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Abstract
This paper introduces a novel application of online evolving neural networks (ENNs) trained by melody search algorithm 
(MSA) and singular spectrum analysis (SSA) preprocessing technique in finding optimum operating policies of Tehran 
water resources system with multiple reservoirs and multiple purposes. Harmony search (HS) algorithm is also used for 
comparison purposes. In addition, in order to better evaluate the proposed method, different combinations of artificial neural 
network (ANN) models are developed. It was noticed that the application of SSA preprocessing technique shows substantial 
improvement in the ANN model performance. In fact, application of singular spectrum analysis on the input data eliminates 
the irrelevant features and inverts the remaining components to yield a filtered time series. Moreover, all the results indicate 
the superiority of MSA over HS algorithm in all combinations of ANN models. It was also noticed that as the model becomes 
more complex, the MSA shows more improved and distinct results as compared to HS algorithm. Thus, it can be stated that 
the melody search is more efficient and a suitable surrogate for the harmony search algorithm in pursuing the objectives in 
complicated problems.

Keywords  Melody search algorithm · Singular spectrum analysis · Artificial neural networks · Multi-reservoir system · 
Evolutionary optimization · Evolving ANN

1  Introduction

Reservoirs are probably the most important elements of 
complex water resources systems. The models expanded to 
provide operating rules for reservoirs are classified as simu-
lation, optimization and combination of these two.

Over the past decades, engineers have paid much atten-
tion to the development of optimization models. As a con-
sequent, many algorithms have been introduced to solve 
complicated engineering problems during past several dec-
ades. Most of these algorithms are based on numerical linear 
and nonlinear programming methods. In these methods, the 
results may depend on the selection of an initial point, if 
there is more than one local optimum in the problem. There 
was a turnover in early 1990s where evolutionary methods 

were introduced. Then, in less than a decade, an explosion 
of research was directed toward development and application 
of these methods. This turnover was mainly due to simple 
structure, least knowledge of mathematics required, flex-
ibility, and adaptability inherent in these heuristic methods.

Heuristic algorithms inspired mainly by natural systems 
are powerful tools developed in the last two decades to 
solve what was once considered as very hard to solve prob-
lem. There have also been methods that came to existence 
through inspirations by man-made systems and processes. 
Simulated annealing (SA), harmony search, and melody 
search algorithms are in this category. HS has gained an 
important momentum in the last few years.

Harmony search is an optimization algorithm that simu-
lates the improvisation process of jazz music. It was first 
introduced by Geem et al. (2001) and later modified by other 
researchers. It has several impressive advantages, such as 
easy implementation, less adjustable parameters, and quick 
convergence, and has provided excellent results across dif-
ferent complex problems. The required memory of this 
algorithm is less than the other meta-heuristic methods. 
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Moreover, it does not need derivative information. On the 
other hand, the basic HS algorithm gets into trouble in per-
forming local search for numerical applications. To resolve 
this issue, Mahdavi et al. (2007) introduced Improved har-
mony search (HIS) algorithm based on the basic one. The 
IHS algorithm has the power of the HS algorithm with the 
fine tuning feature of mathematical techniques and can out-
perform either one individually. Besides, Fesanghary et al. 
(2008) presented hybrid harmony search (HHS) algorithm to 
speed up local search. Other modifications on HS were car-
ried out by Omran and Mahdavi (2008) and Pan et al. (2009, 
2010). Ashrafi and Dariane (2013) introduced the melody 
search algorithm (MSA) in accordance with the concept of 
melody instead of harmony. They successfully applied this 
algorithm to various benchmark optimization problems and 
demonstrated the superiority of MSA over many other heu-
ristic methods. This algorithm is based on musical perfor-
mance processes, and interactive relations occurred between 
members of a group of musicians attempting to find better 
and better series of pitches within a melodic line. Moreo-
ver, the efficiency of the algorithm for solving shifted and 
rotated optimization problems is increased in this algorithm. 
The algorithm can better preserve the accuracy of the results 
comparing with other meta-heuristic methods in the case 
that the dimensionality of the problem or the entire feasible 
range of the search space is increased.

Parallel to heuristic algorithms, artificial neural net-
work as another intelligent system was introduced in water 
resources in early 1990s. ANN is a modeling tool for rec-
ognizing arbitrary complex nonlinear relationships between 
input and output sets. It is increasingly being used to simu-
late and predict various water resources variables. Many 
studies focused on reservoir operation have shown that ANN 
is superior to the traditional techniques (Jain et al. 1999; 
Hasebe and Nagayama 2002; Chaves et al. 2004; Chaves 
and Chang 2008; Pianosi et al. 2011). Recently, ANNs have 
been also used in hybrid models for solving various water 
resources management problems (Wu et al. 2009; Ahmadi 
et al. 2013). ANNs are usually trained by backpropagation 
(BP) method. However, unlike its wide application, BP 
suffers from some drawbacks. Dariane and Karami (2014) 
introduced the single-step online evolving neural network 
to overcome some of these drawbacks. In most applications 
of ANN for deriving reservoir operation rule, the problem 
is handled following a two-step approach. In the first step, 
an optimization model is used to derive optimal target vec-
tor which is then set as the output target values in the ANN 
model in the second step. Backpropagation is based on the 
errors between ANN model output and the target output 
values. Therefore, in order to use BP, it is necessary to first 
identify the “optimal target vector” based on optimization 
methods. Meanwhile, it is inevitable to use long periods of 
data for optimization in order to develop adequate number of 

target values for reliable training of the ANN model. There-
fore, under these circumstances the optimization program 
would likely face dimensionality and computer run time 
problems. The single-step online approach overcomes these 
issues by eliminating the need for separate optimization and 
by directly using the ANN model to develop the operating 
policies through combining the two steps into a single one-
step model.

Another drawback of BP is the restriction in using “the 
error indices minimization” as the objective function for the 
network training. In many problems, other types of objective 
functions such as maximizing system reliabilities or maxi-
mizing system benefits are preferred. Therefore, evolving 
ANN (i.e., ENN) was developed to overcome parts of BP 
drawbacks beside other merits.

The proper function of neural networks depends on many 
factors including the suitability of input variables and the 
amount of information they can add to the model in order 
to produce the required target output(s). Data preprocess-
ing has been known as a successful approach for improving 
the value of input data in ANN models. Wavelet transform 
is a well-known and widely applied preprocessing method. 
Another and yet less applied approach is the singular spec-
trum analysis which is simpler but as powerful method for 
preprocessing the input data for ANN models.

The singular spectrum analysis was developed as the new 
time series method in 1970s and has been improved since 
then. SSA decomposes an original time series to trend, sea-
sonal, semi-seasonal, and white. The new decomposed series 
help us to understand the trend of the original time series and 
to extract seasonal or monthly components and white noises 
(Myung 2009). SSA has been recognized as an appropriate 
preprocessing approach to couple with neural networks (or 
similar methods) for time series forecasting (Sivapragasam 
et al. 2001; Baratta et al. 2003; Wu et al. 2010; Wu and Chau 
2011; Hassani and Mahmoudvand 2013). In recent years, 
SSA has not been only applied in the analysis of climatic and 
geophysical time series, but also in the analysis of social sci-
ence and economic time series. This method has been used 
in various fields of research such as signal processing, non-
linear dynamics, medicine and mathematical statistics. Ghil 
and Taricco (1997), Danilov and Zhigljavsky (1997), Yiou 
et al. (2000) and Golyandina et al. (2001) published several 
papers dealing with methodologies and applications of SSA. 
The SSA approach can be also used as a forecasting algo-
rithm for time series including hydrological series, or at least 
for some of its extracted components. Many models have 
been proposed for time series simulation and forecasting in 
hydrology such as auto-regressive moving average (ARMA) 
and auto-regressive integrated moving average (ARIMA) 
models. Unlike the traditional ARMA models, which require 
the data to be stationary and normally distributed, SSA has 
no restriction on the type of data. SSA does not depend on 
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any parametric model for the trend or oscillations and does 
not make any statistical assumptions concerning either sig-
nal or noise (Marques et al. 2006).

In this paper, in order to develop optimum operating 
policies for the large Tehran water resources system with 
multiple reservoirs and multiple purposes, several models 
were studied. In models one and two, we use harmony and 
melody search optimization algorithms to optimize releases 
and allocations from reservoirs to the demand sites in Teh-
ran water resources system. These models try to explore the 
optimum path of releases throughout the whole period under 
the assumption that the time series of inflows are known in 
advance, meaning a perfect forecast. In models three and 
four, artificial neural networks which are trained by har-
mony and melody search algorithms are used to find opti-
mum operation rule for each reservoir in the system. This is 
carried out in two stages. In the first stage, normalized data 
are used for training and testing and in the second stage, 
and the utilization of raw data in the neural network models 
was investigated. In models five and six, each inflow series 
are decomposed into components with the aid of SSA. The 
procedure is to decompose the original record first and then 
to build the forecasting model based on the decomposed 
series. A sensitivity analysis of the singular spectrum on 
lag parameter is carried out, and the appropriate number 
is chosen. Through these models, a complete and compre-
hensive comparison is made between different optimization 
methods and the power of MSA algorithm and the impact of 
using SSA are demonstrated. Since the different aspects of 
the algorithms have been studied simultaneously in various 
models, the obtained results are comprehensive and reliable.

2 � Methodology

2.1 � Evolutionary Algorithms

Meta-heuristic algorithms have been widely applied in 
recent decades to solve practical problems. Geem et al. 
(2001) developed a meta-heuristic algorithm that was con-
ceptualized using the analogy of the music performance 
process named harmony search. The HS algorithm uses 
a stochastic random search that is based on the harmony 
memory considering rate and the pitch adjusting rate. Com-
pared to earlier meta-heuristic optimization algorithms, the 
HS algorithm imposes fewer mathematical requirements. 
The parameters of HS include the harmony memory size 
(HMS), harmony memory consideration rate (HMCR), pitch 
adjusting rate (PAR), distance bandwidth (BW), and termi-
nation criterion. In harmony search algorithm, each solu-
tion is called a “harmony.” The “harmony memory” (HM) 
matrix  is filled with randomly generated solution vectors 
at first and sorted in terms of the objective function value. 

Then, a new harmony vector is produced based on three 
parameters including HMCR, PAR and BW. A good set of 
parameters can enhance the algorithm’s ability to search for 
the global optimum. The following general steps are taken 
in applying the HS (Dariane and Karami 2014). First of all, 
if a uniform random number returned by rand () in [0,1] is 
less than HMCR, the decision variable is generated by the 
memory consideration; otherwise, it is obtained by a random 
selection. Secondly, each decision variable updated by the 
memory consideration undergoes a pitch adjustment with a 
probability of PAR. Thus, every component obtained by the 
memory consideration is examined to determine whether 
it should be pitch-adjusted. This operation uses the PAR 
parameter. In the memory consideration, new harmony is 
chosen from harmony memory. And finally, new harmony 
is produced by random selection. In a nutshell, the scheme 
to improvise a new harmony, Xnew, can be summarized as 
follows (Dariane and Karami 2012).

If the objective function of the new harmony vector is 
better than the worst harmony in the HM, the new harmony 
is included in the HM and the existing worst harmony is 
excluded from the HM. Then, the harmony memory is sorted 
again. This process is continued until stopping criterion is 
obtained (Mahdavi et al. 2007; Lee and Geem 2005).

HS has been able to attract many researches for develop-
ing HS-based solutions of different engineering and optimi-
zation problems. Although the algorithm is computationally 
effective and easy to implement for solving various kinds 
of engineering optimization problems, it is not quite suc-
cessful in performing local search in continuous numerical 
optimization applications (Mahdavi et al. 2007), especially 
for problems with high dimensions. Consequently, advan-
tages of this algorithm led the researchers to improve the 
performance and develop further applications with differ-
ent ideas. Several attempts have been made to improve the 
performance of basic HS algorithm. Improved harmony 
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search algorithm (IHS) which was developed by Mahdavi 
et al. (2007), dynamically updates the values of PAR and 
BW as follows:

Omran and Mahdavi (2008) proposed global-best har-
mony search (GHS) algorithm by modifying the pitch 
adjustment rule. Fesanghary et al. (2008) combined the two 
powerful search algorithms, namely the sequential quadratic 
programming and the harmony search algorithm, and pro-
posed a new method named hybrid harmony search (HHS). 
Then, the EHS algorithm was proposed by Pan et al. (2010) 
to self-adaptively determine the best parameter set for differ-
ent search phases during the evolution process. Inspired by 
the GHS algorithm, a self-adaptive GHS (SGHS) algorithm 
was presented by Pan et al. (2009). In short, the new scheme 
to improvise a new harmony, Xnew, can be summarized as 
follows (Pan et al. 2009):

In this algorithm, it is assumed that the HMCR and PAR 
values are normally distributed in the range of [0.9, 1.0] 
and [0.0, 1.0] with mean 0.98 and 0.9 and standard devia-
tion 0.01 and 0.05, respectively. During the evolution, the 
values of HMCR and PAR associated with the generated 
harmony successfully replacing the worst member in the 
HM are recorded. After a specified number of generations 
LP, the mean values are recalculated by averaging all the 
recorded values during this period. With the new mean and 
the given standard deviation, new HMCR and PAR values 

(1)PAR(gn) = PAR(min) +
PAR(max) − PAR(min)

NI
∗ gn

(2)bw(gn) = bw,max ∗ exp(C.gn)

(3)
C =

ln
(

bw,min

bw,max

)

NI

are produced and used in the subsequent iterations. The 
above procedure is repeated to find the solution. Moreover, it 
should be noted that the value of bw decreases dynamically 
with increasing generations (NI) as follows (Pan et al. 2009):

Ashrafi and Dariane (2013) introduced melody search 
algorithm. Although melody search adopts the basic con-
cepts of HS, the structure is quite different. This algorithm 
simulates the musical performance processes of a musician 
group. As it was previously mentioned, there is one memory 
in HS named harmony memory (HM) and all players sound 
a harmony together in each step. In engineering optimiza-
tion, each musician represents a decision variable, and its 
preferred sound pitches are the preferred values of vari-
able. Unlike harmony search algorithm, in melody search 
algorithm, melody memory (MM) consists of several player 
memories (PM). In a group of musicians, each music player 
has a specified memory and sounds a series of pitches within 
the possible ranges. Figure 1 demonstrates the structure of 
melody memory. This algorithm consists of two different 
phases. In the initial phase, each player improvises his/her 
melody individually. In this phase, players do not influence 
each other. In the next phase, the new possible range for each 
variable is calculated from the best melody of each player 
memory PM. For this purpose, variables of the best melody 
of each PM are saved after updating player memories. The 
minimum and maximum ones for each variable specified the 
new possible. Hence, best bounded ranges of each parameter 
specified in the group that consists of several different melo-
dies with different musical qualities, while these ranges are 
changed through different iterations (Ashrafi and Dariane 
2013). This process is shown in Figs. 2 and 3.

Melody search parameters that must be defined at first 
are the number of player memories (PMN), player memory 
size (PMS), maximum number of iterations (NI), maximum 
number of iterations for the initial phase (NII), distance 
bandwidth (bw), minimum and maximum values of pitch 
adjusting rate (i.e., PARmin and PARmax), and player mem-
ory considering rate (PMCR).

2.2 � Online Evolving Artificial Neural Network

Artificial neural networks refer to computing systems whose 
central theme is borrowed from the analogy of biological 
neural networks. An ANN contains a number of neurons 
that are arranged in an input layer, an output layer, and one 
or more hidden layers. The number of input and output 
nodes is dependent on the problem to which the network is 
being applied. Two hidden layers with sufficient numbers 
of neurons would be adequate in any problem (Dariane and 

(4)b(t) =

{
bw,max −

bw,max−bw,min

NI
∗ 2t, if t < NI∕2

bw,min, if t > NI∕2

}
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Moradi 2014). However, one hidden layer provided there 
are enough neurons in the hidden layer could handle most 
cases. A network learns by adjusting the biases and weights 
that link its neurons. Backpropagation algorithm is currently 
the most common approach to train feed forward networks. 
In this algorithm, a training pair is selected from training 
set and applied to the network. The output is calculated 
and compared with the expected outputs (targets) identi-
fied by the training pair. The weights and biases of each 
neuron are adjusted afterward by the differences between 
the expected network and actual outputs. As mentioned ear-
lier, algorithms like BP are limited to certain conditions and 
constraints. Hence, an optimization-simulation procedure 
is needed where different objective functions and system 
constraints could be easily handled. Dariane and Karami 
[15] introduced an approach called the single-step online 
evolving neural network that employs a heuristic algorithm 
to train the neural network. Online ENN can handle any 
forms of objective function and has overcome the restric-
tions of BP method. In addition, according to Dariane and 
Moradi [29] this approach also avoids over-fitting which is a 
major issue with ANNs using BP method and therefore does 
not require validation period to keep the model from over-
fitting. Thus, the validation period data can be used for better 
training the network. Moreover, unlike commonly practiced 
two-step methods inherent in ANNs using BP applied for 
large reservoir operation problems with known issues such 
as extensive computer time consumption and dimensionality, 
the single-step online ENN can easily handle large multiple 
reservoir systems.Fig. 1   Structure of melody memory

Fig. 2   Melody search algorithm (Ashrafi and Dariane 2013)
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2.3 � Singular Spectrum Analysis

Singular spectrum analysis is generally seen as an adaptive 
noise-reduction algorithm which is widely used in digital sig-
nal processing. SSA method, unlike the wavelet transform, is 
very simple and could be easily programmed. SSA is also used 
as an efficient preprocessing algorithm. Preprocessing methods 
extract the hidden useful information within the time series 
and by introducing them as inputs to the neural networks, 
improve the training and hence the model performance. SSA is 
also a very useful tool for finding trends of different resolution, 
smoothing, extraction of seasonality components, simultane-
ous extraction of cycles with small and large periods, extrac-
tion of periodicities with varying amplitudes, simultaneous 
extraction of complex trends and periodicities, finding struc-
ture in short time series (Hassani and Mahmoudvand 2013). 
The basic SSA algorithm has two stages: decomposition and 
reconstruction. The decomposition stage requires embedding 
and singular value decomposition (SVD). Embedding decom-
poses the original time series into the trajectory matrix; SVD 
turns the trajectory matrix into the decomposed trajectory 
matrices which will turn into the trend, seasonal, monthly 
components, and white noises according to their singular 

values. The principal components (PCs) are a projection in a 
different coordinate system, and hence, their interpretation is 
different from the original time series. Hence, the original time 
series X(t) and the principal components cannot be compared. 
For comparison the reconstruction stage is required. However, 
by projecting the PCs back onto the eigenvectors, we obtain 
time series in the original units. This step can be also skipped 
if one does not want to precisely extract hidden information by 
regrouping and filter of components (Wu and Chau 2011). The 
decomposition stage requires the following steps:

2.3.1 � Embedding

In the first step initial time series change into a matrix (Y) that 
contains the original time series in the first column, a lag-1 
shifted version of that time series in the second column, etc. 
For example, as illustrated in the following, if the “window 
size” is M = 4, i.e., only lags of k = 0, 1, 2 and 3 are considered.

Y = [x(t), x(t + 1), … , x(t +M)]

Fig. 3   Flowchart of melody search algorithm
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2.3.2 � Computing Covariance Matrix

The covariance matrix C is computed as C = Y’*Y/N, which 
Y’ is transpose of Y and N is number of data points. This 
equation follows from the definition of covariance for the 
case where the time series X has a mean and variance equal 
to 0 and 1, respectively.

2.3.3 � Computing Eigenvectors of the Matrix C

The eigenvectors of the matrix C are computed, and matrix 
RHO is constructed from these eigenvectors. The columns 
of the matrix RHO are the eigenvectors. The eigenvectors of 
the matrix C tell us something about the temporal covariance 
of the time series, measured at different lags,

2.3.4 � Principal Components

The principal components are computed by following simple 
matrix equation. The principal components are again time 
series, of the same length as the “embedded” time series. 
Each column of the matrix PC is the principal component 
PC1, PC2, PC3, etc.

This step can be also skipped if one does not want to pre-
cisely extract hidden information by regrouping and filter 
of components.

Y =

⎡
⎢⎢⎢⎢⎢⎣

a1 a2 a3 a4
a2 a3 a4 a5
a3 a4 a5 0

a4 a5 0 0

a5 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(5)PC = Y∗RHO

3 � Application

3.1 � Case Study

Tehran is the capital of Iran and with nearly thirteen million 
populations is considered a megacity. It is located in north-
ern Iran at 35◦45′ northern latitude and 51◦30′ eastern longi-
tude. Water resources in this region include Taleghan, Karaj, 
Lar, Latian and Mamloo reservoirs and a system of wells 
scattered in the region. Municipal and agricultural demands 
of the city are estimated from the previous studies and are 
shown in Table 1 along with long-term monthly average 
inflows at different sites. Figure 4 schematically shows the 
location map of the system under study. The region has three 
agricultural sites, namely Taleghan, Karaj and Varamin. Lar 
reservoir suffers from excessive water escape and is unable 
to store water. Therefore, in this site available water in each 
time period is transferred to Tehran using the maximum 
channel capacity and the remaining is transferred to Latian 
reservoir, again up to its maximum channel capacity. Moreo-
ver, Taleghan and Karaj reservoirs act in parallel in meet-
ing the municipal demand of Tehran. Similarly, Latian and 
Mamloo act as parallel in meeting Tehran water demand, 
although they are in cascade on Jajrud river. Groundwater 
withdrawal in this study is restricted to 120 million cubic 
meters (mcm) annually as the first priority; however, in 
drought situations withdrawals up to 250 mcm are allowed 
as the second source priority for meeting the municipal 
demands of the capital. Orders of the months are based on 
water year with October as the first and September as the last 
month in each water year.

The models are prepared and tested using 47 years of 
monthly measured data (1958–59 to 2004–05 water years). 
The first 35 years of monthly data are used in optimization 
mode for deriving the operation rules and the remaining 
12 years are used in simulation mode for testing the models.

Table 1   Average inflows and target demands (million cubic meters, mcm)

Reservoir Month Annual

1 2 3 4 5 6 7 8 9 10 11 12

Inflows Taleghan 10.4 14 12.7 11.5 12.9 24 78.7 138.6 99.2 39.1 16.7 10.4 468.2
Karaj 13 14.6 13.5 12.3 13 22.8 57.5 92.5 78.4 45.4 24.4 16.3 403.8
Latian 9.4 13.3 13 12.7 15 30 72.8 84.3 48.8 21 11.6 9.1 341.2
Mamloo 3.8 5.5 5.7 5.2 6.4 12.8 28.6 33.8 18.7 7.2 4 3.1 134.8
Lar 14.6 13 11.1 9.6 8.8 10.4 39.9 110.3 105.5 50.6 28.9 20.5 423.3

Demands Tehran Municipal 85.3 79.9 77.8 77.5 78 81.3 76.8 84.2 92.6 100 101 96.2 1030
Taleghan ag 10 3.5 0 2.8 2.9 7.1 27.7 41.4 54.4 65.8 61.6 32.8 310
Karaj ag 3 1 0 0.8 0.9 2.1 8.3 12.3 16.2 19.6 18.4 9.8 92.4
Varamin ag 5.3 6.3 3.4 3.7 7.9 15.8 40.4 56.6 51.9 50.6 34.9 17.8 294.6
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Equation  (6) is used as the objective function where 
y = year index; t = month index; c = index of agricultural 
demand sites; TDteh(y,t) = Tehran municipal demand; Rteh(y,t) = 
sum of releases to Tehran from all reservoirs and groundwa-
ter; TDagr(y,t,c) = agricultural demand and Ragr(y,t,c) = releases 
to agricultural sites.

3.2 � Models

In the following sections, models developed in this study are 
briefly explained.

3.2.1 � Modeling Release Optimization with Perfect Forecast

In models one and two, we use harmony and melody search 
optimization algorithms to optimize releases and alloca-
tions from reservoirs to the demand sites in Tehran water 
resources system. These models try to explore the opti-
mum path of releases throughout the whole period under 
the assumption that the time series of inflows are known in 
advance, meaning a perfect forecast. This is accomplished 
without considering any types of system operation rule. 
Therefore, the whole data are utilized by the models for find-
ing the optimum path. Obviously, here there is no need to set 
two periods of calibration and test for the models.

(6)Minimize Z =

n∑
y=1

T∑
t=1

(
TDteh(y,t) − Rteh(y,t)

)
+

n∑
y=1

T∑
t=1

3∑
c=1

(
TDagr(y,t,c) − Ragr(y,t,c)

)

3.2.2 � Modeling Online Evolutionary ANN

In models three and four, artificial neural network is used to 
find optimum operation rule for each reservoir in the system. 
The neural network considered for these models has a single 
hidden layer, and the number of hidden neurons was found to 

be 2 using a trial and error method. Input layer contains three 
neurons, and the output layer contains one neuron. Inflows 
and demands are seasonal with a pronounced annual cycle. 
Hence, additional neurons to consider seasonal information 
are not needed. The networks for model three and four are 
trained by harmony and melody search algorithms, respec-
tively. In these models, reservoir operation rule curves are 
established by the neural networks with weights and biases 
as the decision parameters. Thus, a portion of data is used to 
derive the ANN-based rule curves and a smaller portion is 
set aside to test the model performance using the calibrated 
rule curve parameters (i.e., weights and biases).

The study is carried out in two stages. In the first stage, 
normalized data are used for training and testing. The sig-
moid and linear transfer function is used in hidden and out-
put layers, respectively. In the second stage, the utilization 
of raw data in the neural network models was investigated. 
The results were far from satisfactory in this stage indicating 

Fig. 4   Tehran location map
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that normalization helps for better performance of the ANN 
models. It is worthwhile to mention that when raw data are 
used the transfer function in hidden and output layers must 
be linear. Otherwise, there would be a scale discrepancy in 
the outputs. For example, if a sigmoid function was used, it 
would transform the data to a range between 0 and 1, which 
is not suitable for comparison with the raw output targets. 
Nevertheless, although the network tries to overcome the 
problem by stretching further the weights and biases, the 
overall performance falls beyond satisfactory levels. How-
ever, there are cases, where raw data produce more satisfac-
tory results than normalized data (see Dariane and Moradi 
2014).

Based on our assumption, the output neuron indicates the 
end of period reservoir storage (S(y,t+1)). Then, the amount 
of release is calculated from the mass balance equation as 
follows.

where S(y,t) is the storage level at the beginning of period 
t in year Y. Rtotal(y,t) and Qt are the total release and inflow 
during period t, respectively. Although we neglected losses 
such as evaporation, these losses can be easily incorporated 
into the mass balance equation without any change in the 
methodology. The reader is referred to the work by Dariane 
and Karami (2014) for more detailed discussion on applica-
tion of ENN models in water resources systems.

3.2.3 � Modeling ENN Coupled with SSA

In models five and six, each inflow series are decomposed 
into components with the aid of SSA. The procedure is to 

(7)Rtotal(y,t) = S(y,t) + Q(y,t) − S(y,t+1)

decompose the original record first and then to build the 
forecasting model based on the decomposed series. The 
decomposition by SSA requires identifying lagged number. 
A sensitivity analysis of the singular spectrum on lag param-
eter is carried out and the appropriate number is chosen. The 
decomposed inflows along with some other time series are 
set as inputs to the network (Fig. 5). The number of hidden 
neurons was found to be 4 using a trial and error method. 
In models five and six, the networks are trained by harmony 
and melody search algorithms, respectively.

4 � Discussion of Results

In order to develop optimum operating policies for Tehran 
water resources system with multiple reservoirs and multiple 
purposes, several models were studied. Results are orderly 
presented in the following section. Note that at the begin-
ning in all the models, initial storage in the first training 
period of all reservoirs are assumed to be at 90 percent of 
the maximum storage levels. The objective function in all 
the models is to minimize the total deficit as defined in the 
previous section. As it was mentioned earlier, the models 
are prepared and tested using 47 years of monthly measured 
data (1958–59 to 2004–05 water years). The first 35 years 
of monthly data are used in optimization mode for deriving 
the operation rules, and the remaining 12 years are used in 
simulation mode for testing the models. It should be noted 
that all models convergence to steady condition after about 
1,500,000 iterations. Hence, the search process could have 
been stopped in that iteration. However, the search was 
allowed to continue up to 3,000,000 iterations in all mod-
els, to see if any considerable changes would take place after 

Fig. 5   Modeling single-step online ENN with SSA



1454	 Iranian Journal of Science and Technology, Transactions of Civil Engineering (2022) 46:1445–1457

1 3

the initial convergence. Other parameters were obtained by 
sensitivity analysis.

4.1 � ENN with Raw or Normalized Data

In most applications in the past, neural network modeling 
has been used with normalized data. Unfortunately, they do 
not discuss the reason for following such an approach, nei-
ther they mention why the raw data were not used instead. 
Here, we first discuss the normalization versus raw data 
approach and whether or not normalization must be always 
assumed in ANN applications. Then, the utilization of SSA 
is discussed.

Table 2 shows the results of applying ENN in Tehran 
water resources system when raw and normalized inputs are 
used. Reliability is defined as the probability that the reser-
voir will perform the required demand and vulnerability is 
defined by Eq. 8.

The results show that ENN based on normalized data outper-
forms the model based on raw data. Therefore, normaliza-
tion is applied in all the following models in this study. As it 
was mentioned earlier, poor performance of models based on 
raw data could be due to scale discrepancies. For example, 
large input values into an ANN would require extremely 
small weighting factors to be applied and this can cause a 
number of problems including inaccuracies introduced by 
floating point calculations (Bhawan 2000).

However, in basins that maximum and minimum of 
events are not known, using ENN with raw data instead of 
normalization may yield better results. The reason is that 
for normalizing the data, maximum and minimum of events 
must be determined. To cope with this issue, they can be 
assumed based on observations at hydrometric stations or 
previous experiences in the basin. These assumptions can 
cause approximation and thereby may decrease the whole 
system performance. Yet, since they are known in this appli-
cation, utilization of ENN with normalized data is preferred 
over raw data approach.

(8)
Vulnerability max = [Max (Demand − Release)] ∕ Demand

4.2 � Sensitivity Analysis of the Singular Spectrum 
on Lag Parameter

As it was mentioned earlier, the decomposition by SSA 
requires identifying lagged number. A sensitivity analysis 
of the singular spectrum on lag parameter is carried out, and 
the appropriate number is chosen. Table 3 shows the results 
of sensitivity analysis of the singular spectrum on the lag 
time. As it can be seen from this table, the results can be 
improved by increasing the number of lags up to four. After 
that no improvement is observed, however, more computa-
tion load would be added. Therefore, the final lag parameter 
in SSA was set as four (i.e., five PCs).

SSA approach is based on the idea that the predictabil-
ity of a system can be improved by revealing the impor-
tant oscillations in time series taken from the system. For 
instance, Fig. 6 shows the five PCs obtained by SSA decom-
position for Karaj inflow. It can be seen that the SSA method 
decomposes the time series into the number of components 
with simpler structures, such as a slowly varying trend, 
oscillations and noise. As explained above, the principal 
components of the time series are constructed by using the 
eigenvectors. The eigenvectors tell us something about the 
temporal covariance of the time series, measured at different 
lags. The principal components are again time series, of the 
same length as the “embedded” time series (i.e., the matrix 
Y). The difference between PC and Y is that the columns of 
PC do not correspond to different time lags. However, the 
original values of Y have been transformed (i.e., projected 
in a new coordinate system) in order to contain most of the 
variance in the first PC, most of the remaining variance in 
the second PC, and so on. It should be noted that the PCs are 
“orthogonal” at lag zero, i.e., there is no covariance between 
the PCs (although there is covariance between the PCs at 
nonzero lags). This shows that the variance of each PC is 

Table 2   Comparison of ENN 
performance with raw or 
normalized data over the testing 
horizon

Deficit Max. vulnerability Reliability

Drinking Agri All Drinking Agri

Raw data 494 5491 5985 0.49 1 0.52
Normalized data 303 5313 5616 0.44 1 0.64

Table 3   Sensitively analysis of SSA on the lag time

Lag time Reliability Max. vulnerability

Drinking Agri Drinking Agri

1 0.64 0.41 0.44 1
2 0.66 0.43 0.44 1
3 0.68 0.43 0.43 1
4 0.71 0.43 0.4 1
5 0.71 0.43 0.4 1
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equal to the eigenvalue of the corresponding eigenvector. 
Moreover, there is no covariance between the PCs (at lag 
zero). Theoretically, the diagonal should contain the eigen-
values, and the off diagonal elements should all be zero. As 
it was mentioned above and it can be seen from Fig. 6, the 
last PC of Karaj inflow contains very little variance, a fact 
that we already knew from the eigenvalues, and the first PC 
accounts for the maximum variance. The rest of the series 
are likewise.

4.3 � Comparison of Models

Table 4 shows the results of applying different models 
in Tehran system. As it was mentioned earlier, models 

one and two are regular optimization models with per-
fect inflow forecast assumption and do not use any type 
of operation rule, including ANN, in their structures. 
Therefore, the results obtained by these models could be 
assumed as the best possible performance of the system in 
case if rule curves were applied. However, interestingly as 
it can be seen from the results of objective function, vul-
nerability and reliability of models three and four, ANN-
based operation rules developed in these models even per-
forms better than unrestricted and rule-free models (i.e., 
models one and two), which is an indication of the power 
of artificial neural networks on mapping nonlinear and 
complicated system problems. As it was mentioned ear-
lier, models three and four use operation rules based on 

Fig. 6   PCs of Karaj inflow produced by SSA

Table 4   Comparison of optimization models during test period

Bold sections are types of methods
*includes the whole period

Category # Method z × 106 Reliability Max. vulnerability Deficit (mcm)

Drinking Agri Drinking Agri Drinking Agri

Optimization with perfect forecast 1 HS* 0.07 0.64 0.4 0.45 1 311 5278
2 MSA* 0.06 0.64 0.4 0.43 1 308 5108

Online evolutionary ANN 3 ANN, HS 0.05 0.64 0.4 0.44 1 303 5313
4 ANN, MSA 0.03 0.69 0.42 0.4 1 250 5531

ENN coupled with SSA 5 SSA, ANN,HS 0.02 0.71 0.43 0.4 1 278 4828
6 SSA, ANN, MSA 0.01 0.75 0.43 0.39 1 243 4366
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artificial neural network trained by harmony and melody 
search algorithms.

And finally, as it can be seen from Table 4 the application 
of SSA preprocessing on input data shows a distinct improve-
ment in the objective function as well as other criteria includ-
ing reliabilities and deficits. Model six decreases the objec-
tive function from 0.06 and 0.03 to 0.01 which is a significant 
reduction. Moreover, the sixth model (ANN coupled with SSA 
and MSA) resulted in lowest water deficit, 243 mcm for drink-
ing water and 4366 mcm for agriculture when compared with 
other methods.

In the following, we show that melody search is more effi-
cient and a suitable surrogate for the harmony search algorithm 
in pursuing the objectives in a complicated multiple reservoir 
system such as the one used in this research. Figure 7 displays 
convergence function. In order to compare convergence rate, 
two sections in iteration 300,000 and 500,000 are used for 
further analysis.

As it can be seen from Fig. 7, the difference between har-
mony and melody search performance is increased as the 
models become more complicated. The largest difference 
is observed in models five and six where ANN and SSA 
are included in the model. In other words, the rate of con-
vergence of the models using MSA increases in comparison 
with HS-based models as more complication is introduced 
into the models. On the other hand, as it can be seen from 
figure, if we had a cost obligation to cut the iterations in ear-
lier stages (i.e., in 300,000 or 500,000) rather than continu-
ing until 3,000,000 iterations, the MSA-based models would 
have performed much better than those using HS algorithm. 
Therefore, although HS itself has shown to be a promising 
algorithm among well-known heuristic methods, the results 
here show that the novel melody search algorithm is more 

powerful and reliable than HS in complicated and large-scale 
water resources problems.

5 � Conclusions

This paper examined the development and application of 
melody search algorithm in a multiple reservoir, multi-
ple purpose large-scale water resources system in Tehran, 
Iran. The evaluation was carried out by a comparative 
study between MSA and HS algorithms. Comparison of 
results of the six models developed in this research indi-
cated the distinguished power of melody search algorithm 
over harmony search. Results displayed that this algorithm 
is very successful for complicated and large-scale prob-
lems where the dimensionality and computer run time are 
the main issues. Moreover, it was shown that results could 
be further improved by decomposition of inflow series by 
singular spectrum analysis.
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