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Abstract
The effects of interaction between edge crack (notch) with the mortar–mortar interface on the mechanical behaviour of the 
semi-circular bend (SCB) specimens were considered in this study. The SCB specimens with different angles of mortar–mor-
tar interface and different joints’ lengths were measured experimentally. These SCB specimens with 10 cm in diameter and 
with edge cracks of different lengths were prepared and tested in the laboratory under the applied force rate of 0.004 mm/
min. The tensile strength of interface was 0.15 MPa and the joints’ tensile fracture toughness was 0.28 MPa√m. These tests 
showed that the joint (notch) lengths and the interface angles (related to the loading direction) mostly govern the process of 
failure and fracturing of the SCB specimens. Also, the particle flow code in PFC2D was used to simulate the experimentally 
tested SCB specimens. Furthermore, one vertical joint (edge crack) with different lengths (i.e. 0.5, 1, 2, 3, 3.5 and 4 cm) was 
created in each model. It has been shown that the specimens’ fracture toughness is highly affected by the length of the edge 
crack and the direction (angle) of mortar–mortar interface. Also, the tensile strength of the model is related to the number of 
induced tensile cracks in the joint and the interface. The tensile cracks increase with decrease in the joint length and increase 
in the interface angle. The model breakage occurs along with the interface and there is no failure at the tip of the crack for 
the interface angle of less than 60°. On the other hand, the fracture toughness of samples is constant by increasing the joint 
length for the interface angles of 60°, 75° and 90°.

Keywords Mortar–Mortar interface · Joint length · Interface angle · PFC2D · Semi-circular bend (SCB) test

1 Introduction

The mechanical behaviour of most concretes and rocks 
are usually concerned with the determination of their frac-
ture toughness as measured in the laboratory or approxi-
mated numerically. For these brittle materials, the fracture 
toughness of Mode-I is usually measured through various 

experimental tests in the laboratory. Recently, some meth-
ods of testing are developed by many investigators to cal-
culate the fracture toughness (Keles and Tutluoglu 2011; 
Tutluoglu and Keles 2011; Adiyaman 2015; Haeri et al. 
2017; Fang and Fall 2020; Golewski 2021a, b, c). Most of 
these methods use the core samples and can be classified as 
the cylindrical, disc and semi-disc configurations as far as 
the specimens’ shape is concerned. In 1988, Ouchterlony 
proposed the Chevron Bending (CB) and Short Rod (SD) 
methods for measuring the rocks’ fracture toughness. Both 
of these methods require relatively intact and long cores 
for measuring the fracture toughness of rocks (Cui et al. 
2010). However, the other disadvantages of these methods 
may include the complexity of the setup test and the need 
for expensive testing apparatus (Fowell and Chen 1990; 
Dai et al. 2011, Bi 2016). Some new researchers compared 
their experimental and numerical studies with the results 
obtained by the suggested methods, such as the short rod 
(SR) method. In this method, the direction of the applied 
tensile load is perpendicular to that of the chevron notch (Li 
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et al. 2015; Zhou et al. 2015; Öner 2015; Yaylac 2016; Sar-
farazi 2016; Haeri et al. 2017; Shou 2019a, 2019b). These 
constraints may minimize the chance of obtaining the same 
fracture toughness for a material through different tests. On 
the other hand, these ISRM methods may provide some 
consistent fracture toughness, but in many cases, there are 
about 20 to 30% variations in the measured values reported 
for both CB and SR methods (Iqbal and Mohanty 2007). 
The second-class focus is on the Brazilian disc (BD) type 
specimens usually known as Brazilian Disc (BD) method 
and used by many investigators in the recent decades (Dai 
et al. 2010, 2011; Kourkoulis et al. 2012; Yaylaci 2013; 
Ghazvinian et al. 2013; Haeri et al. 2017; Zhou 2014; Zhou 
et al. 2015; Yaylaci 2016; Shou 2021; Yaylaci 2020; Yaylaci 
2021a, b, c). The Brazilian disc type specimens with cracks 
and holes have also been used for measuring the critical 
stress intensity factor of Mode I, such as (a) the double-
edge-cracked Brazilian disc (DECBD), the cracked straight 
through Brazilian disc (CSTBD), and the flattened Brazilian 
disc (FBD) methods (Chen et al. 2008; Keles and Tutluoglu 
2011; Markides and Kourkoulis 2020; Chen et al. 2005; Yu 
et al. 2021); (b) The holed cracked flattened Brazilian disc 
(HCFBD), The holed-flattened Brazilian disc (HFBD), the 
hollow centre-cracked disc (HCCD) methods (Yang 2015; 
Tang et al. 1996), (c) the method suggested by Shiryaev and 
Kotkis (1982) known as the radial cracked ring-type method 
and the most frequently used ISRM suggested method as the 
cracked chevron notched Brazilian disc (CCNBD) specimen 
(Wang et al. 2012; Wei et al. 2015; Du et al. 2017). Several 
methods were also proposed for the determination of the 
Mode I and Mode II fracture toughness (Fowell et al. 2006; 
Fang and Fall 2020; Vălean et al. 2020; Golewski 2021a).

The third class methods mainly used the semi-disc type 
specimens with notch, e.g. the cracked chevron notched 
semi-circular bend (CCNSCB) and the notched semi-
circular bend (NSCB) methods (Fowell and Chen 1990; 
Kuruppu and Chong 2012; Zhou et al. 2012; Kuruppu et al. 
2014; Zhou et al. 2012; Wei et al. 2015; Du et al. 2017). 
The geomaterials’ fracture toughness for the mixed load-
ing conditions can be measured by these methods (Kuruppu 
and Chong 1986). In the third method, the NSCB method is 
the most popular one as compared to the CCNSCB method. 
Kuruppu et al. (2014) proposed that the SCB specimens, as 
shown in Fig. 1, may be added to the suggested methods for 
measuring rock fracture toughness.

In the third method, the SCB specimens are prepared 
from the cores and therefore, require a little machining 
effort. These cores are in compact form and can be cut into 
slices to provide the suitable semi-circular discs. The SCB 
specimens are more convenient to study the effects of vari-
ous physical and mechanical parameters, such as moisture 
content, temperature, time and strain rate on the geo-mate-
rials’ fracture toughness. The following relations are usually 

suitable for estimating the fracture toughness  (KIC) from the 
SCB specimens (Kuruppu et al. 2014).

where Pmax, is the applied load at failure, a is the crack 
length, r and t represent the radius and thickness of the SCB 
specimen, respectively. In this equation, the geometrical 
stress intensity factor, YI is written in a non-dimensional 
form considering the S/R ratio which is the ratio of the 
support span S to the radius R and the ratio, β = a/R is the 
non-dimensional notch length (Kuruppu et al. 2014). The 
factor YI is calculated by several researchers for either ana-
lytical or numerical techniques (e.g. Kuruppu and Chong 
1986). In the previous researches, the interaction between 
the mortar–mortar interface and edge notch in SCB test has 
not been fully considered. The main aim of this paper is to 
consider the effects of various parameters, such as interface 
angles and edge crack lengths on the failure mechanism of 
mortar SCB specimens. However, experimental and numeri-
cal methods are used to assure the accuracy and validity 
of the results. Although numerical results are tested to be 
valid through the experimental results, in these analyses, the 
ability of PFC in simulating the interaction between mor-
tar–mortar interface and edge notch in SCB specimens is 
also approved. It should be noted that some extra numerical 
models can be made in PFC for further analyses and there is 
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Fig. 1  Geometrical and loading configuration of the Semi-circular 
bends (SCB) specimens (Kataoka et al. 2014)
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no need for doing more experimental tests. These analyses 
also explain that which one of the notches or the interface 
may mobilize the failure process of the SCB specimens.

2  Experimental Investigation

The experimental tests were conducted in the laboratory on 
the specially prepared SCB type mortar specimens under 
compressive loading.

2.1  Preparing the SCB Specimens with Edge Crack

Gypsum, cement, sand and rock debris are the main geo-
materials that can be used to prepare rock-like, concrete 
and mortar specimens for investigating their fracture and 
failure mechanism under various loading conditions. Some 
concrete specimens with the pre-existing cracks were tested 
experimentally by many investigators to analyse the cracks 
extensions scenarios in quasi-rocks (Shemirani et al. 2016; 
Golewski and Sadowski 2017; Golewski 2019a; Golewski 
2019b; Dastgerdi et al. 2020; Hu et al. 2020; Yaylacı 2020; 
Wang et al. 2021; Shen et al. 2021; Zhang et al. 2021; Lv 
et al. 2021; Saha and Sagar 2021). In this study, the SCB 
specimens of mortar (concrete-like materials) were prepared 

in the laboratory by properly mixing the cement (PPC) and 
fine sand with water. Both the thickness and diameter of 
the Brazilian discs prepared for the experimental tests were 
selected to be 100 mm as shown in Fig. 2a–c.

In order to make the SCB specimens, first a plastic cylinder 
was selected and a longitudinal groove was created in it. This 
groove helps the physical sample to come out easily from the 
sealer. Foam No. 1 was placed in the form of a half-cylinder 
on the bottom of the plastic cylinder as shown in Fig. 2a. This 
foam divides the cylindrical space into two parts (for mak-
ing semi-disc type specimens). To create a joint between two 
mortars with an ideal angle, foam No. 2 was placed inside the 
cylindrical space with a desired cutting angle (Fig. 2a). To 
create the edge crack, an aluminium blade with a thickness 
of 1 mm, a height of 10 cm and an ideal length was placed in 
foam 1. So that half of the blade was in foam 1 and the other 
half was in the open space as shown in Fig. 2b. The remaining 
space was filled with mortar 1. When mortar 1 hardened, foam 
2 was removed from the cylinder and replaced with mortar 2 
(Fig. 2b). Then, as mortar 2 hardened, first the blade came 
out of foam 1 and then foam number 1 was removed from the 
mould. In this way, a specimen containing an interface and an 
edge crack was created in the mould. It is worth mentioning 
that the mould was greased so that the casted specimen can 
be removed easily from it. The length of the blades is 1, 2, 3 

Fig. 2  a Plastic cylinder con-
taining foam no. 1 and foam no. 
2 and mortar 1, b mortar–mor-
tar interface, c schematic view 
of fume, plate and mortars
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and 4 cm, respectively, which is intended to create the edge 
cracks of different lengths. Also, by changing the slope angle 
of foam 2, the interfaces with different inclination angles can 
be created in the specimens. Figure 2c shows a schematic view 
of the specimens’ preparing procedure.

The Semi-Circular Bend (SCB) specimens with differ-
ent angles of mortar–mortar interfaces and various joints’ 
lengths are prepared in the form of Brazilian discs.

The mortar–mortar interface angles of 15°, 30°, 45°, 
60°, 75° and 90° are generated in the specimens. Also, the 
edge cracks are produced within the specimens with a thin 
steel shim of 1 mm thickness which is inserted in the mould 
during the specimen casing process. During the specimens’ 
casting, it is possible to provide edge cracks of different 
lengths (i.e. 0.5, 1, 2, 3, 3.5 and 4 cm) in the specimens. 
The applied force can be uniformly distributed in the top and 
bottom of the specimen at a rate of 0.004 mm/min.

The specimens containing interfaces with different angles 
of 15°, 30°, 45°, 60°, 75° and 90°, and with different lengths 
of edge cracks are shown in Fig. 3a–h, respectively. These 
interface geometries are characterized by α and L param-
eters, to express the angles of mortar–mortar interfaces and 
the lengths of edge cracks, respectively.

2.2  Experimental Results of the SCB Tests on Mortar 
Specimens

The SCB specimens containing the edge cracks (with differ-
ent lengths) and also having different mortar–mortar inter-
face angles are properly made in the laboratory and prepared 
for experimental tests. Totally, three types of cracks were 
initiated in modelled samples i.e. tensile cracks, shear cracks 
and the mixed tensile/shear cracks. It was shown that when 
the angle of mortar–mortar interface was less than 30°, shear 
cracks were developed through this interface and, when 
the angle of mortar–mortar interface was 45°, the mixed 
mode cracks were produced in both of the interface and the 
intact material. On the other hand, when the angle of mor-
tar–mortar interface was more than 45°, the tensile cracks 
were developed in the intact material (Fig. 4a–h). It should 
be noted that when the notch (edge crack) was situated in 
mortar 2, only one tensile crack initiates from the notch tip 
and propagates parallel to the loading axis till it meets the 
sample boundary. Also, after the test, it was observed that 
the failure surface was smooth (without pulverized mate-
rial) which indicated a tensile failure process in the material 
sample.

2.3  Calibrating the SCB Models for the Numerical 
Simulation

The properties of the mortar–mortar interfaces in the 
SCB specimens were calibrated for PFC2D software. The 

calibrated normal and shear bonds were 4 MPa and the cali-
brated friction coefficient was 0.5. The contact bonds were 
used because of the low strength of mortar–mortar inter-
face. The porosity was kept as 0.08 and local damping in the 
numerical model was equal to 0.7. The failure patterns for 
the experimental tests and for the numerical modelling of the 
edge notch interaction with the mortar–mortar interface of 
0° angle are shown in Fig. 5a–c. As shown in these figures, 
the tensile failure may occur at the mortar–mortar interfaces 
of the SCB specimens in the laboratory tests and also in 
their numerical modelling counterparts. The values of the 
experimental and numerical tensile strengths of the interface 
were 0.15 MPa and 0.12 MPa, respectively. Therefore, it is 
evident that there is good accordance between the results 
obtained experimentally and numerically in this research 
work.

Figure 6a–c shows the failure patterns of the experimental 
tests and numerical simulations in the SCB specimens con-
sidering a crack length of 1 cm. In these figures, the black 
lines represent the tensile cracks. They also illustrate that 
the tensile fracture is dominant in the SCB specimens. The 
fracture toughness of the SCB specimens may be calculated 
from these experimental and numerical results. Again, these 
results demonstrate that there are good agreements between 
the experimentally obtained results with those approximated 
in the numerical outputs.

The calibrated PFC2D was adopted for the numerical 
solution of the Semi-Circular Bend Specimens with different 
angles of mortar–mortar interfaces and different edge crack’s 
lengths (Fig.7a–h). The approximated numerical results 
given in Fig. 7a–h allow for different angles of mortar–mor-
tar interfaces and edge crack’s lengths. These estimated 
results (i.e. Fig. 7a–e) were compared with those already 
given by the experimental tests (i.e. Fig. 4a–e), respectively. 
Then, tensile fracture toughness in the numerical simulation 
and tensile fracture toughness in the experimental test were 
obtained as 0.3 MPa√m and 0.28 MPa√m, respectively. 
It has been visualized that there is a relatively good agree-
ment between the numerically simulated results with those 
measured experimentally through laboratory tests.

3  Numerical Tests

3.1  Numerical Modelling of the Mortar–Mortar 
Interface and internal Joint

The numerical software, PFC2D, is calibrated for adopting 
the proper micro-parameters and used to simulate the SCB 
tests for investigating the effects of interaction between 
mortar–mortar interface and edge crack (open joint) on the 
breaking mechanism of the mortar (Figs. 8, 9, 10, 11, 12, 
13). In these analyses, the PFC specimen had the diameter 
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(a)α=15° and L=1cm (b)α=15° and L=2cm

(c) α=30° and L=3cm (d) α=45° and L=2cm

(e) α=60° and L=1cm (f) α=60° and L=3cm

(g) α=90° and L=1cm (h) α=75° and L=3cm

Fig. 3  Geometries show different angles of mortar–mortar interface and the lengths of edge cracks for the SCB specimens
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of 100 mm. The micro-parameters for mortar were applied 
into the model. The interfaces with different angles of 15°, 
30°, 45°, 60°, 75° and 90° were created in the models. 
Also, the edge cracks were created by deleting the particle 
bands at the specified location of the model. The lengths 
of different edge cracks (joints) varied as: 0.5, 1, 2, 3, 3.5 

and 4 cm, and their opening was kept constant as 1 mm. 
The force was applied at the upper and lower walls of the 
modelled specimen. This force was registered on the upper 
wall of the sample by considering the reaction forces on 
this wall. Totally 36 numerical tests were simulated in 
this study.

(a) α=15° and L=1cm (b) α=15° and L=2cm

(c) α=30° and L=3cm (d) α=45° and L=2cm

(e) α=60° and L=1cm (f) α=60° and L=3cm

(g) α=90° and L=1cm (h) α=75° and L=3cm

Fig. 4  Failure patterns occurred in the SCB Specimens with different mortar–mortar interface inclinations and various edge crack lengths
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3.2  Effects of Joints’ Lengths and Interface Angles 
on the Specimens’ Failure Process

The modelled SCB specimens containing various interface 
angles and different crack lengths are considered to study the 
breaking process of the brittle geo-materials.

3.2.1  The Simulated SCB Specimens Considering 15° 
Mortar–Mortar Interface Angle

Figure 14a–f shows the fracturing pattern of the modelled 
specimens with the interface angle of 15°. The length 
of joints was 0.5 cm (Fig. 14a), 1 cm (Fig. 14b), 2 cm 
(Fig. 14c), 3 cm (Fig. 14d), 3.5 cm (Fig. 14e) and 4 cm 
(Fig. 14f). The red and black lines demonstrate the wing 
(tensile) cracks and secondary (shear) cracks, respectively. 
As shown in Fig. 14, the failure process of the SCB speci-
mens is mainly due to the induced tensile cracks originat-
ing from the model interface and propagating along with it. 
Therefore, it can be deduced that in the SCB mortar speci-
mens, the tensile mode of fracture is more dominant com-
pared to that of the shear mode.

3.2.2  The Modelled Mortar–Mortar Interface with a 30° 
Interface Angle

Figure 15a–f demonstrates the mechanism of failure in the 
simulated mortar–mortar samples with 30° interface angle. 
In this analysis, the joints’ lengths were 0.5 cm (Fig. 15a), 
1 cm (Fig. 15b), 2 cm (Fig. 15c), 3 cm (Fig. 15d), 3.5 cm 
(Fig. 15e) and 4 cm (Fig. 15f). In these figures, the red lines 
show the induced primary cracks and the black lines show 
the secondary cracks. However, it has been shown that the 
tensile cracks are the main cause of failure in these modelled 
specimens.

3.2.3  The Modelled Mortar–Mortar Interfaces 
in the Specimens with 45° Interface Angle

Figure 16a–f demonstrates the mechanism of failure and the 
fracture patterns in the mortar–mortar interface of the simu-
lated SCB specimens with 45° interface angle. The lengths 
of joints were selected as 0.5 cm (Fig. 16a), 1 cm (Fig. 16b), 
2 cm (Fig. 16c), 3 cm (Fig. 16d), 3.5 cm (Fig. 16e) and 4 cm 
(Fig. 16f). In these figures, tensile cracks are denoted by red 

Fig. 5  Experimental and numerical mortar–mortar interfaces a experimental tensile failure at the interface, b numerically simulated interface, c 
numerically modelled tensile failure at the interface

Fig. 6  Tensile failure of mortar specimen a as observed in the experimental test, b the numerical modelling of the specimen, c Tensile failure in 
modelled specimen
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(a) α=15° and L=1cm (b) α=30° and L=2cm

(c) α=30° and L=4cm (d) α=45° and L=1cm

(e) α=15° and L=1cm (f) α=60° and L=3cm

(g) α=90° and L=1cm (h) α=75° and L=1cm

Fig. 7  Numerically (PFC2D) estimated failure process for the SCB 
specimens with different interface angles (α) and edge crack (joint) 
lengths (L); a α = 15° and L = 1 cm, b α = 30° and L = 2 cm, c α = 30° 

and L = 4  cm, d α = 45° and L = 1  cm, e α = 15° and L = 1  cm, f 
α = 60° and L = 3  cm, g α = 90° and L = 1  cm and h α = 75° and 
L = 1 cm
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lines and shear cracks are represented by black lines. The 
tensile mode of failures is more dominant at the interfaces 
where the induced tensile cracks get a chance to propagate 
in the modelled samples.

3.2.4  The Modelled Mortar–Mortar Interfaces in the SCB 
Specimens with 60° Interface Angle

Figure 17a–f illustrates the process of failure and fracture 
patterns in the simulated mortar–mortar interfaces of the 

SCB specimens with 60° interface angle. The length of 
joints was changed as 0.5 cm (Fig. 17a), 1 cm (Fig. 17b), 
2 cm (Fig. 17c), 3 cm (Fig. 17d), 3.5 cm (Fig. 17e) and 
4 cm (Fig. 17f). The black lines show the shear cracks, while 
the red lines denote the tensile cracks (induced in the mod-
elled samples during their failure). During the failure of the 
modelled sample, the tensile cracks initiate in the model 
interface and propagate along that. Also, the tensile cracks 
primarily originate from the tip of the edge crack and extend 
in the direction of the applied load toward the specimens’ 
boundaries.

Fig. 8  Model with interface angle of 15° and different joint (edge crack) lengths

Fig. 9  Model with interface angle of 30° and different joint lengths
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3.2.5  The Modelled Mortar–Mortar Interfaces in the SCB 
Specimens with 75° Interface Angle

Figure 18a–f demonstrates the failure, and fracture pro-
cess in the simulated mortar–mortar SCB specimens with 
75° interface angle. The length of joints (edge cracks) was 
0.5 cm (Fig. 18a), 1 cm (Fig. 18b), 2 cm (Fig. 18c), 3 cm 
(Fig. 18d), 3.5 cm (Fig. 18e) and 4 cm (Fig. 18f). Here, the 
red lines denote the tensile and the black lines exhibit the 
shear cracks at the mortar–mortar interfaces. In these mod-
els, the tensile cracks induced in the mortar–mortar interface 
of the modelled SCB specimens and propagate along the 
interface during the specimen’s failure. These primary wing 

(tensile) cracks may initiate from the tips of the cracks and 
extend parallel to the loading axis towards the specimens’ 
boundaries.

3.2.6  The Modelled Mortar–Mortar Interface Specimens 
with 90° Interface Angle

Figure 19a–f shows the fracture pattern of the mortar–mor-
tar interface in the SCB modelled samples containing 
interface angles of 90°. The length of joints (edge cracks) 
was 0.5 cm (Fig. 19a), 1 cm (Fig. 19b), 2 cm (Fig. 19c), 
3 cm (Fig. 19d), 3.5 cm (Fig. 19e) and 4 cm (Fig. 19f). In 
these models, the red lines denote the tensile cracks, while 

Fig. 10  Model with interface angle of 45° and different joint lengths

Fig. 11  Model with interface angle of 60° and different joint lengths
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shear cracks are elucidated by the black lines. These analy-
ses show that the estimated failure mechanism of the mod-
elled sample is mainly due to the initiated tensile cracks 
at the mortar–mortar interface which propagate along the 
interface of the modelled sample. Again, in this case, the 
primary wing cracks may start from the singular crack tips. 
They may further extend parallel to the loading axis and 
towards the model boundaries.

3.2.7  Modelling the Effects of Interface Angle and Length 
of Notch on the Failure of the SCB Specimens

Effects of the edge notch’s (crack’s) length and the mor-
tar–mortar interface’s angle on the maximum failure load 

of the numerically modelled SCB specimens are graphically 
shown in Fig. 20. These numerical results explain that there 
is no change in the failure load for the interface angles of 
15°, 30° and 45° as the joint length is increased but the fail-
ure load is decreased for the interface angles of 60°, 75° and 
90° by increasing the joint (edge crack) length. On the other 
hand, the breaking loads of the SCB models were increased 
as the interface angles increased. It reaches a constant value 
for the interface angles of more than 60°.

Figure 21 shows the effects of joint’s length and interface 
angle on the critical stress intensity factor, KIC. Then, KIC 
was numerically approximated for three different interface 
angles; 60°, 75° and 90° where the crack growth starts from 

Fig. 12  Model with interface angle of 75° and different joint lengths

Fig. 13  Models for interface angle of 90° and different edge crack’s lengths
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the crack tip. However, these results show that the fracture 
toughness was constant by increasing the joint length.

4  Conclusions

The interaction between the edge crack and mortar–mortar 
interface in semi-circular bend specimens was studied. Vari-
ous results were compared by performing the experimental 

tests and the numerical simulations on the SCB specimens 
with different angles of mortar–mortar interface and dif-
ferent joint’s lengths. The particle flow code for solving 
two-dimensional problems in geo-mechanics (PFC2D) was 
adopted to model the SCB specimens. The SCB Tests (with 
different angles of mortar–mortar interface and lengths 
of the edge cracks (joints)) were conducted in the labora-
tory. The accuracy of the approximated numerical results 
was validated by comparing them with their corresponding 

Fig. 14  Models considering interface angle of 15° and different joint lengths

Fig. 15  Models considering interface angle of 30° and different joint lengths
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experimental values. However, the following conclusions 
may be gained from the results of these analyses:

• Three types of cracks are initiated in the SCB mortar 
samples i.e. tensile cracks, shear cracks and mixed ten-
sile/shear cracks. When the angle of mortar–mortar inter-
face is less than 30°, shear cracks are developed through 
the interface. When the angle of mortar–mortar interface 
is 45°, the mixed mode cracks are developed in both of 

the interface and intact material. When the angle of mor-
tar–mortar interface is more than 45°, tensile cracks are 
dominantly developed in the intact material.

• The experimental and numerical failure patterns of SCB 
specimens with interface angles of 15°, 30° and 45° show 
that one wing crack starts from the edge crack tip and 
propagates through the model interface till reaches the 
model boundary.

Fig. 16  Model with interface angle of 45° and different joint lengths

Fig. 17  Models with interface angle of 60° and different joint’s (edge crack’s) lengths
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• The failure patterns of SCB specimens with interface 
angles of 60°, 75° and 90°, also demonstrate that wing 
cracks may initiate from the tip of the original cracks 
(joint) and propagate through the intact material till 
they meet the model boundary.

• Also, in most cases, a tensile wing crack may start its 
initiation from the crack tip and propagate towards the 
applied loading till touch the model boundary.

• When the interface angles are 15°, 30° and 45° (i.e. less 
than about 50°), the failure load approximately reaches 
a constant value as the joint’s length increases.

• The failure load in the SCB test samples increased at 
the interface angles of 60°, 75° and 90° by increasing 
the joint’s length

• As the inclination angle of the joint increased, the 
breaking load is also increased but it reaches a con-
stant value when the inclination angles are above 60°.

• The fracture toughness is nearly constant as the joint’s 
length is increased in the SCB samples.

• The corresponding failure processes are similar in both 
of the experimental tests and numerical simulations of 
the SCB mortar specimens.

Fig. 18  Models with interface angle of 75° and different joint lengths

Fig. 19  Model with interface angle of 90° and different joint lengths
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