation of the DSs and CBs is written for one 
of the floor states which is also applicable to other states.

3.1  Formulation for Deck Slab Design

The program is able to utilize the DSs provided by the 
Canam (2006) composite P-3623 and P-2432 profiles. 
Therefore, variables that characterize an individual profile 
shape (i.e. hr, wr and dr) are all merged into a single discrete 
variable (P-No.). The other two discrete variables are steel 
decks’ thickness (td) and total slab thickness (ts) and are 
illustrated graphically in Fig. 3. Another discrete variable is 
the number of floor divisions (nfd). Consequently, the design 
variables are given as:

The extended cost function of the DS subproblems that 
takes into account both fabrication and material costs of all 
constituents of the floor system is written as:

The material cost of composite DSs depends on the 
weight of steel elements and the volume of the concrete ele-
ments as follows:

where Wi
d
= Abayw

i
d
 is  the weight of the steel 

decks;Vi
c
= Abay(w

i
c

/
γc) is the concrete volume; kd and kc 

are the cost factors for steel decks and concrete slab; wi
d 

and wi
c are the steel deck and concrete weights per unit area. 

On-site fabrication cost of the composite DSs is related to 
the area of the constructional operation as:

Af is the surface area of the bay and  kf is the fabrication 
cost factor of the DS. The feasibility of the DSs is verified 
by the following constraints:

(1)xi
DS

= (P - No., td, ts, nfd) i = 1 to ni
r
≤ 15

(2)Ci
DS

= Ci
material

+ Ci
fabrication

(3)Ci
material

= Wi
d
kd + Vi

c
kc,

(4)Ci
fabrication

= Af kf

(5)g
i

1
= Wf −Wr ≤ 0

(6)g
i

2
= ΔL − Δal ≤ 0

(7)g
i

3,4
∶ Bmin ≤ B ≤ Bmax

3.2  Formulation for Composite Castellated Beam 
Design

Clear depth of the web, web thickness, flange width, flange 
thickness, and root radius are the main parameters that define 
the sectional parameters of I-shaped members. Parameters 
that characterize the root beam section of CBs are merged 
into a single discrete variable denoted by  Bj. The design 
variables that define the shape of hexagonal perforation of 
CBs are the height of the holes or posts from the center 
(h), the minimum width of the holes or posts (e), and the 
angle of inclination (θ) of the openings. These variables are 
sketched in Fig. 4. Thus, the set of design variables for opti-
mum design of CBs is written as:

The extended cost function of CB subproblems takes the 
following form:

Material cost of CBs depends on the weight of steel ele-
ments as:

where j = 1–3 corresponds to steel components of CBs 
including the root beams, fillers, and the shear studs, 
respectively; Wi

1
= LGi

1
 and Wi

2,3
= �s V

i
2,3

 are the weight of 
steel components; G is the weight of the root beams per 
unit length; V2,3 are the volume of fillers and shear studs, 
respectively; γs is the steel density; and kj is the cost factor 
of steel components. The fabrication cost of CBs is related 
to the length of the manufacturing operations as:

where m = 1,2 and 3 represent the individual operation of 
the fabrication process consisting of cutting, welding, and 
cambering, respectively. Li

1
 is the cutting length; Li

2
 is the 

welding length and Li
3
= I−1

o
(Icn�c)

i is the normalized length 
of cambering;  Io is the minimum strong axis moment of iner-
tia in the section pool; Icn is the transformed moment of 
inertia of composite net section. km is the cost factor of each 
fabrication operation.

The constraints that govern the optimization problem of 
composite CBs fall into 3 categories; the first type represents 

(8)g
i

5
∶ B − BMUS−3 ≤ 0.

(9)xi = (Bj, h, e, �); i = 1 to nr ≤ 15

(10)Ci
CB

= Ci
material

+ Ci
fabrication

(11)Ci
material

=

3∑
j=1

Wi
j
kj,

(12)Ci
fabrication

=

3∑
m=1

Li
m
km,
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the limitation of the sectional shape parameters. The second 
and third types correspond to strength and deflection limit 
states, respectively.

3.2.1  Type 1

The manufacturing and geometrical constraints of CBs are 
as follows (Kaveh and Shokohi 2016):

3.2.2  Type 2

In comparison to plain webbed beams, many additional fail-
ure modes govern the design of composite CBs as a result 
of several web openings. The limit states that govern the 
strength design of composite CBs are local buckling of tee 
components; flexural buckling of top tees and web posts; ten-
sile yielding of bottom tees; the plastic moment of tees; LTB 
of tees; interaction criteria of tees and posts; shear yielding 
and shear buckling of tees, gross section and posts; web post 
lateral instability (Fares et al. 2016; Blodgett 1966). The 
corresponding constraints are formulized in adherence with 
LRFD principles of the 2016 version of AISC Specification 
(ANSI 2016). The existing design theory is completed by the 
authors via the inclusion of the interaction criterion for web 
posts subjected to combined compression and flexure (Kaveh 
and Fakoor 2021). When the CBs are subjected to wall loads, 
concentrated loads, and dynamic forces, implementation of 
the proposed design method is highly recommended.

(13)hi
1
= h − (3∕8) (dg − 2 tf ) ≤ 0

(14)hi
2
= (dg − 2tf ) − 10 (dt − tf ) ≤ 0

(15)hi
3
= (2∕3)b − e ≤ 0

(16)hi
4
= e − 2b ≤ 0

(17)hi
5
= 2b + e − 2h ≤ 0

(18)hi
6,7

∶ 43 ≤ � ≤ 62

(19)hi
8,9

∶ 10 ≤ � ≤ 30

(20)hi
10

∶ � ≤ 8.

(21)gi
1
= �f - top - tee − 0.56�0 ≤ 0

(22)gi
2
= �s - top - tee − 0.75�0 ≤ 0

3.2.3  Type 3

The web opening of CBs reduces the gross moment of iner-
tia that increases the curvature at web openings, causes the 
incompatibility of strain field, and reduces the gross area 
between tees results in the formation of Vierendeel deflec-
tions. For each stage of construction, pre and post concrete 
hardening, different approaches with utmost accuracy are 
adopted for estimating the maximum deflection of CBs 
(Fares et al. 2016; Benitez et al. 1998).

Detail description of the equations for all types of con-
straints can be found in Kaveh and Fakoor (2021). The 

(23)gi
3
= �f−tees − 0.38�0 ≤ 0

(24)gi
4
= �s−tees − 0.84�0 ≤ 0

(25)gi
5
= Tu - bottom tee − Tc - bottom tee ≤ 0

(26)gi
6
= Pu - top tee − Pc - top tee ≤ 0

(27)gi
7
= Mu - tees −Mc - tees ≤ 0

(28)gi
8
= Nfh(i) − 0.5Nh ≤ 0

(29)gi
9
= Pu−post − Pc−post ≤ 0

(30)gi
10

= Mu - post −Mc - post ≤ 0

(31)gi
11

= Nfh(j) − 0.5Nh ≤ 0

(32)gi
12

= Vu−ver−tees − Vc−ver−tees ≤ 0

(33)gi
13

= Vu−ver−gross − Vc−ver−gross ≤ 0

(34)gi
14

= Vu−hor−post − Vc−hor−post ≤ 0.

(35)si
1
= �L1 − �al ≤ 0

(36)si
2
= �T1 − �at ≤ 0

(37)si
3
= �L2 − �al ≤ 0

(38)si
4
= �T2 − �at ≤ 0
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penalization approach is implemented for constraint han-
dling. Thus, the evaluation function which is the penalized 
cost function of the problem is calculated as:

where nb
i = nfd

i -1 is the number of interior beams. Pi
CB is 

the dynamic penalty function; �i =
∑28

nCB=1
max

�
0, gi

n
(x)

�
 

represents the sum of the violations of the constraints. nCB 
is the numerator of the constraints applied to interior CBs; 
Here, ε1 is set to unity and �2 = 1.5 (1 + It

/
Im),where  It is the 

current iteration number and  Im is the maximum number of 
iterations.

Consequently, a complete set of design variables that 
describe the optimization of composite castellated floor 
systems excluding the vibrational constraints becomes:

And, the total cost of composite castellated floor systems 
is obtained as:

3.3  Formulation for Steel Building Design

Design variables are divided into two types. In the first type, 
each solution for the floor bays is represented by a discrete 
variable that is the main design variable of the optimization 
problem. The second type is discrete variables of the frame 
members that are the subordinate variables of the problem.

where i is the numerator of the variable of the floor bays 
whose upper bound is the total number of flooring variable 
(nv); j is the index number of the floor solution whose upper 
bound is the equivalent size of the search space ( ni

r
≤ 15 ). r 

is the numerator of the framing members whose upper bound 
is the total number of members of the 3-D frames (nm). s 
is the index number of the framing sections and its upper 
bound is the size of the section pool (ns). The cost function 
of the steel building problem is written as:

(39)evali
CB

= ni
b
Pi Ci

CB

(40)Pi
CBor Frames

=

{
1 if x ∈ �

(1 + �1�
i)�2 otherwise,

(41)xi
Floor

= (P - No., td, ts, nfd,Bj, h, e, �)

(42)Ci
Floor

= Ci
DS

+ evali
CB

(43)

xSteel Building = (Floorij,Sectionrs) where

{
1 ≤ i ≤ nv
1 ≤ j ≤ ni

r

;
1 ≤ r ≤ nm
1 ≤ s ≤ ns,

(44)

CSteel Building = CFloors + evalFrames

=

nv∑
i=1

niCij + PFramesCFrames,

where ni is the number of floor bays in the building which 
are classified as the of ith flooring design variable; Cij is the 
total cost of jth solution assigned to ith variable; Pframes is the 
penalty function of spatial frames which is calculated as 
stated previously by considering � = nfm

/
nm,where nfm is the 

total number of failed members of the frames; ε1 = 10 and ε2 
is calculated as before.

Wframes is the total weight of the steel frames, Lm and Am are 
the length and surface area of the mth member of the steel 
frames.

SAP2000 controls the girders and edge beams of 3-D 
frames for bending moment, shear, and deflection con-
straints. It also controls axial force, bending moments, the 
interaction of the axial force and bending moments, and 
shear constraints for the column members. The constraints 
that are directly controlled by SAP2000 are classified as 
Type 4 constraints. The mathematical relations of these 
constraints are omitted for brevity.

Annoying floor motion induced by building occupants 
is probably the most persistent floor serviceability problem 
encountered by designers. The composite castellated floor 
systems are complex and have multiple natural frequencies. 
Murray's acceptability criterion is the most widespread use 
by structural designers for the evaluation of the first natural 
frequency (Murray 1991; Naeim 1991). Combinatory beam-
girder vibrational constraints are applied by the interactive 
primary/replica mechanism for each of the frame girders 
and its connecting interior beams, concerning the position 
of the girder. Based on its position, each girder is adjacent 
to either one or two floor bays. Thus, G ≤ G1 + 2G2 is the 
numerator of girders where  G1 are the girders adjacent to a 
single bay and  G2 are the girders adjacent to two bays. The 
relations regarding the beam-girder vibrational constraints 
that are categorized as Type 5 are written as:

3.3.1  Type 5

The type 5 constraints are elaborated in Naeim (1991).

(45)

Cframes = Wframes ks

=

(
nm∑
m=1

�s LmAm

)
× ks

(46)sG
1
= 8 − �e ≤ 0

(47)sG
2
= 10 − fn ≤ 0

(48)sG
3
= �req − �c ≤ 0
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4  Optimization methods

The VPS formulation reflects a basic structural engineer-
ing notion that is the free vibration of ideal one-story frame 
structures with viscous damping (Kaveh and Fakoor 2021). 
VPS regeneration equation embodies the fundamentals of 
metaheuristic optimization techniques consisting of self-
adaptation, cooperation, and competition. The formulation 
of the FT-VPS algorithm for cost optimization of the com-
posite castellated beams is described in the upcoming sec-
tion (Kaveh and Ghazaan 2017).

4.1  Formulation of FT‑VPS algorithm

Step 1  Initialization phase

The vibrating frame matrices (VFs) which contain the 
initial positions of ideal frames are initialized as:

 where xi
initial (j)

 is the initial position of the jth variable of the 
ith ideal frame, xi

min(j)
 and xi

max(j)
 are its side limits and rand 

is random numbers drawn from the standard uniform distri-
bution on the closed interval [0,1].

Step 2  Evaluation of candidate frames

In the next step, the cost matrix (CM) which contains the 
fitness of the ideal frames is evaluated. During the evolu-
tionary process, the algorithm examines the fitness of the 
population and if any improvement is detected, the new cost 
and its equivalent position are substituted in RM and VFM 
matrices, respectively.

Step 3  Search phase

FT-VPS improves the position of ideal frames by simu-
lating the damped free vibration by the following equation:

Parameter A is introduced to model the amplitude of free-
vibration response as:

And damping ratio is simulated by the following 
relation:

(49)xi
initial(j)

= xi
min (j)

+ rand.
(
xi
max(j)

− xi
min(j)

)
,

(50)
F
new(i) = �

1

(
A.D.rand + F

O

)
+ �

2

(
A .D.rand + F

S(i)

)

+ �
3

(
A.D.rand + F

I(i)

)

(51)A = �1(Fo − Fi) + �2(FS(i) − Fi) + �3(FI(i) − Fi)

where Fo is the interim optimum frame that is the optimum 
solution of the population so far; Fs and FI are the superior 
and inferior frames, respectively. To determine the inter-
mediate frames at each iteration, CM is sorted in ascending 
order and FS and FI are selected randomly from the first and 
second halves, respectively, except the frame itself. ωi are 
the weight coefficients.

The following stochastic relations increase the rate of 
convergence which must be checked before applying the 
regeneration formula:

Pro is a parameter within an open interval (0,1).

Step 4  Handling boundary constraints

To deal with the violation of side constraints a harmony 
search-based handling approach specifies whether the violat-
ing component should be interchanged with a corresponding 
component of a random frame in VFM or be determined 
randomly in a search space.

where HMCR is the harmony memory considering rate vari-
able between 0 and 1.

Step 5  Termination criterion

The optimization process from steps 2 to 4 is performed 
successively until the preset maximum number of iterations. 
Eventually, the optimal frame is readily extracted from the 
VFM.

Step 6  Supplementary economizing techniques

The optimization process from steps 1 to 5 is repeated for 
a certain number of costlier deck slabs (nr).

Step 7  Fine-tuning mechanism

The fine-tuning mechanism is executed.
The flowchart of the FT-VPS algorithm for cost optimiza-

tion of steel–concrete composite castellated floor systems is 
illustrated in Fig. 5.

(52)D =

(
It

Im

)−c

,

(53)
{

If pro < rand ⇒ w3 = 0

If pro ≥ rand ⇒ do nothing

(54)

{
If HMCR < rand ⇒ choose a random value from �

If HMCR ≥ rand ⇒ choose a random value from RM,
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4.2  Formulation of ACS Algorithm with  ASrank 
Strategy

The ant colony system (ACS) is the best performing algo-
rithm for combinatorial optimization problems with artificial 
ants (Siarry 2016). The formulation of ACS algorithm with 
 ASrank strategy for cost optimization of the steel buildings 
is delineated in the following literature. The first step in the 
application of ACS is to approximate an initial trail value. 
Typically, the initial value of pheromone trail on all the 
routes is set to a small positive constant as:

where 
∑

Cmin−frames is the cost of the least-cost heuristic for 
the framing members of steel buildings. Visibility allows the 
ants to realize the cost of the routes. The invariant amount 
of visibility, vij associated with jth route of the ith path is:

Here, the cost of the routes connecting the paths is symbol-
ized by Cij. The ACS process follows the pseudo-code shown 
in Table 2.

Firstly, the initial nodes of the ants in the MTSP graph 
are determined randomly. The ACS process begins at time 
t when each ant chooses a route and traverses ahead to the 
corresponding destination node, where it is now at time t + 1. 
The probability that the ant k decides to choose the jth route 
for traveling across the ith path at time t is obtained by com-
bining visibility and local trail intensity in accordance with 
the following formula:

where ni
r
 is the total number of routes for the  ith path. Thus, 

an iteration of the algorithm is defined as the m moves made 
by m ants in the time interval (t, t + 1). At the end of each 
iteration, after the decision is made and a route chosen, the 
intensity of the pheromone trail on the chosen route is low-
ered in order to promote exploration in the search. Local 
update rule prevents early stagnation of the search and pre-
mature convergence of the solution by the following relation:

where � is the adjustable parameter in the interval [0,1], rep-
resenting the persistence of the pheromone trails. Each ant 
continues to choose routes for traveling across the paths until 
nv iterations are completed and all paths have been visited. 

(55)�0 =
1∑

Cmin−frames

(56)�ij =
1

Cij

(57)
Dij(t) =

�ij(t) . �
�

ij

ni
r∑

j=1

�ij(t) . �
�

ij

,

(58)�ij(t) = �.�ij(t),

Each ant constructs a trajectory while having selected a solu-
tion for each of the design variables. The specific trajectories 
constructed by the ants are the solutions to the problem. In 
order to define how fit the solution are, the structural evalu-
ation is to be performed. At the end of the trajectory loop 
(Table 2), firstly the ant memory mechanism is executed. 
Then the mathematical model of the spatial frames corre-
sponding to the position of each one-off ant would be com-
pleted. Next, the constraints and the fitness of the frame 
designs would be assessed. Finally, the objective function 
of the one-off ant that is the total cost of the building, is 
reflected as a single numerical value. The design solutions 
created by the ants in a round are ranked according to their 
objective function values. The least-cost solution belongs to 
an elitist ant which will be updated in every iteration.

At this stage, the pheromone trail intensity upon each 
route of the developed trajectories is adjusted through a 
global update process. The global update process is per-
formed by utilizing the  ASrank strategy that introduced a kind 
of contribution of the top-ranked ants for the trail update. 
The amount of pheromone to be added to the routes of the 
trajectories chosen by the top-ranked ants is calculated by:

where ntop is the number of the top ranked-ants; n is the rank 
of the ant (n = 1 to  ntop); Cn is the fitness of the ant receiving 
rank n. Equation 59 is only used if the route connecting the 
node i to the node j is a part of the top-ranked trajectories, 
otherwise, it shall not be applied. The updated trail values 
at time t + n are a function of the current pheromone values 
and the increase of trail level on edge (i, j) caused by the 
top-ranked ant. The expression of the global update scheme 
would be written as:

(59)Δ�
top

ij
= (ntop − n + 1)

1

Cn

,

Table 2  Pseudo code of the ACS algorithm for cost optimization of 
steel buildings

Repeat until Fulfilment of stopping criteria (Round loop)
                   Repeat until  All the ants build up their trajectory 

(Trajectory loop)
                                        Ant decision mechanism
                                        Local pheromone trail update
                   Terminate
                   Ant memory mechanism
                   Structural evaluation and fitness calculation
                   Updating elitist ant  checking convergence condition
                   Global pheromone trail update
                   Terminate
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Fig. 1  Evolution model of the optimum design of steel buildings

Fig. 2  General approach for 
decoupling the steel–concrete 
composite floor systems and 
spatial steel frames i = the 
numerator of the connecting 
interior beams in the right 
floor; j = the numerator of the 
connecting interior beams in the 
left floor qup = uniform loads 
imposed by the floor above; 
qdown = uniform loads imposed 
by the floor below

Fig. 3  Design variables of com-
posite steel deck slabs

Fig. 4  Design variables of 
castellated beams
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where (1- ρ) represents the evaporation rate. At this point, 
the current round is complete, and a new round may be initi-
ated and the entire process is repeated (Fig. 6). Eventually, 
most of the ants will select the same trajectory on every 
round, representing the convergence to the optimal solution. 
Here, two termination mechanisms are implemented concur-
rently. The first mechanism lets the algorithm’s operation 
proceed until the predefined number of iterations (Im). The 
second mechanism terminates the operation if the position 
of the elitist ant is not boosted up to the specified number of 
consecutive iteration (Ic). The flowchart of the ACS algo-
rithm with  ASrank strategy for optimization of steel buildings 
is illustrated in Fig. 6.

(60)�ij(t + n) = (1 − �) �ij(t) + �Δ�
top

ij
, 5  Numerical Examples

5.1  General Statements

Two design examples are studied to validate the performance 
of the proposed optimization method. The MRSA proce-
dure is used for earthquake simulation and seismic analysis. 
The design procedures of all the examples are performed 
in adherence with the 2016 version of AISC specifications 
(ANSI 2016).

The values of gravitational loadings and the magnitude 
of lateral earthquake loads for the first example is deter-
mined based on the Iranian National Building Code-Part 
6 (INBC 6) (2020) and the Iranian code of practice for the 
seismic-resistant design of buildings (STD 2800-4) (Iranian 

Fig. 5  Flowchart of the FT-VPS 
algorithm
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code of practice for seismic resistant design of Buildings-
Standard 2014), respectively. The gravitational and seismic 
loadings of the second example are based on the ASCE 

7–16 (ASCE 2016). Since the loading condition in all the 
stories is assumed to be identical, solely the geometry of 
the floor bays dictates the number of individual floor bays 

Fig. 6  Flow chart of the ACS algorithm with  ASrank strategy for optimization of asymmetrical-plan steel buildings
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to optimize. The building occupancy of the examples is 
assumed to be an office.

Creep and shrinkage effects are considered in the deflec-
tion calculations of the floor members. A value of 4.2% of 
theoretical available damping is used for the examples. The 
type A welded stud of AWS D1.1/D1.1 M structural welding 
code (Code-Steel-AWS 2015) with fu = 420 MPa and a diam-
eter of 19 mm is utilized. Figure 7 schematically represents 
the structural framing layout of the floor states. The fixity 
conditions of beams and columns and also the column orien-
tation whose strong axes are managed to act perpendicular to 
the orientation of girders are also sketched in the figure. The 
sensitivity analysis on the parameters of the VPS reveals that 
values 150, 0.05, 0.3, 0.3, 0.7 and 0.95 for the population 
size, c, ω1, ω2, pro and HMCR give rise to the most suitable 
performance (Kaveh and Ghazaan 2017).

The program is automated to interact with the SAP2000 
for generating the mathematical model of the skeletal fram-
ing structure and conducting finite element analysis and 
LRFD based design procedures. Some of the main features 
taken into account in the mathematical model of the struc-
ture are expressed in the upcoming section. The structures 
are evaluated for stability in accordance with the direct 
analysis method. Second-order effects are accounted for by 
the exact method. The seismic part of the code and special 
seismic load combinations are also included.

The beams are modeled as laterally braced members and 
the fixity condition at the base of the frames are modeled as 
clamped. Each floor diaphragm is assumed to be rigid in its 
own plane, consequently, all the nodes at each floor level 

are constrained to the centroid of the diaphragms (Chopra 
1995). Modal combinations of response spectrum load 
cases are performed by the complete quadratic combination 
(CQC).

The value of each force-related design parameter is mul-
tiplied by a (Ie

/
R)g . The values of redundancy factor (ρ) and 

the seismic importance factor (Ie) are considered as unity. 
The exterior beams of the buildings sustain the wall load 
applied by a ribbon window glazing system with brick span-
drels 470 plf (700 kg/m). The floor height of the examples 
is considered as 13.5 ft (≈ 4 m). The buildings in both of 
the examples are classified as irregular with geometrical 
reentrant corner irregularity.

We have triumphed in indicating that a value of β = 1.5 
in the ACS algorithm helps enforce adequate feasibility 
while promoting an effective exploration within the search 
space. A value of ξ = 0.1 in the local pheromone reduc-
tion process provides a good balance between exploration 
and exploitation units. Computational efforts indicate that 
roughly 15 to 30 ants develop superlative solutions concern-
ing the number of design variables. Regarding the  ASrank 
global update scheme, ntop is roughly equal to 10% of the 
number of ants and the value of ρ = 0.7 leads to acceptable 
results. The generic input data of the examples are tabulated 
in Table 3. In this study, twenty independent optimization 
runs are performed for locating a reasonably good final solu-
tion. The computing system used for this research is Intel 
(R) Core (TM) i5 CPU running at 2.4 GHz core speed with 
8 Gb RAM.

Fig. 7  Schematic of structural 
framing layout of the floor 
states
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5.2  Applied Loads and Load Combinations

The factored combination of super dead load, dead load due 
to the self-weight of DS, and reduced specified live load are 
the applied loads in the strength design of the composite 
DSs. The deflection criterion of the DSs is checked by the 
un-factored reduced specified live load.

The factored combination of super dead load, dead loads 
due to the self-weight of DS and CB, and reduced specified 
live load are the applied loads in the strength design of the 
interior composite CBs. The deflection criteria of the inte-
rior beams in the pre-composite stage are checked based 
on the un-factored loads, including dead loads due to self-
weight of DS, and steel beam and construction live load, and 
in the post-composite stage are checked based on the super 
dead load and reduced specified live load.

After the optimization of floor systems, the resulting 
gravitational loads are distributed to the beam members 
of the moment-resisting frames. The uniform dead loads 
resulting from the exterior walls are applied to the perimeter 

beams of the frame systems. The lateral seismic loads are 
determined and distributed to the framing members based 
on the MRSA procedure.

The design strength of composite CBs must be equal to 
or greater than the effects of factored load in the following 
load combination:

Factored load combinations due to the gravitational and 
seismic effects for strength design of framing members pre-
scribed by the ASCE 7 and INBC 6 are as follows:

(61)LC1
CB

= 1.2D + 1.6 L

(62)LC1
frames

= 1.4D

(63)LC2
frames

= 1.2D + 1.6L

(64)LC
3,4

frames
= 1.2D + 0.5L + 0.2SdsD + Specx,y

Table 3  General input design 
parameters of optimization 
problems

Load types Notations Units Values

Super imposed dead load DS psf 51.2
Wall load Dw plf 470
Construction live load Lc psf 20
Actual live load La psf 11
Concrete density γc pcf 150
Steel density γs pcf 490
Elastic constant of steel Es ksi 29,000
Concrete compressive strength f

′
c

ksi 5
Steel yield stress Fy ksi 50
Steel tensile strength Fu ksi 65
Diameter of shear stud ds in 0.75
Tensile strength of shear stud Fus ksi 65
c/c of the ribs dr mm 305
Available damping �

c
% 4.2

Deflection limit for total load δat ft L/240
Deflection limit for live load δal ft L/360
Applying creep and shrinkage effect δper 0 or 1 1
Cost factor of steel beams ks $/kips 341
Cost factor of concrete kc $/ft3 4.8
Cost factor of steel deck ksd $/Ib 0.4
Cost factor of shear studs kss $/Ib 0.45
Cost factor of welding kw $/ft 0.3
Cost factor of cutting kc $/ft 0.24
Cost factor of cambering kca $/in 12.8
Cost factor of DS construction Kcon-DS $/ft2 0.084
Story height hstory ft 13.5
Section pool of interior beams W8 × 13 W44 × 335 ASTM W Sections
Section pool for framing members W6 × 8.5 W44 × 335 ASTM W Sections
Deck slab section pool – – Canam P-2432
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 where D is the dead load; L is the minimum uniformly dis-
tributed live load,  Specx,y stand for the horizontal seismic 
load effects  (Eh) in principal directions of the structure; The 
terms (0.2SdsD) stand for vertical seismic load effects  (Ev); 
 Sds is the design spectral response acceleration parameter at 
short periods.

Regarding visually unacceptable deformations and other 
short-term effects, the recommended service load combina-
tions for the downward pull are:

5.3  Example 1

The 3-D view of a one-way asymmetrical-plan steel build-
ing with 2-story, 8-bay, and 46-member with composite 

(65)LC
5,6

frames
= 0.9D − 0.2SdsD + Specx,y,

(66)LC1
def

= D + L

(67)LC2
def

= L

castellated floor systems and moment resisting frames is 
illustrated in Fig. 8. The height of the building is 27 ft (≈ 
8.2 m). The general input design parameters are summarized 
in Table 3. All steel members are ASTM A992 steel. The root 
beams of CBs are regarded as 233 W-shaped sections given in 
ASTM A6 starting from W8 × 13 to W44 × 335 sorted based 
on area properties. The set of composite deck slabs provided 
by P-2432 Canam profile are utilized. A combination of gran-
ite floor tiles, cement-mortar coating, and foam concrete cov-
ers the structural floors and, the hung ceiling provides enough 
space for housing the miscellaneous equipment (51.2 psf). 
The uniform construction live load of 20 psf (≈ 98 kg/m2) 
is imposed on the floor systems. Additionally, the amount of 
11 psf (≈ 54 kg/m2) is considered for the weight estimate of 
the vibration control procedure. Inspection of the floor bays’ 
geometries identifies three distinct states. The input design 
parameters specific to this example are tabulated in Table 4. 
The structural floor systems sustain the reduced level of pre-
scribed distributed live load for office occupancy according to 
the provision of INBC 6. The minimal value of partition live 
load equal to 20.8 psf (≈ 102 kg/m2) is taken into account.

Fig. 8  3-D model of 2-story, 
8-bay, 46-member building of 
Example 1

Table 4  Problem-specific input 
design parameters

Item Notation Unit Floor state No

Floor 1 Floor 2 Floor 3

Floor span L ft (m) 40 (12.2) 40 50 (15.2)
Floor width W ft (m) 40 32 (9.75) 32
Reduced live load Lor psf (kg/m2) 53.45 (260) 55.65 (270) 53.45
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The resulting design variables and cost of each of the 
floor state is illustrated in Tables 5, 6, 7, respectively (the 
tables are abridged by discarding 10 of the solutions). 
The required search space of the optimization process in 
the next phase is generated based on the results of this 
table. The notation ζi,j is utilized for the identification of 
each solution in which i stands for the number of floor 
states and j stands for the solution number. The conver-
gence histories for the least-cost solution of each floor 
state at the onset of the fine-tuning mechanism are plotted 
in Fig. 9. The computing time of the floor optimization 
problems in the first phase equals 28 min and 30 s.

The grouping of the floor members considered in the 
second phase is illustrated in Fig. 8; hence, the number of 
floor design variables is equal to six. After defining the 
design variables, the resulting search space will be repli-
cated accordingly for the complete generation of routes:

Frame members are selected within the auto-selection list 
of the SAP2000 consisting of 252 W-shaped sections start-
ing from W6 × 8.5 to W44 × 335. The building is supposed 
to be located in Tehran. According to STD 2800, office 
buildings are categorized as a moderate risk category. It is 
assumed that the evaluation of the sub-soil determined the 
site class to be category two. The area is classified as the first 
category concerning relative seismic risk and has the ratio 
of design base acceleration to gravitational acceleration as 
A = 0.35. The design spectrum function of STD 2800 with a 
5% of damping ratio is generated. Based on the risk category 
and relative seismic risk, it is not permitted to utilize OMF. 

(68)

Floor1j = �1j; Floor2j = �2j; Floor3j = �3j

Floor4j = �1j; Floor5j = �2j;Floor6j = �3j

where j = 1 to 15

Table 5  Design variables and 
cost of the solutions of floor 
1 (Search space of the floor 
systems which their state is 
identified as floor 1)

The units of size and cost of floor components are inches and USD, respectively; (nr = 1 to 15)
The costs of the solutions are rounded

ID RB h e θ Nfd td ts Cost

ζ 1,1 W18 × 35 10 5 53.1 5 0.03 5 5585
ζ 1,2 W21 × 44 11.8 5.9 53.1 4 0.036 5 5685
ζ1,3 W18 × 35 10 5 53.1 5 0.036 5 5810
ζ1,4 W21 × 44 11.8 5.9 53.1 4 0.036 5.5 6072
ζ1,nr … … … … … … … …
ζ1,15 W18 × 35 10 5 53.1 5 0.048 6.5 7470

Table 6  Design variables and 
cost of the solutions of floor 2

ID RB h e θ Nfd td ts Cost

ζ 2,1 W18 × 35 9.9 5 53.1 4 0.03 5 4370
ζ 2,2 W18 × 35 9.9 5 53.2 4 0.036 5 4550
ζ2,3 W18 × 35 9.9 5 53.2 4 0.036 5.5 4860
ζ2,4 W21 × 44 11.8 5.9 53.2 3 0.048 5 4670
ζ2,nr … … … … … … … …
ζ2,15 W18 × 40 9.9 5.2 53.2 4 0.048 7.5 6445

Table 7  Design variables and 
cost of the solutions of floor 3

ID RB h e θ Nfd td ts Cost

ζ 3,1 W24 × 55 13.5 6.8 53.1 4 0.03 5 6485
ζ 3,2 W24 × 55 13.5 6.8 53.1 4 0.036 5 6710
ζ3,3 W24 × 55 13.5 6.8 53.1 4 0.036 5.5 7100
ζ3,4 W24 × 62 13.5 6.7 53.1 3 0.048 5 6455
ζ3,nr … … … … … … … …
ζ3,15 W24 × 55 13.5 6.7 53.1 4 0.048 7.5 8820
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Therefore, the IMF is utilized as the lateral load resisting 
system. The equivalent seismic design factors Ru, Ω0, and 
Cd are 5, 3, and 4, respectively. The perimeter beams sustain 
the wall load of 470 plf (700 kg/m).

For transforming the structural configuration into the 
MTSP graph, two steps must be taken. In the first step, a 
costed cycle graph with the number of edges equal to the 
number of design variables of the floors (nv) must be formed 
(the purple graph in Fig. 10). This initial simple graph pro-
vides adequate conditions for the adjacency of the nodes 
of the ultimate MTSP graph. Each pair of adjacent vertices 
that are incident by a single edge at this step represents an 
individual design variable for the floor systems. The cost of 
each edge  Ci,1(e) equates to the cost of the first design solu-
tion in the pertinent search space.

In the second step a planar multiple-graph should be 
formed. The number of edges that must be added to form 

new routes for each pair of incident vertices is equal to the 
number of solutions that could be assigned to each design 
variable, excluding the first solution (nr

i − 1) which is 14 
here. Similarly, the cost of each edge is equal to the cost of 
the solution that the edge symbolizes. The resultant graph 
is the MTSP graph associated with the optimum design of 
steel buildings depicted in Fig. 10. As it is also illustrated 
in the MTSP graph, the optimum trajectory found by the 
colony is (1,1,4,1,1,4). The best cost of the steel building for 
the optimal trajectory is $79,733. Mathematically, the opti-
mal set of floor design variables is to be written as  Floor1,1, 
 Floor2,1,  Floor3,4,  Floor4,1,  Floor5,1,  Floor6,4. The equivalent 
subordinate design variables pertinent to the framing mem-
bers are illustrated schematically in Fig. 11a, b. The cor-
responding convergence history of optimal design of steel 
building is plotted in Fig. 12. 

Fig. 9  Cost history graphs for the least-cost solutions of Example 1 by FT-VPS algorithm; a Floor 1, b Floor 2, and c Floor 3
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The convergence graph in the second phase of the proposed 
optimization method (Fig. 12) is radically different from those 
in the first phase (Fig. 9). The search space of the compos-
ite castellated floor systems is derived from an optimization 
process which is naturally different from ordinary search 
space like commercially available sections of steel framing 
members. Additionally, exploring the discrete variables of the 
framing members is performed by the Auto-selection property 
of SAP2000, which is essentially different from that in the 
metaheuristics. In the initial iterations, the candidate solutions 
of steel framing members equivalent to the candidate distribu-
tion of the floor solutions explored by the provisional elitist ant, 
possess a low amount of infeasibilities. Nevertheless, the opti-
mization method in the second phase could efficiently extract 
the flooring variables with their equivalent framing variables 
that reduce the steel building cost from $85,000 in the first itera-
tion to $79,733 in the last iteration yielding a 6.2% reduction 
of the structural cost.

The number of ants and convergence parameter for this 
example is considered as 15 and 10, respectively. The total 
number of iterations are 36. The computing time of each ant 
is approximately 1 min and 20 s. The ant memory matrix 
contains the floor variables (i.e. floor distributions) and their 
equivalent building cost and floor cost of the one-off ants. The 
dimension of the ant memory matrix of the current example is 
426 × 8. The ant memory matrix for the first 10 ants is shown 
below. The floor cost of the solution explored by the  4th ant in 

the ant memory matrix equals $33,000, which is higher than 
the cost of the  5th ant equals $32,920, however, the total cost 
of the  4th ant is lower. This result evinces that increasing the 
cost of floor solutions could reduce the cost of framing mem-
bers by increasing the symmetry of the structure in a way that 
the resultant cost of the building is reduced. This pattern could 
be observed repeatedly in the ant memory matrix. The best 
cost, worst cost, mean cost, and the standard deviation result-
ing from twenty independent optimization runs are 79,732.6, 
81,340.2, 80,802.8, and 348.1, USD, respectively.

5.4  Example 2

The optimum design example of a 3-story, 7-bay, 44-mem-
ber two-way asymmetrical-plan steel building is envisaged. 

(69)AntMemory =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

79732.6 32820 1 1 4 1 1 4

79762.3 32850 1 1 1 1 1 4

79792 32880 1 1 1 1 1 1

79913.6 33000 1 2 4 1 1 4

79933.5 32920 2 1 4 1 1 4

79943.3 33030 1 1 1 1 2 4

79972.9 33060 1 1 1 1 2 1

79972.9 33060 1 2 1 1 1 1

79988.6 33075 1 1 2 1 1 4

79988.6 33075 1 1 4 1 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 10  MTSP graph with opti-
mal cost and optimal trajectory 
of Example 1
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Fig. 11  a Side elevations of Example 1; (a) x = 0, (b) x = 50 ft, and (c) x = 90 ft. b Front elevations of Example 1; (d) y = 0, (e) y = 40 ft, (f) 
y = 72 ft, and (g) y = 112 ft



1990 Iranian Journal of Science and Technology, Transactions of Civil Engineering (2022) 46:1969–1995

1 3

The centers of mass of all floor diaphragms do not lie on the 
same vertical axis. The 3-D model of the building is shown 
in Fig. 13. The height of the building is 40.5 ft.

The general input design parameters are summarized in 
Table 3. Inspection of the floor bays’ geometries identifies 
four distinct states. The input design parameters specific to 
this example are tabulated in Table 8. The structural floor sys-
tems sustain the reduced level of live load for office occupancy 
according to the provision of ASCE 7–16. The minimal value 
of partition live load equal to 15 psf (≈ 73 kg/m2) is taken into 
account.

The resulting design variables and cost of each of the floor 
state is illustrated in Tables 9, 10, 11, 12, respectively (the 
tables are abridged by discarding some of the intermediate 
solutions). The convergence histories for the least-cost solution 
of each floor state at the onset of the fine-tuning mechanism are 
plotted in Fig. 14. The computing time of the floor optimiza-
tion problems in the first phase equals 36 min.

In the second phase, no grouping is considered for 
the floor members; therefore, the number of floor design 
variables is equal to seven. The equivalent routes are then 
generated in a similar manner as the previous example. 

Fig. 12  Cost history plot for the optimal building of Example 1 by 
ACS algorithm

Fig. 13  3-D model of 3-story, 
7-bay, 44-member building of 
Example 2

Table 8  Problem-specific input 
design parameters

Item Notation Unit Floor state No

Floor 1 Floor 2 Floor 3 Floor 4

Floor span L ft (m) 40 (12.2) 40 40 50 (15.2)
Floor width W ft (m) 26 (7.9) 40 32 (9.7) 32
Reduced live load Lor psf (kg/m2) 50.7 (247.5) 46.25 (225.8) 48.2 (235.3) 46.25
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The building is supposed to be located in a Midwestern 
city with moderate seismic loads. The area has a short 
period Ss = 0.121 and a one-second period S1 = 0.06 and 
long period transition TL = 12 s. The site class is category 
D. For evaluation of the seismic loads in each mode of 
vibration, the design spectrum function of ASCE 7 with 
a 5% of damping ratio is generated. The seismic design 
category (SDC) of the building is defined as B and it is, 
therefore, legitimate to choose a moment-resisting frame 
not specifically detailed for seismic resistance. Thus, OMF 
is utilized as the seismic load resisting system and the 
corresponding seismic design factors R, Ω, and Cd are 

equated to values 3.5, 3, and 3, respectively. The MTSP 
graph is plotted similarly to the previous example. The 
optimal trajectory found by the colony in the equivalent 
MTSP graph is illustrated in Fig. 15. Mathematically the 
optimal floor distribution to the floor bays of the build-
ing is determined as:  Floor1,1,  Floor2,2,  Floor3,1,  Floor4,4, 
 Floor5,1,  Floor6,4,  Floor7,1. The corresponding optimal cost 
of the steel building is $80,889. The subordinate design 
variables of the framing members are represented sche-
matically in Fig. 16a, b. The corresponding convergence 
history of optimal design of steel building is plotted in 
Fig. 17.  

Table 9  Design variables and 
cost of the solution of floor 
1 (Search space of the floor 
systems which their state is 
identified as floor 1)

The units of size and cost of floor components are inches and USD, respectively; (nr = 1–15)

ID RB h e θ Nfd td ts Cost

ζ 1,1 W18 × 40 10 5 53.1 3 0.036 5 3615
ζ 1,2 W18 × 40 10 5 53.1 3 0.036 5.5 3870
ζ1,3 W18 × 40 10 5 53.1 3 0.048 5 3920
ζ1,4 W18 × 40 10 5 53.1 3 0.036 6 4030
ζ1,nr … … … … … … … …
ζ1,10 W18 × 40 10 5 53.1 3 0.048 8 5245

Table 10  Design variables and 
cost of the solutions of floor 2

ID RB h e θ Nfd td ts Cost

ζ 2,1 W18 × 35 9.8 4.9 53.1 5 0.03 5 5585
ζ 2,2 W18 × 40 9.9 5.1 53.4 4 0.036 5 5520
ζ2,3 W18 × 35 9.8 4.9 53.1 5 0.036 5 5810
ζ2,4 W18 × 40 9.9 5.3 53.7 4 0.036 5.5 5905
ζ2,nr … … … … … … … …
ζ2,15 W18 × 35 9.8 4.9 53.1 5 0.048 6.5 7295

Table 11  Design variables and 
cost of the solutions of floor 3

ID RB h e θ Nfd td ts Cost

ζ 2,1 W18 × 35 10 5 53.1 4 0.03 5 4365
ζ 2,2 W18 × 35 10 5 53.1 4 0.036 5 4550
ζ2,3 W18 × 35 10 5 53.1 4 0.036 5.5 4860
ζ2,4 W21 × 44 11.8 5.9 53.1 3 0.048 5 4670
ζ2,nr … … … … … … … …
ζ2,15 W18 × 35 10 5 53.1 4 0.048 7.5 6365

Table 12  Design variables and 
cost of the solutions floor 4

ID RB h e θ Nfd td ts Cost

ζ 2,1 W24 × 55 13.5 6.8 53.1 4 0.03 5 6485
ζ 2,2 W24 × 55 13.5 6.7 53.1 4 0.036 5 6710
ζ2,3 W24 × 55 13.5 6.7 53.1 4 0.036 5.5 7100
ζ2,4 W24 × 55 13.5 6.7 53.1 3 0.048 5 6205
ζ2,nr … … … … … … … …
ζ2,15 W24 × 55 13.5 6.8 53.1 4 0.048 7.5 8820
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The number of ants and convergence parameter for 
this example is considered as 20 and 10, respectively. 
The computing time of each ant was approximately 1 min 
and 35 s. The total number of iterations is equal to 43. 
The dimension of the ant memory matrix of the current 
example is 635 × 9. This matrix for the first 10 ants is 
shown below. The floor cost of the  7th ant equals $34,945 
is higher than the cost of the  8th floor equals $34,895, 
but its total cost is lower. Increasing the cost of the floor 
systems may decrease the distance between centers of 
mass and rigidity, resulting in a reduction of the cost of 
framing members, reducing the total cost of the structure. 
This pattern could be observed in a number of intermedi-
ate solutions. The best cost, worst cost, mean cost, and 
the standard deviation resulting from twenty independent 

optimization runs are 80,889.3, 82,583.1, 81,646.1, and 
409.7, USD, respectively.

(70)AntMemory =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

80889.3 34640 1 2 1 4 1 4 1

81036.2 34705 1 1 1 4 1 4 1

81153.3 34825 1 2 1 4 1 4 2

81153.3 34825 1 2 2 4 1 4 1

81179.5 34930 1 3 1 4 1 4 1

81190.1 34945 1 2 1 4 1 4 4

81190.1 34945 1 2 1 4 4 4 1

81223.6 34895 2 2 1 4 1 4 1

81352.6 35105 1 6 1 4 1 4 1

81359 35025 1 4 1 4 1 4 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 14  Cost history graphs for the least-cost solutions of Example 2 by FT-VPS algorithm; a Floor 1, b Floor 2, c Floor 3, and d floor 4
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6  Concluding Remarks and Limitations

The solution of the examples in the first phase demonstrated 
that the FT-VPS algorithm could successfully explore the 
optimal design variables governing the design of composite 
castellated floor systems. The supplementary cost reduction 
techniques for the floor systems have effectively averted 
cost escalation. The evidence deduced from the solutions 
implies that increasing the cost of deck slabs may well 
achieve a reduction in the total cost of the floor systems. As 
an essential requirement of the second phase, the FT-VPS 
could provide an optimal search space that contains various 
feasible solutions for distinct floor bays of asymmetrical-
plan steel buildings. In the second phase, the ACS algorithm 
with  ASrank strategy could successfully explore the optimal 
distribution of the floor systems in the floor bays of the 
asymmetrical-plan steel buildings that its equivalent framing 
design led to the optimal resultant solution. In conclusion, 
the proposed cost optimization method optimally designs 
the main constituents of multistory asymmetrical-plan steel 
buildings considering their structural interaction.

The distribution of least-cost floor solutions in floor bays 
of asymmetrical-plan steel buildings was proved to be the 

optimal distribution. In some instances of the intermedi-
ate floor distributions, increasing the cost of floor systems 
could reduce the cost of framing members such that the total 
cost of the building is reduced. The ant memory matrix also 
provides a range of floor distributions with their equivalent 
framing design which could be utilized considering the con-
structional considerations. In addition, the unified two-phase 
function of the optimization method facilitates the vibration 
control of composite floor systems leads to the practicability 
of the design solutions. A new graph-based procedure for the 
formation of the MTSP network is applied in the examples.

We believe the present work has achieved the minimiza-
tion of the consumption of material resources and maximiz-
ing structural efficiency. However, the proposed optimiza-
tion method has limitations of its own and maybe enhanced 
by incorporating several capabilities. Possible future work 
needs to verify the lateral displacement constraints of the 
steel buildings, geometric constraints of the framing mem-
bers, and also strong-column weak-beam criterion specific 
for SMFs. For comparative purposes, further studies should 
target the alternative optimization procedures for 3-D steel 
frames.

Fig. 15  MTSP graph with opti-
mal cost and optimal trajectory 
of Example 2
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Fig. 16  a Side elevations of Example 2; (a) x = 0, (b) x = 40 ft and, (c) x = 90 ft. b Front elevations of Example 2; (a) y = 0, (b) y = 32 ft, (c) 
y = 72 ft and, (d) y = 98 ft
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