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Abstract
Evaluation of hydrological variables plays a vital role in watershed management studies. On top of that, Missouri River Basin 
system is well known as a large water storage capacity in the USA. In this study, multifractality, statistical features, and ran-
dom behavior of daily flow discharge, suspended sediment discharge, precipitation, and groundwater level were analyzed in 
the two stations of Missouri River Basin, USA. Detrended fluctuation analysis and multifractal detrended fluctuation analysis 
were applied in order to evaluate seasonal trends, random behavior, self-affinity features, and the complexity of behavior 
types [fractional Brownian motion (fBm) and fractional Gaussian noise (fGn)] of time series. Statistical techniques, includ-
ing the KPSS test, heteroscedasticity test, and autocorrelation function, were utilized to analyze statistical characteristics of 
repeating patterns of the datasets. Results of fractal and statistical analyses indicated that flow discharge, suspended sedi-
ment discharge, and groundwater time series were following self-affinity and fBm characteristics in a non-stationary and 
heteroscedastic state. Precipitation time series were not self-affine and represented fGn characteristics in a stationary and 
homoscedastic state. Eventually, this study can be proposed as an applicable method to distinguish the behavior of rivers 
and anthropogenic impacts in the watershed for effective hydrological planning management.
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1  Introduction

Hydrological processes are, by nature, nonlinear systems 
showing different behaviors at a different time and space 
scales (Shang and Kamae 2005). The statistical behavior of 
such systems may follow the scaling law with a fractional 

non-integer scaling exponent. Self-similarity and self-affin-
ity are common terms to explain this behavior. By defini-
tion, self-affinity is a disordered type of self-similarity in 
which it comprises different scaled identical self-similar 
substructures (Kantelhardt 2008). For times series analy-
sis, self-affinity is more applicable to specify the essential 
characteristics of time series (e.g., Malamud and Turcotte 
1999; Kantelhardt 2008). For less complex systems, a single 
scaling exponent is capable of describing the fractal fea-
tures, which are counted as monofractals, whereas in the 
more complex and most dynamic ones, multifractality dem-
onstrates the requirements of numerous scaling exponents 
(Kantelhardt et al. 2002).

Fractal analysis has been employed as an appealing 
model in the recent decades (Blöschl and Sivapalan 1995; 
Kantelhardt 2008; Maskey et al. 2015; Fallico et al. 2020) 
to quantify the variability of soil parameters as a function 
of space (Ghanbarian-Alavijeh et al. 2010), assess vari-
ability in the stream network structure (De Bartolo et al. 
2000), evaluate the fractal performance of precipitation as 
a function of time and space (e.g., Tessier et al. 1993; Over 
and Gupta 1994; Breslin and Belward 1999; Sivakumar 
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2000; García-Marín et al. 2008), evaluate fractal behavior 
of groundwater level fluctuations (e.g., Li and Zhang 2007; 
Rakhshandehroo and Amiri 2012; Joelson et al. 2016; Yu 
et al. 2016), and analyze the fractal scaling of groundwa-
ter dynamics in confined aquifers (Tu et al. 2017). Pre-
cipitation, surface water, and groundwater resources are 
vital parts of the hydrological cycle and together play an 
essential role in watershed management. Shang and Kamae 
(2005) confirmed the existence of multifractal behavior 
and long-range dependence on the sediment transportation 
process in the Yellow River basin in China using 31 years 
of data. Zhang et al. (2009a; b) identified the self-affinity 
of streamflow in the East River of China. They found cli-
mate change and precipitation variations to be the main 
factors contributing to multifractal behavior in river dis-
charge. Li et al. (2015) studied fractal and statistical char-
acteristics at four hydrological stations along the Yellow 
River in China. They showed long-range correlation and 
sensitivity of multifractal formation against a large mag-
nitude of streamflow time series fluctuations.

Detrended fluctuation analysis (DFA) and multifractal 
detrended fluctuation analysis (MF-DFA) have been widely 
applied for assessment of fractal scaling properties of flow 
discharge and precipitation time series (e.g., Matsoukas et al. 
2000; Kantelhardt et al. 2002; Livina et al. 2003; Kantel-
hardt et al. 2006; Koscielny-Bunde et al. 2006; Zhang et al. 
2008, 2009a, b; Labat et al. 2011; Zhou et al. 2014; Maskey 
et al. 2016; Tan and Gan 2017). The MF-DFA can detect the 
linear–nonlinear long-term memory of the time series, such 
as precipitation and river runoffs (Bunde et al. 2012). Also, 
many researchers have recently employed these methods 
for assessing air quality (e.g., Xue et al. 2015; Carmona-
Cabezas et al. 2019). Furthermore, MF-DFA is a somewhat 
practical method for evaluating multifractal exponent spectra 
(Koscielny-Bunde et al. 2006; Czarnecki and Grech 2009).

Statistical procedures such as the Kwiatkowski, Phillips, 
Schmidt, and Shin (KPSS) test, besides the heteroscedas-
ticity test and autocorrelation function, can help identify 
essential characteristics of various datasets (Shumway and 
Stoffer 2005). The KPSS test signifies the stationarity state 
commonly used to determine the variation of the mean value 
and variance of a time series, which can present underly-
ing physical mechanisms in identifying the state of series 
(Kwiatkowski et al. 1992; Rakhshandehroo et al. 2018; Fool-
adi et al. 2021). Heteroscedasticity tests (Breusch–Pagan and 
White tests) have been used to determine the error variance 
state in the time series, which can be categorized into hetero-
scedastic or homoscedastic types (e.g., Breusch and Pagan 
1979; White 1980; Koenker 1981). Subsequently, assessing 
self-affinity behavior in the time series can be delineated by 
applying the autocorrelation function. It has been widely 
employed to evaluate any heterogeneity among observa-
tions as a function of the lag time length to distinguish the 

existence of any probable correlation between time series 
(Kwiatkowski et al. 1992; Rakhshandehroo et al. 2018).

This study aims to examine the scaling behavior of time 
series incorporating fractal and statistical methods. Despite 
the high ability of fractal analysis in identifying the fluc-
tuation features of time series, better clarification would be 
achieved by carrying out a complementary technique con-
taining statistical tests (KPSS test, heteroscedasticity test, 
and autocorrelation function). As the concept of statistical 
techniques, these tests can describe the general properties of 
signals in general terms, whereas the fractal approaches are 
capable of obtaining more in-depth features of time series. 
To this end, four hydrological variables, including flow and 
suspended sediment discharge, precipitation, and ground-
water level datasets of two stations on the Missouri River in 
the USA, were selected. The scaling exponent of three types 
of signals containing the original plus reversed and shuffled 
data of the time series has been calculated to investigate 
the effects of the fluctuation function on multifractal behav-
iors. Eventually, the results of multifractal besides statistical 
techniques were interpreted to assess the scaling behavior of 
mentioned time series at two Missouri River stations.

2 � Materials and Methods

2.1 � Data and Study Area

Two stream gauges were studied on the Missouri River 
Basin (MRB)—the upstream station at St. Joseph, located 
on the river where it enters Missouri, and the downstream 
station at Hermann, located close to the point where the 
Missouri River joins the Mississippi River (Fig. 1). The Mis-
souri River is the longest river in the USA and is considered 
a permanent river due to several major tributaries in its basin 
(e.g., Galat et al. 2005; Mitsch and Day 2006; Ahiablame 
et al. 2017). Several dams have been built on the main river 
and its tributaries, which may result in meaningful changes 
in the basin (Rahmani et al. 2018). These constructed dams 
may have many varieties of influence on the hydrological 
behavior of Missouri River watersheds. The two study sta-
tions are located in an area with fewer dams and anthropo-
genic changes. Data were available for fractal and statistical 
analyses for all four parameters at the two stations.

Daily precipitation data were downloaded from the cli-
MATE (https://​mrcc.​illin​ois.​edu/​CLIMA​TE), and daily 
groundwater level, flow discharge and suspended sedi-
ment discharge were downloaded from the United States 
Geological Survey (USGS; https://​www.​usgs.​gov/​missi​
on-​areas/​water-​resou​rces). The St. Joseph station is located 
at 39°45′12″ latitude and 94°51′25″ longitude with an 
elevation of 241 m above mean sea level and has 1105 
square kilometers of drainage area. It includes 3040 field 

https://mrcc.illinois.edu/CLIMATE
https://www.usgs.gov/mission-areas/water-resources
https://www.usgs.gov/mission-areas/water-resources
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measurement data per day (for 03/04/2009–06/29/2017). 
The Hermann station is located at 38°42′35″ latitude and 
91°26′19″ longitude with an elevation of 147  m above 
mean sea level and has 1353 square kilometers of drainage 
area. It includes 3312 days of field measurement data (for 
10/01/2008–10/25/2017). Each station has more than 3000 
data points for the analysis. The time series of four datasets 
at both stations are shown in Fig. 2.

2.2 � Detrended and Multifractal Detrended 
Fluctuation Analysis (DFA and MF‑DFA)

Based on the random walk theory, DFA was introduced to 
determine the fluctuation exponent of the time series and 

detect the reliability of long-range correlations in a non-sta-
tionary series (Peng et al. 1994). The DFA method is presented 
as (Kantelhardt et al. 2001; Matos et al. 2004; Kantelhardt 
2008):

where x(i) is the data time series, x is the average of the time 
series, and y(j) is the integrated time series. The integrated 
time series can be divided into Nl = N∕l non-overlapping 
segments of length l where N and l are the total number of 
time series and length of each time segment, respectively. 
The length of each time segment, l , is usually proposed to 

(1)y(j) =

j
∑

i=1

[

x(i) − x
]

, j = 1, 2, 3,… ,N

Fig. 1   Location of Hermann and St. Joseph stations in MRB
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St. Joseph station Hermann station

Fig. 2   Time series of datasets in St. Joseph and Hermann stations of MRB
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be between 10 andN∕4 (Kantelhardt et al. 2002). The least-
square fit is made by determining the variance for each of 
the segments υ = 1, 2,…, N:

where Yn
v
(j) is the fitting polynomial in the segment υ of 

the order n ( n = 1, 2, … produce DFA1, DFA2, …). The 
second-order fluctuation function or concisely fluctuation 
function can be given by the square root of the average of 
all segments:

Plotting log
(

F2(l)
)

 versus log(l) presents a straight line 
(for DFA1) whose slope, � , is the fluctuation exponent that 
revealed the seasonality of time series (e.g., Matos et al. 
2004; Rakhshandehroo and Amiri 2012). Kantelhardt et al. 
(2002) developed MF-DFA as an extension of DFA. Equa-
tion (3) may be generalized as the qth-order fluctuation 
function:

where q may take any real and nonzero value. Analyzing 
log–log plots of Fq(l) versus l for each q provides the scaling 
behavior of the qth-order fluctuation functions. If the series 
are long-range power-law correlated, then Fq(l) increases for 
large values of l as a power law u:

Different orders of DFA, such as linear (DFA1), quad-
ratic (DFA2), or higher-order polynomials, are known as 
scaling exponent h(q) , presenting different detrending capa-
bilities, which may be used for detecting trends of the time 
series. Thus, the standard DFA is retrieved for q = 2 , so, 
h(2) = � , also mentioned as Hurst exponent in the litera-
ture (Koscielny-Bunde et al. 2006). Most of the natural time 
series indicate complex behavior due to long-term instabil-
ity, whose correlation attributes can be specified by the 
Hurst exponent (Dubuc et al. 1989; Breslin and Belward 
1999; Morency and Chapleau 2003). In definition, the scal-
ing exponent h(q) for q = 2 is identical to the Hurst expo-
nent, while h(q) for the whole acceptable value of q is called 
a generalized Hurst exponent (Kantelhardt et al. 2002). 
Also, time series can be established as long-range corre-
lated (persistent) if h(2) > 0.5 , or long-range uncorrelated 
(anti-persistent) if h(2) < 0.5 and h(2) = 0.5 which depicts an 
uncorrelated time series. Furthermore, the value of h(2) < 1 

(2)F2(�, l) =
1

l

l
∑

j=1

[y((� − 1)l + j) − Yn
�
(j)]2

(3)F2(l) =

{

1

Nl

Nl
∑

�=1

[

F2(�, l)
]

}1∕2

(4)Fq(l) =

{

1

Nl

Nl
∑

�=1

[

F2(�, l)
]q∕2

}1∕q

(5)Fq(l) ∝ lh(q)

describes the fractional Gaussian noise process (fGn) (sta-
tionary signals) and h(2) ≥ 1 classifies the time series as a 
fractional Brownian motion process (fBm) (non-stationary 
signals) (Mandelbrot and Van Ness 1968; Kantelhardt et al. 
2002, 2006; Movahed and Hermanis 2008; Yu et al. 2016). 
The dependency of h(q) on q implies multifractal behavior 
of the time series, while in monofractal behavior, h(q) is 
independent of various values of q . In terms of positive q , 
scaling exponent h(q) will represent the existence of large 
fluctuations in the scaling behavior of segments, while nega-
tive h(q) describes the scaling behavior of segments with 
mild fluctuations. The plots of h(q) versus q can be covered 
with a two-parameter equation (Kantelhardt 2006):

Parameters a and b are responsible for multifractal model 
properties. For the monofractal time series, h(q) does not 
depend on q . However, if different fluctuation exponents are 
required to represent different parts of a series fluctuation, 
then multifractal behavior exists and h(q) strongly depends 
on q . The multifractality level can be introduced by the 
Holder exponent spectra (Feder 1988; Dimri 2005). Holder 
exponent ( � ) and Holder spectrum (or singularity spectrum 
f (�) ) can be calculated as (Kantelhardt et al. 2002):

The form of the singularity spectrum in a multifractal 
dataset is similar to an inverted parabola. The opening width 
of the singularity spectrum can determine the multifractality 
level of the signal (Rak and Zięba 2015). The multifractal-
ity level of the time series can be defined by the difference 
between maximum and minimum values of �:

where �max is the maximum value of the Holder exponent 
and �min is the minimum one. Considering the represented 
multifractal model in Eq. (6), Koscielny and Bunde (2006) 
expressed a formula for determining Δ� as a function of 
parameters a and b:

Hence, in moving from monofractal to multifractal 
behavior, Δ� indicates continuous drops. In other words, in 
signals with a high level of multifractality, the f (�) spectrum 
is extended (Czarnecki and Grech 2010).

(6)h(q) =
1

q
−

ln(aq+bq)

q ln(2)

(7)� = h(q) + q
d(h(q))

d(q)

(8)f (�) = q[�−h(q)] + 1

(9)Δ� = �max−�min

(10)Δ� =
ln a− ln b

ln(2)



2410	 Iranian Journal of Science and Technology, Transactions of Civil Engineering (2022) 46:2405–2423

1 3

2.3 � Statistical Methods

2.3.1 � Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) Test 
of Stationary

The KPSS test was presented by Kwiatkowski, Phillips, 
Schmidt, and Shin (Kwiatkowski et al. 1992). This test 
employs a null hypothesis to assess the stationary trend of 
a univariate time series against the alternative hypothesis 
of a non-stationary characteristic. This process signifies the 
nonstationary unit root based on linear regression. In other 
words, the series are stationary when statistical properties, 
such as the variance ( �2 ) and mean, have no statistically 
significant change over time. In the null hypothesis, �2 = 0 
implies a constant value for a random walk term and 𝜎2

> 0 
is the alternative hypothesis that explains the unit root in the 
random walk. The KPSS test was conducted according to a 
p value with an alpha of 0.05.

2.3.2 � Heteroscedasticity test

Heteroscedasticity was utilized to determine the variance 
of the residual errors with respect to a linear regression 
of the dataset, which was begun using a general, autore-
gressive integrated moving average (ARIMA) model. This 
technique often uses Breusch–Pagan and White tests for 
evaluating residual errors (e.g., Breusch and Pagan 1979; 
White 1980; Koenker 1981; Wooldridge 2009; Rakhshan-
dehroo et al. 2018). Breusch and Pagan (1979) calculated 

the error variance as �2
i
= �

2h
(

zi�
)

 , where zi is a vector of 
independent variables. If � = 0 ( � is significance level), 
the series has a homoscedasticity type, and for � ≠ 0 , the 
series has a heteroscedasticity type. White (1980) proposed 
a test similar to Breusch–Pagan, which considers the het-
eroscedasticity procedure to be a function of one or more 
independent variables and allows them to have a nonlinear 
and interactive effect on error variance. These two tests 
(Breusch–Pagan and White tests) are based on a p value 
with an alpha of 0.05.

2.3.3 � Autocorrelation Function

The autocorrelation function can be used to determine 
the correlation coefficient over a time series, which is a 
mutual correlation of a signal in a time series with itself. 
Furthermore, it can detect non-randomness in the data and 
identify an appropriate time series model if the data are 
not random (Box et al. 2015). The autocorrelation coef-
ficient, rk , of a time series with a specified lag time, k , is 
defined as:

where x is the average of the series and xt is the observed 
value at time t = 1, 2, 3, … ,N . A flowchart is presented in 
Fig. 3, showing all steps followed in this study.

(11)rk =

∑N−k

t=1

�

xt − x
��

xt+k − x
�

∑N

t=1

�

xt − x
�2

Groundwater level

Time series (Herman station and St. Joseph station)

Suspended sediment dischargeFlow discharge Precipitation

Multifractal Detrended Fluctuation 
Analysis, (Mf-DFA) method

Detrended Fluctuation Analysis,
(DFA) method

fBm behavior

fGn behavior

Holder exponent analysis  (α)

Large opening of Δα 

small opening of Δα  

Multifractal behavior

Monofractal behavior

Autocorrelation function

Heteroscedasticity test

KPSS test of stationary

StationaryNonstationary

Homoscedasticity

Heteroscedasticity

YesNo
λ < 0.95 ~ 1

Yes

No

Fractal dimension analysis 
(D = 3 – λ)

Statistical method

P-value > 0.05

P-value > 0.05

Yes

No

Fractal method

Hurst exponent analysis 
(h (q))

DFA and MF-DFA methods

Datasets

Fig. 3   Flowchart of the conceptual model of steps followed for the study



2411Iranian Journal of Science and Technology, Transactions of Civil Engineering (2022) 46:2405–2423	

1 3

3 � Interpretation of Results

3.1 � Fractal Methods

3.1.1 � Detrended Fluctuation Analysis (DFA) of Time Series

Flow discharge, suspended sediment discharge, precipita-
tion, and groundwater level datasets were analyzed for more 
than 3000 field measurements of daily information for St. 
Joseph and Hermann gauging stations. As mentioned earlier, 
DFA is capable of distinguishing the effect of seasonal oscil-
latory trends (scaling behavior) from intrinsic fluctuations 
in the time series such that those were revealed for some 
other signals of natural oscillating phenomena, including 
temperature (Kantelhardt et al. 2001). In other words, DFA 
detects an oscillatory trend in the time series of datasets for 
l > x, where x is the beginning day of starting perceptible 
oscillations. Accordingly, the DFA of the mentioned time 
series represents one scaling region (one slope), which delin-
eates one seasonality time point (one point of change in the 
seasonality behavior). Having one scaling region in DFA 
plots of the time series can imply some notable character-
istics of the study area, such as size of the river or the vast-
ness of drainage area (Koscielny-Bunde et al. 2006; Hirpa 
et al. 2010). The scaling behavior of the four mentioned 
time series with the equation of the straight fitted line for 
the two stations is illustrated in Fig. 4, and the values of 
the seasonality time point ( x ) and fluctuation exponent ( � ) 
are reported in Table 1. The log–log plot of F2(l) versus l 
is divided into two seasonal regions by the seasonality time 
point. The approximate location of the seasonality time point 
is specified where the scattering of F2(l) versus l is ended, 
converging to a regular pattern after this point (Fig. 4).

Estimated values of the seasonality time point for flow 
discharge, suspended sediment discharge, precipitation, 
and groundwater level in St. Joseph are 165, 250, 250, and 
160; and those in Hermann station are 220, 260, 290, and 
260, respectively. Seasonality points patently indicate the 
seasonal cycle of intrinsic fluctuations in each time series. 
Describing differences and similarities of the seasonality 
time point of both stations can clarify the period of the sea-
sonal oscillatory trend in the time series mentioned above. 
St. Joseph's flow discharge represents a shorter seasonal 
cycle period than at Hermann, suggesting that intrinsic fluc-
tuations of the flow discharge time series at the St. Joseph 
station will be repeated every 165 days, which means large 
fluctuations will be occurring twice in a hydrological year. 
The suspended sediment discharge of the two stations rep-
resents similar periodicity properties. For the precipitation 
time series, the difference between the seasonality time point 
of both stations is around 30 days, which explains a similar 
perceptible behavior in the two stations. Furthermore, the 

DFA plots of the precipitation time series are more scat-
tered than the other time series, demonstrating a randomness 
characteristic and probably its effectiveness from external 
factors such as climate change. The difference in seasonality 
points of the groundwater level time series at both stations 
is around 100 days, considerably more than the other cases.

In addition, the Hurst exponent can also be used to under-
stand the fractal behavior of signals with the DFA method. 
The Hurst exponent � (or h(2) ) is the slope of the DFA plot 
(Fig. 4), and fractal dimension, D , is defined as D = 3−� . 
The Hurst exponent and fractal dimension describe the com-
plexity and irregularity of signals in series, and above all, 
DFA has the capability to distinguish another attribute of the 
time series, such as types of signal probability (fGn of fBm) 
or stationarity state regarding the Hurst exponent (Hurst 
1965; Mandelbrot and Van Ness 1968, Kantelhardt 2002). 
The Hurst exponent of the above ordered time series calcu-
lated for the St. Joseph station is 1.30, 0.97, 0.91, and 1.38; 
and for Hermann is 1.14, 0.99, 0.72, and 1.35, respectively 
(Table 1). It can be denoted that all of the time series at the 
two gauging stations indicate persistent long-range correla-
tion ( 𝜆 > 0.5 ). Furthermore, the flow discharge, suspended 
sediment discharge, and groundwater level time series can 
be classified as an fBm process with non-stationary behavior 
due to � ≥ 1 , whereas the minimum Hurst exponent values 
of the precipitation at both stations are regarded as an fGn 
process with stationary behavior because of 𝜆 < 1 . The char-
acteristics of four mentioned hydrological signals have been 
reported in previous studies, such as flow discharge in Move-
hed and Hermanis (2007), multifractal assessment of the 
precipitation time series in Zhang et al. (2019), suspended 
sediment discharge fractal in Shang and Kamae (2005), and 
the groundwater level time series in Yu et al. (2016).

3.1.2 � Multifractal Detrended Fluctuation Analysis (MF‑DFA) 
of Time Series

MF-DFA was hired to specify monofractal or multifrac-
tal characteristics of the effects of various moments in the 
detrended fluctuation functions. The multifractal character-
istics of the mentioned time series can be discussed using 
different parameters of the MF-DFA, i.e., fluctuation func-
tion, Hurst exponent, and singularity spectrum, as illustrated 
in Figs. 5, 6, and 7. The effects of fluctuation function were 
obtained using different values of q as the log–log plots of 
Fq(l) versus a specified timescale l (Fig. 5). The results pre-
sent that different values of generalized Hurst exponent h(q) 
strongly depend on the values of q , denoting the existence 
of multifractal sources in the time series (Fig. 6). Also, the 
variation of h(q) was much higher at smaller timescales, rep-
resenting a higher degree of multifractality in smaller time-
scales of all the time series. The negative values of q indicate 
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(b) (b)

(c) (c)

(d) (d)
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the existence of small fluctuations in the time series and led 
to a higher generalized Hurst exponent value (steeper slope). 
Hence, the positive values of q imply large fluctuations and 
smaller h(q) values (milder slope) as frequently observed in 
multifractal time series (Hekmatzadeh et al. 2020).

Comparing each of the mentioned time series of the two 
stations can help comprehend variations in each time series’s 
behavioral complexity. Consequently, different multifractal 
behaviors in all of the time series have been detected using 
MF-DFA. For the St. Joseph station, the fluctuation func-
tion with different values of q for various moments does 
not converge together in the large timescales, indicating 
the tendency of flow discharge time series toward the less 
multifractal behavior in large fluctuations. In contrast, the 
branches of detrended fluctuation functions of flow dis-
charge in the Hermann station converge together in large 
timescales, which denotes the existence of multifractal 
sources in the large and small fluctuations and the following 
long-range correlation behavior. Also, the suspended sedi-
ment discharge of both stations exhibits the same pattern 
of converging in large fluctuations, indicating a long-range 
correlation. However, the pattern of small fluctuations is not 
similar in both stations that demonstrate different behavior in 
small fluctuations of the suspended sediment discharge time 
series at the upstream of each station.

A brief comparison between the flow discharge and sus-
pended sediment discharge time series of both stations may 
reveal a relationship between the existence of two crosso-
ver points in the small fluctuations (negative q ) of the flow 
discharge at St. Joseph and flow discharge along with sus-
pended sediment discharge at Hermann. The first and second 
crossover points in the flow discharge time series at the St. 
Joseph station can be specified approximately at day 100 
( log 2 ) and 200 ( log 2.3 ), while those values at the Hermann 
station can be considered the same as the St. Joseph crosso-
ver point values with less precision. With the suspended 
sediment discharge, these points have been shifted forward 
and can almost be determined by days 158 ( log 2.2 ) and 
316 ( log 2.5 ), respectively. So first, this means the same 
value for the crossover points of the flow discharge time 
series demonstrates the same pattern of small fluctuations 
in both stations. Secondly, the lag time between the crosso-
ver points of the time series can delineate the occurrence 
of some extreme hydrological events (such as flooding due 
to an increase in the flow discharge values) at the upstream 
station and then tracking its effects on the suspended sedi-
ment discharge along Missouri River to the downstream sta-
tion. In the literature, similar results for flow discharge have 

been presented by Emadi et al. (2016). By applying DFA 
and MF-DFA on ten hydrometric stations at the Karkheh 
watershed in western Iran, the team investigated the multi-
fractal behavior of a daily streamflow time series and found 
that streamflow follows multifractal behavior with an annual 
non-significance level, denoting a long-range correlation.

The precipitation time series at both stations show a slightly 
different fluctuation pattern. The branches of fluctuation func-
tions in MF-DFA plots of both stations converge on a large 
timescale, indicating a long-range correlation. However, slight 
variations in the slope of the branches of the fluctuation func-
tions related to small and large fluctuations (negative and posi-
tive values of q ) may describe less strength of multifractality, 
particularly in the precipitation time series of Hermann station. 
This kind of fluctuation pattern has been reported through pre-
vious studies, probably due to the high randomness character-
istics of the precipitation time series (Zhang et al. 2019).

The groundwater level at both stations exhibits the same 
fluctuation pattern regarding different negative and positive 
q-order moments. In this regard, the fluctuation patterns 
related to negative values of q are showing two crossover 
points approximately at days 100 ( log 2 ) and 158 ( log 2.2 ), 
which indicates the time period of alteration in the small 
fluctuation patterns. However, the groundwater time series 
shows a long-term persistence correlation due to the con-
vergence of all branches of the fluctuation function at larger 
timescales, such as the flow discharge and suspended sedi-
ment discharge time series. It should be mentioned that pre-
vious studies, such as Rakhshandehroo and Amiri (2012), 
have reported the same fluctuation function pattern related to 
different q-order moments of groundwater level time series.

Another customary way to describe multifractality fea-
tures of the time series is to assess variations of the general-
ized Hurst exponent h(q) as a function of different values 
of q . In order to investigate sources of multifractality, the 
plots of h(q) versus q have been calculated for three types of 
sorting time series—original, reversed, and shuffled data. 
The sources of the multifractal behavior in most hydrologi-
cal time series have been predominantly introduced in two 
types. The first is the broadness of the probability density 
function (PDF) of the time series known as the Noah phe-
nomenon. The second is the long-range correlation of the 
Joseph phenomenon’s time series (Mandelbrot et al. 1968). 
The plots of original data in Fig. 6 confirm that in the time 
series, as mentioned earlier, h(q) decreases continuously 
as q increases, which can be considered an indication of 
nonlinear memory and existence of multifractality (Bunde 
et al. 2012). Comparing the original data with the reverse 
ordering of the time series data can also be pivotal in authen-
ticating the existence of multifractality in the original data 
arrangement. Moreover, the shuffling time series has been 
introduced in the literature as a straightforward method 
to detect multifractal behavior. The shuffling process can 

Fig. 4   Results of detrended fluctuation analysis (DFA) for quantifi-
cation of the fluctuation exponent (λ) of original datasets for a flow 
discharge and b suspended sediment discharge, c precipitation, and d 
groundwater levels at St. Joseph and Hermann stations in the MRB

◂
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remove multifractality caused by the long-range correlation. 
It can transform a multifractal time series into a monofractal 
signal without changing the broadness of the PDF. Of note 
in monofractal signals, h(q) is constantly equal to 0.5 as a 
horizontal line related to different values of q , illustrating 
the self-affinity of the time series over different timescales 
(Wu et al. 2018; Czarnecki and Grech 2010). As can be seen 
in most of the time series mentioned earlier, the slope of 
the curves linked to the negative values of q is steeper than 
the slope of the curves obtained from the positive values 
of q , describing that the smaller fluctuations may appear 
more often than large fluctuations. This behavior has been 
detected in the signals as mentioned above, which demon-
strates the high value of R2 with the standard multifractal 
cascade model. It should be noted that segments of the time 
series with small variances will govern the fluctuation func-
tion when the q value is negative. Therefore, the calculated 
values of h(q) linked to negative q values magnify the scaling 
properties of the segments with small fluctuations, and the 
segments with large variances will govern the fluctuation 
function regarding the positive values of q (Katnelhardt et al. 
2002).

The indispensable point that can illustrate the degree of 
multifractality is Eq. (6), similar to the well-known mul-
tifractal cascade model and appropriate for characterizing 
river runoff’s multifractality (Feder 1988; Dimri 2005; 
Koscielny-Bunde et al. 2006). Accordingly, the parameters 
a , b , and R2 values of each dataset at both gauging stations 
were determined by applying a curve-fitting procedure on 
h(q) spectra in the range −5 ≤ q ≤ 5 , which can be speci-
fied as a multifractal fingerprint for the considered time 
series (see Fig. 6 and Table 1). The parameters of Eq. (6) 
are particularly essential for assessing the flow discharge, 
suspended sediment discharge, precipitation, and ground-
water level models. For example, in the literature, a flow 
discharge artificial signal (as an input dataset) can be gener-
ated using those parameters, and it can be studied (output of 
model) on the basis of them. It should be noted that those 
parameters have been calculated from the asymptotic part of 
the generalized fluctuation function, denoting that they are 
not affected by seasonal dependencies (Kantelhardt 2006; 
Koscienly-Bunde 2006). In other words, conformity of the 
multifractal plot of h(q) versus q with the multifractal cas-
cade model presented in Eq. (6) signifies the adequate ability 
of the model in explaining the multifractal behavior of the 
signal. In contrast, unconformity with this model can deline-
ate a minor degree of multifractality, denoting influences of 
some external factors on signal records.

In moving from negative toward positive values of q , 
more sensible fits of the original data with higher R2 val-
ues were carried out for flow discharge, suspended sedi-
ment discharge, and groundwater level time series of both 

stations, whereas the lower R2 values of the precipitation 
were obtained, especially at the Hermann station. As a 
consequence, the lesser R2 value of Hermann station’s 
precipitation can describe the more complex behavior of 
this time series and assure the influence of some external 
factors such as extreme weather events on this signal. The 
conformity of h(q) versus q plots of reversed data compared 
to the original data can indicate the degree of multifractal-
ity in signals. Stronger multifractality would be found in 
the time series showing similar variations between origi-
nal and reversed data; however, they are not precisely the 
same in most of the h(q) versus q plots, indicating different 
patterns in small fluctuations (negative q ) and the same 
pattern in large fluctuations (positive q ). With reference 
to multifractal sources, the h(q) values of shuffled data 
related to different q are approximately equal to 0.5, which 
can delineate the self-affine characteristics of the men-
tioned time series, except the precipitation due to shuffled 
data h(q) variations, especially at Hermann station. Unlike 
the multifractal behavior of the mentioned time series of 
both stations, Hermann precipitation signal moves from 
monofractal behavior in small fluctuations to multifractal 
behavior in large fluctuations, which is entirely different 
from the precipitation at St. Joseph station. It shows that 
multifractal properties in the flow discharge, suspended 
sediment discharge, and groundwater level of both stations 
predominantly arise from different long-range correlations 
of the time series. In contrast, multifractality in the pre-
cipitation time series may be governed by other sources, 
such as the broadness of the PDF, which can originate 
from more complex behavior of this kind of signal.

The level or strength of the multifractality of the signals 
can be addressed using Holder exponent (�) versus f (�) 
called Holder spectrum, singularity spectrum, or multi-
fractal spectrum. The asymmetric multifractal spectrums 
corresponding to the time series mentioned earlier at St. 
Joseph and Hermann gauging stations are illustrated in 
Fig. 7. Also, the multifractal characteristics of the men-
tioned time series are reported in Table 1. Considering 
Eq. (7), the term of d(h(q))∕dq experienced negative values 
due to the decrease in h(q) versus q , and also the value of � 
and f (�) at q = 0 are equal to h(0) and f (�) = 1 (see Eq. 8), 
respectively, which denotes that the left side of the Holder 
spectrum is related to the positive q values and the right 
side is associated with the negative values of q.

In the flow discharge, suspended sediment discharge, 
and groundwater level diagrams, the Holder spectrums are 
truncated from the left side and have longer tails at the 
right, clarifying that they possess multifractal structures 
that are more sensitive to small fluctuations. In contrast, 
the singularity spectrum of the precipitation at St. Joseph 
is more associated with large fluctuations because it has a 
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longer tail at the left side and is truncated from the right. 
At the same time, at Hermann station, it does not emerge 
as an inverted parabola. It only has the left-side tail, indi-
cating a multifractal pattern in large fluctuations in addi-
tion to monofractal behavior in small fluctuations. Fur-
thermore, Eqs. (9) and (10) can explain the multifractality 
richness of the time series by defining Δ� value as the 
opening of Holder diagrams. The Hermann station exhibits 
a higher degree of multifractality in the flow discharge, 
suspended sediment discharge, and groundwater level 
time series due to denoting larger Δ� values in compari-
son with St. Joseph station. In contrast, the precipitation 
at St. Joseph station displays more multifractality features 
than at Hermann (see Fig. 7 and Table 1).

3.2 � Statistical Methods

3.2.1 � Stationarity Test

Results of the KPSS test for determining the stationarity of 
the time series mentioned earlier at St. Joseph and Hermann 
gauging stations are given in Table 1. The stationarity test 
has been conducted the entire time series period, and asymp-
totic critical values and p values adapted to the size of the 
samples were computed utilizing Monte Carlo simulation 
with a 5% significance model. As reported, the computed p 
values for the flow discharge, suspended sediment discharge, 
and groundwater level are lower than the significance level, 
indicating that the stationarity null hypothesis should be 
rejected. The p value for the precipitation is larger than the 
significance level alpha = 0.05, which means that the sta-
tionarity null hypothesis cannot be refused. In other words, 
the precipitation shows stationary behavior, while the flow 
discharge, suspended sediment discharge, and groundwater 
level can be regarded as non-stationary signals.

3.2.2 � Heteroscedasticity Test

The heteroscedasticity test for residual errors of the time 
series mentioned at both stations was employed to assess 
the error variance state (assessing equality of residual 
errors) using a general, autoregressive integrated moving 
average model (ARIMA). The computed p values related 
to Breusch–Pagan and White tests of all the time series are 
reported in Table 1. The p values of the precipitation time 
series are greater than the significance level alpha = 0.05, 
denoting homoscedasticity in residual errors. In contrast, 
the obtained p values of flow discharge, suspended sediment 

discharge, and groundwater level of the two gauging stations 
are lower than alpha = 0.05, which explains the heterosce-
dasticity in residual errors.

3.2.3 � Autocorrelation analysis

The autocorrelation function of the mentioned time series 
was determined for a lag length of 100 days. As presented 
in Fig. 8, different autocorrelation functions can be distin-
guished. The autocorrelation function diagrams of flow dis-
charge at both stations show a significant decreasing pattern 
(from 1 to 0.22 in both stations) as lag length increases, 
which is probably because of the non-stationary and hetero-
scedastic behavior of the signal. Also, the same decreasing 
pattern can be seen in the groundwater level time series of 
the two gauging stations (from 1 to 0.42 at St. Joseph and 
from 1 to 0.22 at Hermann), but the suspended sediment 
discharge can be regarded as semi-periodic (from 1 to 0.05 
at St. Joseph and from 1 to -0.05 at Hermann) because it 
decreases first and then changes to the periodic situation in 
high lag length. Conversely, the autocorrelation functions of 
the two stations’ precipitation time series illustrate a thor-
oughly periodic function, probably due to the stationary and 
homoscedastic state of the signal. The autocorrelation func-
tion is not a sufficient indicator in determining the short-
range or long-range correlation of the time series. However, 
it may be proper for initial recognition of the behavior of the 
time series, considering variation patterns of each autocor-
relation function. At first glance, the precipitation may be 
regarded as a short-range correlated time series, while the 
flow discharge, suspended sediment discharge, and ground-
water level may be considered as signals with long-range 
correlations.

4 � Discussion on Combining Fractal 
and Statistical Approaches

In general, the findings of statistical tests and multifractal 
analysis can authenticate or reject results of each other and 
demonstrate the necessity of doing further analysis. So, the 
interpretation of statistical results accompanied by multi-
fractal outputs will lead to a more precise understanding of 
some signal specifications. Eventually, the findings of both 
methods can address two separate ways of recognizing the 
vital characteristics of the hydrological time series.

According to the outputs of the KPSS test of stationar-
ity, the precipitation indicates stationary behavior, while the 
other three mentioned time series denote a non-stationary 
state. In the same way, the DFA can describe the stationarity 
of the time series by considering the fractal degree param-
eters, such as the Hurst exponent ( h(2) = � ). As reported in 
Table 1, the Hurst exponent of precipitation in both stations 

Fig. 5   Results of logarithmic fluctuation function Fq versus logarith-
mic timescale l of original datasets for a flow discharge, b suspended 
sediment discharge, c precipitation, and d groundwater level time 
series at St. Joseph and Hermann stations in the MRB

◂
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is less than 1. In contrast, the Hurst exponent values of the 
three other mentioned time series are higher than or equal 
to 1, which can authenticate the stationarity results of the 
KPSS test. Furthermore, MF-DFA plots are another tool that 
can help recognize the stationarity of the time series. The 
convergence branches of the fluctuation function in the long 

term are the key to identifying the stationarity of the time 
series (see Fig. 5). Also, plots of the calculated h(q) related 
to different values of q of the shuffled data are another way 
to describe the stationarity of the time series (see Fig. 6). 
In this regard, MF-DFA plots of the flow discharge, sus-
pended sediment discharge, and groundwater level illustrate 

St. Joseph station Hermann station

(a) (a)

(b) (b)

(c) (c)

(d) (d)

Fig. 6   Results of scaling exponent h(q) versus different values of q on three types of original, reversed, and shuffled datasets for a flow dis-
charge, b suspended sediment discharge, c precipitation, and d groundwater level time series at St. Joseph and Hermann stations in the MRB
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the convergence branches for various moments of fluctuation 
function. Moreover, the h(q) versus q of the shuffled data is 
similar to a horizontal line equal to 0.5, while the fluctuation 
function plots of the precipitation could not demonstrate a 
precise convergency in the long term, and the plots of h(q) 
versus q of the shuffled data represent a decreasing pattern, 
which is not similar to a horizontal line (see Figs. 5 and 6).

In addition, interpreting the DFA and MF-DFA plots is 
a feasible way to confirm the results of the autocorrelation 
function. As shown in Fig. 8, the precipitation displays a fast 
decay in its autocorrelation function with periodic behavior 
denoting long-range uncorrelated (anti-persistent) charac-
teristics. In contrast, the three other mentioned time series 
illustrate the same decreasing pattern that denotes long-range 
correlated (persistent) signals. The multifractal results of the 
flow discharge, suspended sediment discharge, and ground-
water level time series demonstrate a perceptible level of con-
sistency with the autocorrelation function spectrums, but the 
precipitation reveals a more complex behavior. Furthermore, 
the multifractal results of the precipitation time series are 
displaying long-range correlated (persistent) characteristics 

( h(2) > 0.5 ), while the autocorrelation plots are expressing 
long-range uncorrelated (anti-persistent) characteristics. So, 
the conclusion is that the homoscedastic characteristic of the 
precipitation time series resulting from the heteroscedasticity 
test can probably be the cause of the contradiction, while the 
existence of heteroscedastic behavior in the other three men-
tioned time series can be the reason for conformity between 
multifractal and statistical findings. Consequently, this kind 
of behavior denotes more random characteristics and effects 
of extreme events in the homoscedastic time series like pre-
cipitation, signifying the necessity of further analysis to 
understand the precipitation time series better.

Another finding of incorporating the multifractal and sta-
tistical results is the evaluation of the correlation between 
the flow discharge and suspended sediment discharge in each 
station. As mentioned in the section on multifractal proper-
ties of the time series, the pattern of fluctuation functions of 
h(q) linked to various values of q in the flow discharge and 
suspended sediment discharge of Hermann station demon-
strated a higher level of conformity than St. Joseph gaug-
ing station, especially in the fluctuation functions related to 

(a) (b)

(c) (d)

Fig. 7   Singularity spectrum of original datasets for a flow discharge, b suspended sediment discharge, c precipitation, and d groundwater level 
time series at St. Joseph and Hermann stations in the MRB
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small fluctuations. In this regard, the correlation between 
the flow discharge, and suspended sediment discharge time 
series of each station has been calculated (Fig. 9). As pre-
sented in Fig. 9, the coefficient of determination, R2 between 
flow discharge and suspended sediment discharge at St. 
Joseph station is 0.27, which is lower than 0.66 at Hermann 
station, authenticating the results of the MF-DFA plots. It 
can be inferred that having a similar pattern in fluctuation 
function plots resulting from the MF-DFA between two 

time series with mutual hydrological interactions can lead 
to obtaining a higher value of R2.

5 � Conclusion

This paper presents four hydrological time series—flow 
discharge, suspended sediment discharge, precipita-
tion, and groundwater level at St. Joseph and Hermann 

St. Joseph station Hermann station

(a) (a)

(b) (b)

(c) (c)

(d) (d)

Fig. 8   Sample autocorrelation function as a function of lag time for original datasets in St. Joseph and Hermann stations for a flow discharge, b 
suspended sediment discharge, c precipitation, and d groundwater level time series in the MRB
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stations in the USA—investigated by means of fractal 
methods and conventional statistical tests. By incorpo-
ration of multifractal and statistical analysis, flow dis-
charge, suspended sediment discharge, and groundwa-
ter level time series of both stations can be regarded as 
self-affine plus non-stationary and heteroscedastic with 
fBm behavior, and only precipitation represents station-
ary, homoscedastic besides fGn characteristics and is not 
self-affine. Moreover, all the mentioned time series dem-
onstrate the long-term correlation, except precipitation 
that displays a periodic behavior that should be consid-
ered as long-range uncorrelated due to the comparison 
of the autocorrelation function and multifractal analysis. 
Subsequently, the MF-DFA results indicated a high level 
of multifractality with complex behaviors in the flow 
discharge, suspended sediment discharge, and ground-
water level at both stations. Also, the MF-DFA plots of 
the flow discharge and suspended sediment discharge at 
the Hermann station are more similar to each other than 
the St. Joseph station. Eventually, the calculated correla-
tion between the flow discharge and suspended sediment 
discharge at both stations could authenticate the higher 
correlation value at Hermann station. In the end, assess-
ing multifractality in addition to the statistical analysis 
of the hydrological time series in the short and long term 
is a competent tool to discuss contribution of different 
vital factors, such as extreme events (flood and drought) 
and anthropogenic impacts that have affected the natural 
condition of different rivers around the world, especially 
the Missouri River.
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