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Abstract
Thermo-mechanical buckling analysis of symmetric and antisymmetric laminated composite beams is performed based on a 
refined simple nth higher-order shear deformation theory. The theory accounts for the parabolic distribution of the transverse 
shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction 
factors. The governing equations and corresponding simply boundary conditions are obtained with the aid of minimum total 
potential energy principle. The effects of temperatures on non-dimensional critical buckling loads are investigated. Numeri-
cal results due to present theory are compared with data available in the literature to show the accuracy and simplicity of the 
proposed theory in analyzing the thermo-mechanical buckling of laminated composite beams.

Keywords  Laminated · Beams · Buckling · Mechanical · Thermal · Refined simple nth higher-order shear deformation 
theory

1  Introduction

The use of composite materials has been greatly increased in 
the weight-sensitive applications such as aerospace, marine, 
civil and mechanical engineering structures because of their 
superior mechanical properties such as high strength-to-
weight ratio and high stiffness-to weight-ratio as well as 
their directionality property capable of providing the desired 
elastic couplings through the proper selection of the layup 
parameters. The laminated composite beams are basic struc-
tural components and are widely used in various structures. 
For the safe design of composite beams, accurate knowledge 
of their vibration characteristics and buckling behaviors are 
necessary. The wide use of laminated beams has stimu-
lated considerable interest in their dynamic and buckling 

analyses. A lot of relevant papers have been published in 
recent decades, and many mathematical models and solu-
tion techniques have been developed, for example, Touratier 
(1991), Soldatos(1992), Khdeir and Reddy (1997), Khdeir 
(2001), Karama et al. (2003), Kapuria et al.(2004), Aydogdu 
(2006, 2009), Reddy (1997), Emam (2011), Xiaohui and 
Wanji (2009), Kim (2009), Della and Shu(2009), Akbas and 
Kocaturk (2012), Yu and Sun (2012), Mohri et al. (2012), 
Vo and Thai (2012a, b), Kim and Choi (2013), Huang et al. 
(2014), Aktaş and Balcıoğlu (2014).

Recently, Akgöz, and Civalek (2015) developed new 
non-classical sinusoidal plate model via modified strain 
gradient theory. This model takes into account the effects of 
shear deformation without any shear correction factors and 
also can capture the size effects due to additional material 
length-scale parameters. Li and Qiao (2015a, b) extended the 
Reddy’s high-order shear deformation beam theory with a 
von Karman type of kinematic nonlinearity for mechanical 
and thermal post-buckling analysis of anisotropic laminated 
beams with different boundary conditions. Kahya(2016) 
developed the multilayer beam finite element for vibration 
and buckling of laminated composite and sandwich beams 
via the first-order shear deformation theory. The multilay-
ered beam element consists of N layers and includes totally 
3N + 7 degrees of freedom (DOFs); in addition, slip and 
delamination between the layers are not allowed. Canales 
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and Mantari (2016) derived the Ritz solution for vibration 
and buckling analysis of composite beams using a gener-
alized higher-order shear deformation theory. Ergun et al. 
(2016) studied experimentally the free vibration and buck-
ling behaviors of hybrid composite beams having different 
span lengths and orientation angles subjected to different 
impact energy levels.

The analytical solutions for simply supported and 
clamped boundary conditions of a post-buckling sandwich 
beam are obtained in the thermal environment presented by 
Li et al. (2018). The effect of the humidity conditions on 
thermal buckling analysis of grapheme system containing 
two layers under different boundary conditions is developed 
by Sobhy and Zenkour (2018); Dihaj et al.(2018) studied 
the free vibration analysis of chiral double-walled carbon 
nanotube embedded in an elastic medium using non-local 
elasticity theory and Euler–Bernoulli beam model. Akbaş 
(2018) presented a new method for post-buckling responses 
of a simply supported laminated composite beam subjected 
to a non-follower axially compression loads using nonlinear 
kinematic model of the laminated beam in conjunction with 
Timoshenko beam theory and total Lagrangian approach. 
The unified approach for compressive buckling analysis of 
stiffened composite plates, which takes into account the con-
tribution of stringers’ rotational stiffness, achieves a closed-
form solution presented by Feng (2018).

In the present paper, the authors combine the displace-
ment field of theory developed by Xiang (2014) and the 
displacement field of refined shear deformation theory to 
develop a new refined simple nth higher-order shear defor-
mation theory for thermo-mechanical buckling analysis of 
laminated beam. The theory satisfies that the transverse 
shear stresses should be vanished at the top and bottom sur-
faces of beam, and so there is no need for using a shear 
correction factor. That is because the present simplified 
refined nth-order theory is based on the assumption that the 
in-plane and transverse displacements consist of bending 
and shear components, in which the bending components do 
not contribute toward shear forces and, likewise, the shear 
components do not contribute toward bending moments. The 
governing differential equations and corresponding simply 
boundary conditions in buckling are derived with the aid 
of minimum total potential energy principle. The thermal 
effects on the critical buckling loads of simply supported 
laminate beams are investigated. The accuracy of this theory 
is demonstrated according to some numerical examples and 
comparisons with the corresponding data in the literature.

2 � Theoretical Formulations

The displacement field of the conventional nth-order shear 
deformation theory is given by Xiang (2014):

where w0 and �
x
 are two unknown displacement functions 

of the mid-plane of the beam; and h is the thickness of the 
beam. By dividing the transverse displacement into bend-
ing and shear parts (i.e., w

0
= wb + ws ) and making further 

assumptions given by �
x
= −�wb

/
�x , the displacement field 

of the new refined theory can be rewritten in a simpler form 
as:

where

Clearly, the displacement field in Eq. (2) contains only two 
unknowns, w

b
 and w

s
 . The nonzero strains associated with the 

displacement field in Eq. (2) are:

where

Constitutive relation can be written in matrix form as 
follows:

where usual notations for normal and shear stress compo-
nents are adopted. The relationship of the global reduced 
stiffness matrix Q̄ij and transformed coefficient of thermal 
expansion can be referred to any standard texts such as 
(Reddy (1997)).

After substituting Eq. (3) in Eq. (5), the resulting equation 
is integrated through the thickness of the laminate. Then, the 
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where

where Q̄
11

 is the reduced stiffness matrix, �
x
 the transformed 

thermal coefficient of expansion and ΔT  the constant tem-
perature rise or drop through the thickness.

The strain energy of the beam can be written as

Substituting Eqs. (3) and (5) into Eq. (8) and integrat-
ing through the thickness of the beam, the strain energy 
of the beam due to the normal force, shear force, bending 
moment and shear moment can be rewritten as

The work of the beam done by applied forces (mechani-
cal force and forces due to variation of temperature ΔT  ) 
can be written as

where P is a mechanical force and NT
x

 are applied forces due 
to variation of temperature.
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displacement field and the constitutive equation. The prin-
ciple can be stated in analytical form as

where � indicates a variation in relation to x.
Substituting Eqs. (9) and (10) into Eq. (11) and integrating 

the equation by parts, collecting the coefficients of �u
0
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b
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s
 , the governing equations can be obtained as follows:
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(11)�(U + V) = 0

(12a)
�N

x

�x
= 0

(12b)
𝜕2Mb

x

𝜕x2
+ N̄

𝜕2(w
b
+ w

s
)

𝜕x2
= 0

(12c)
𝜕2Ms

x

𝜕x2
+

𝜕Qs
xz

𝜕x
+ N̄

𝜕2(w
b
+ w

s
)

𝜕x2
= 0

(13)N̄ = P + NT
x

(14a)A11

�2u

�x2
− B11

�3wb

�x3
− Bs

11

�3ws

�x3
= 0

(14b)

B11

𝜕3u

𝜕x3
− D11

𝜕4wb

𝜕x4
− Ds

11

𝜕4ws

𝜕x4
+ N̄

𝜕2(w
b
+ w

s
)

𝜕x2
= 0

(14c)
Bs
11

𝜕3u

𝜕x3
− Ds

11

𝜕4wb

𝜕x4
− Hs

11

𝜕4ws

𝜕x4
+ As

55

𝜕2ws

𝜕x2
+ N̄

𝜕2(w
b
+ w

s
)

𝜕x2
= 0



92	 Iranian Journal of Science and Technology, Transactions of Civil Engineering (2021) 45:89–98

1 3

By following the Navier solution procedure, the solu-
tions to the problem are assumed to take the following 
forms:

whereU
mn
, W
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,W

smn
 are arbitrary parameters to be deter-

mined, � = m�∕L.
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3 � Results and discussion

In this section, a number of numerical examples are pre-
sented and analyzed to verify the accuracy of the present the-
ory and to investigate the critical buckling of symmetric and 
antisymmetric laminated simply supported shear-deformable 
composite beam. All laminates are of equal thickness and 
made of the same orthotropic material, whose properties 
are as follows (Khdeir and Reddy(1997), Khdeir(2001), 
Aydogdu(2006,009), Reddy (1997), Vo and Thai (2012a, 
2012b), Li and Qiao(2015a, b), Kahya(2016), Canales and 
Mantari (2016)):

We use the model developed in the present study to 
determine the non-dimensional first critical buckling load 

for laminated beams. The results are compared with those 
available in the literature. Firstly, mechanical buckling anal-
ysis of simply supported composite beams with symmetric 
cross-ply (0/90/0) is performed. Materials I and II with E1/
E2 = 10 and 40 are used. The critical buckling loads for dif-
ferent length-to-thickness ratios are compared with analyti-
cal solutions (Khdeir and Reddy 1997; Aydogdu 2006) and 
the finite elements method (Vo and Thai 2012a; Kahya 2016) 
in Tables 1 and 2. The comparisons are well justified.

The second example concerns mechanical buckling 
behavior of simply supported cross-ply laminated beams. 
The non-dimensional critical buckling loads 
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have been obtained for two-layer cross-ply beams with vari-
ous values of length-to-thickness ratio L/h, which are pre-
sented in Table 3. The Material I is used with E1/E2 = 40. 
The present results are compared with those due to third-
order beam theory (TOBT), the results given in Khdeir and 
Reddy (1997), the parabolic shear deformation beam theory 
(PSDBT) given in Aydogdu (2006), the refined shear defor-
mation theory (RSDT) given in Vo and Thai (2012a, b), 
higher-order shear deformation beam theory (HOSDBT) 
given in Li and Qiao (2015a) and the finite element method 
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(FEM) given in Kahya (2016). The differences between non-
dimensional critical buckling loads obtained by the present 
formulation and those using different higher-order beam 
theories and the finite element method are very small.

The next comparison example is presented in Table 4 
that reports the non-dimensional critical buckling load for 
orthotropic the unidirectional composite beams (θ = 0 and 
90) and symmetric cross-ply laminated beams four-layer 
(0/90)s a simply supported for different length-to-thick-
ness ratios (L/h = 10, 20, 100). The Material II is used with 
E1/E2 = 25. The obtained are compared with those of Reddy 
(1997) based on the Timoshenko beam theory (TBT) and the 
results of Kahya (2016) based on finite elements methods 
via first-order shear deformation theory (FSDT). It is seen 
that the present results are in excellent agreement with the 
literature values using shear deformation theory as seen from 
the validation checks.

In order to discuss the applicability of the present refined 
simple nth higher-order shear deformation beam theory to 
other laminate schemes, the mechanical non-dimensional 
critical buckling load for laminated beams with a variety 
of stacking sequences, the results are reported in Table 5. 
The Material I is used with E1/E2 = 40. The present results 
have been compared with those reported in Mantari (2016). 
Once again, the present theory is in good agreement with 
the Ritz solution buckling analysis of composite beams via 
a generalized higher-order shear deformation theory given 
by Canales and Mantari (2016).

The effect of length-to-thickness ratios of the beam on 
non-dimensional critical buckling loads is shown in Fig. 1, 

Table 1   Comparison of the non-dimensional critical buckling loads (
PL

2
/
E
2
bh

3
)
 of symmetric cross-ply composite laminated beams 

(0/90/0) with simply supported boundary condition (Materials I and 
II with E1/E2 = 10)

a Aydogdu (2006)
b Vo and Thai (2012a)

Materials Theory L/h

5 10 20 50

Material I FSDBTa 4.752 6.805 7.630 7.897
HOBTb 4.726 – 7.666 –
HOBTa 4.709 6.778 7.620 7.896
Present n = 3 4.7268 6.8141 7.6664 7.9451
Present n = 5 4.7804 6.8453 7.6765 7.9468
Present n = 7 4.8357 6.8746 7.6857 7.9484
Present n = 9 4.8775 6.8961 7.6925 7.9496

Material II FSDBTa 4.069 6.420 7.503 7.875
HOBTb 3.728 – 7.459 –
HOBTa 3.717 6.176 7.416 7.860
Present n = 3 3.7281 6.2060 7.4600 7.9088
Present n = 5 3.9340 6.3534 7.5132 7.9183
Present n = 7 4.0477 6.4287 7.5395 7.9230
Present n = 9 4.1190 6.4741 7.5551 7.9258

Table 2   Comparison of the non-dimensional critical buckling loads (
PL

2
/
E
2
bh

3
)
 of symmetric cross-ply composite laminated beams 

(0/90/0) with simply supported boundary condition (Materials I and 
II with E1/E2 = 40)

a Khdeir and Reddy (1997)
b Vo and Thai (2012a)
c Kahya (2016)
d Aydogdu (2006)

Materials Theory L/h

5 10 20 50

Material I FSDBTa 8.606 18.989 – –
FSDBTb 8.604 18.974 27.154 30.882
HOBTa 8.613 18.832 – –
HOBTd 8.613 – 27.084 –
HOBTb 8.609 18.814 27.050 30.859
FEMc 8.6132 18.8319 27.0860 30.9056
Present n = 3 8.58499 18.8846 27.0982 –
Present n = 5 8.6995 19.0389 27.2063 30.9314
Present n = 7 8.8533 19.2562 27.3208 30.9553
Present n = 9 8.9819 19.4212 27.4051 30.9726

Material II FSDBTb 6.600 16.253 25.620 30.549
HOBTd 5.896 – 24.685 –
HOBTb 5.895 14.857 24.655 30.319
Present n = 3 5.8968 14.8682 24.6851 30.3643
Present n = 5 6.2890 15.6814 25.2637 30.5041
Present n = 7 6.5440 16.1311 25.5601 30.5732
Present n = 9 6.7164 16.4129 25.7387 30.6141

Table 3   Comparison of the non-dimensional critical buckling loads (
PL

2
/
E
2
bh

3
)
 of antisymmetric cross-ply composite laminated 

beams (0/90) with simply supported boundary condition (Material I 
E1/E2 = 40)

a Khdeir and Reddy (1997)
b Aydogdu (2006)
c Vo and Thai (2012b)
d Li and Qiao (2015a)
e Kahya (2016)

Theories (0/90)

L/h = 5 L/h = 10 L/h = 20

TOBTa – – –
PSDBTb 3.906 – 5.296
RSDTc 3.903 4.936 5.290
HOSDBTd 3.9054 4.9399 5.2945
FEMe 3.28557 4.64637 5.20132
Present n = 3 3.9066 4.9420 5.2969
Present n = 5 3.8166 4.9076 5.2871
Present n = 7 3.8008 4.9019 5.2856
Present n = 9 3.8016 4.9026 5.2858
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for simply supported orthotropic composite beams and sym-
metric cross-ply laminated beams with four-layer (0/90)s 
and the material properties II used with E1/E2 = 25. The 
obtained results based on the refined simple nth higher-order 
shear deformation theory are compared with those of Reddy 
(1997) based on the Timoshenko beam theory. It can be seen 
that the results of the present theory are in excellent agree-
ment with those of Timoshenko beam theory for all values 
of length-to-thickness ratios. Also, it can be seen that non-
dimensional critical buckling load increases by the increase 
in length-to-thickness ratio.

Finally, in this part, we still discuss the evaluation of the 
present refined simple nth higher-order shear deformation 
theory in the study of thermal buckling behavior. Tables 6, 
7 and 8 present the non-dimensional critical temperature for 
different length-to-thickness ratios, different modulus ratios 
and different thermal expansions, respectively. The Material I 
is used. On the other hand, the critical buckling temperatures 

Table 4   Comparison of the 
non-dimensional critical 
buckling loads 

(
PL

2
/
E
2
bh

3
)
 

of composite laminated beams 
with simply supported boundary 
condition (Material II with 
E1/E2 = 25)

a Reddy (1997)
b Kahya (2016)

L/h Layup TBTa FEMb Present

n = 3 n = 5 n = 7 n = 9

10 0 13.768 13.7679 13.8175 13.8167 14.0020 14.0884
90 0.784 0.8066 0.7857 0.7864 0.7873 0.7880
(0/90)s 11.179 12.3115 10.1716 10.6356 10.9386 11.1313

20 0 18.304 18.3041 18.3473 18.3473 18.4355 18.4735
90 0.812 0.8185 0.8145 0.8147 0.8149 0.8151
(0/90)s 15.689 16.1905 15.1566 15.4152 15.5740 15.6716

100 0 20.461 20.4614 20.5117 20.5117 20.5162 20.5181
90 0.822 0.8223 0.8241 0.8241 0.8241 0.8241
(0/90)s 18.015 18.0101 17.9977 18.0122 18.0208 18.0261

Table 5   Comparison of the non-
dimensional critical buckling 
loads 

(
PL

2
/
E
2
bh

3
)
 for simply 

supported composite laminated 
beams with a variety of stacking 
sequences (Material I with 
E1/E2 = 40)

a Canales and Mantari (2016)

L/h Theories Layup

(0/30/0) (0/45/0) (0/60/0) (0/90/0) (0/45/–45/0) (0/60/–60/0)

5 3D-HSDTa 9.0658 8.8846 8.7340 8.5561 8.7382 8.5092
Present n = 3 9.1024 8.9391 8.7762 8.6132 8.7744 8.5432
Present n = 5 9.1191 8.9735 8.8338 8.6995 8.7512 8.5273
Present n = 7 9.2498 9.1093 8.9773 8.8533 8.8598 8.6377
Present n = 9 9.3681 9.2296 9.1011 8.9819 8.9654 8.7439

10 3D-HSDTa 19.6135 19.3191 19.0597 18.8294 18.5976 18.1286
Present n = 3 19.5961 19.3066 19.0527 18.8319 18.5607 18.0910
Present n = 5 19.7244 19.4506 19.2226 19.0389 18.6066 18.1345
Present n = 7 19.9110 19.6429 19.4252 19.2562 18.7550 18.2829
Present n = 9 20.0608 19.7955 19.5827 19.4212 18.8839 18.4118
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Fig. 1   Effect of length-to-thickness ratio (a/h) on the non-dimen-
sional critical buckling loads 

(
PL

2
/
E
2
bh

3
)
 , with simply boundary 

conditions, (n = 3, Material II with E1/E2 = 25)
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were compared with the theoretical results of the Euler–Ber-
noulli classical beam theory (CBT), the first-order beam the-
ory (FOBT), the third-order beam theory (HOBT) developed 
by Khdeir (2001) and the higher-order shear deformation beam 
theory (HOSDBT) developed by Li and Qiao (2015a, b). The 
critical buckling temperature of the present theory is in excel-
lent agreement with the results of the other theories of shear 
deformation. Also, it is observed that the Euler–Bernoulli clas-
sical beam theory overestimates the thermal critical buckling 
of laminated beams. Hence, in order to obtain accurate results 
for laminated beam, it is necessary to consider the transverse 
shear deformation effects by using shear deformation theories.

The effects of temperatures on non-dimensional critical 
buckling loads P̄ are presented in Tables 9 and 10 for two 
types of stacking sequences of symmetric cross-ply laminated 
(0/90/0) and (0/90/90/0), respectively. The beams are subjected 
to the uniform temperature rises. The mechanical properties of 
each layer Shen (2001) are assumed to be.

  
It is seen from Tables 9 and 10 that difference between 

one-dimensional buckling loads evaluated by EBT and RPT 
is more considerable for lower slenderness ratios, while this 
difference almost disappears for higher slenderness ratios. In 
other words, an increase in slenderness ratio leads to a decline 
on effects of shear deformation and difference between the 
results of EBT and SBT. On the contrary, it can be empha-
sized that the thermal effects on dimensionless buckling loads 
become more significant for higher slenderness ratios. These 
numerical results are useful for numerical benchmarking by 
others.

E
1
∕E

2
= 40, G

12
= G

13
= 0.6E

2
, G

23
= 0.5E

2
,

v
12

= 0.25, �
1
= 1.14 × 10

−6
, �

2
= 11.4 × 10

−6

Table 6   Comparison of the 
non-dimensional critical 
temperature Tcr = T

cr
�
1
(L∕h)2 

results for a three layer 
(0/90/0) symmetric cross-ply 
beams, for different length-to-
thickness ratios (Material I with 
E1∕E2 = 20, �1∕�2 = 3)

a Khdeir (2001)
b Li and Qiao (2015b)

L/h HOBTa FOBTa CBTa HOSDBTb Present

n = 3 n = 5 n = 7 n = 9

5 0.4678 0.4715 – 0.44908 0.4678 0.4739 0.4813 0.4871
10 0.8229 0.8281 – 0.78912 0.8229 0.8291 0.8352 0.8397
20 1.0190 1.0212 – 0.97666 1.0190 1.0215 1.0238 1.0255
50 1.0921 1.0925 1.1072 1.04656 1.0921 1.0926 1.0930 1.0933

Table 7   Comparison of the non-
dimensional critical temperature 
Tcr = T

cr
�
1
(L∕h)2 results for 

three-layer (0/90/0) symmetric 
cross-ply beams, for different 
modulus ratios, (Material I, 
L/h = 10 , �1∕�2 = 3)

a Khdeir (2001)
b Li and Qiao (2015b)

E
1

/
E
2

HOBTa FOBTa CBTa HOSDBTb Present

n = 3 n = 5 n = 7 n = 9

3 0.7612 0.7625 0.8022 0.62508 0.7612 0.7625 0.7637 0.7645
10 0.8832 0.8868 1.0370 0.81683 0.8832 0.8873 0.8911 0.8939
20 0.8229 0.8281 1.1072 0.78912 0.8229 0.8291 0.8352 0.8397
30 0.7471 0.7528 1.1329 0.72608 0.7471 0.7543 0.7616 0.7670
40 0.6796 0.6853 1.1462 0.66506 0.6796 0.6871 0.6949 0.7009

Table 8   Comparison of the 
non-dimensional critical 
temperature Tcr = T

cr
�
1
(L∕h)2 

results for three-layer (0/90/0) 
symmetric cross-ply beams, 
for different thermal expansion 
coefficients ratio (Material I, 
with E1∕E2 = 20 , L/h = 10)

a Khdeir (2001)
b Li and Qiao (2015b)

α2/α1 HOBTa FOBTa CBTa HOSDBTb Present

n = 3 n = 5 n = 7 n = 9

3 0.8229 0.8281 1.1072 0.7891 0.8229 0.8291 0.8352 0.8397
10 0.7077 0.7121 0.9522 0.6392 0.7077 0.7130 0.7183 0.7222
20 0.5898 0.5935 0.7935 0.5027 0.5898 0.5942 0.5986 0.6018
50 0.3932 0.3956 0.5290 0.30640 0.3932 0.3961 0.3990 0.4012
100 0.2528 0.2543 0.3401 0.1856 0.2528 0.2547 0.2565 0.2579
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4 � Conclusion

Thermo-mechanical buckling response of simply sup-
ported laminated beams is investigated on the basis of a 
refined simple nth higher-order shear deformation beam 
theory. The governing differential equations are derived by 

implementing minimum total potential energy principle. 
Thermal effects on the critical buckling loads of simply 
supported laminated beams are investigated. The obtained 
results are compared with other available results in the 
published references. Significant observations from the 
results can be summarized as follows:

1.	 In the present paper, the authors combine the nth-order 
shear deformation theory developed by Xiang (2014) 
with the idea of the refined beam theory. The axial 
displacement field uses parabolic function in terms of 
thickness ordinate to include the effect of transverse 
shear deformation. The transverse displacement consists 
of bending and shear components. These ideas are used 
for developing the new nth-order shear deformation the-
ory with modified displacement field to its optimization. 
Closed-form solutions for thermo-mechanical buckling 
behavior of composite beam are obtained.

2.	 This theory is seen to behave well, and the results of 
sample examples show good agreement with those in 
the literature as seen from the validation checks.

3.	 Effect of temperature change on buckling characteristic 
of laminated beams becomes more pronounced for larger 
values of length-to-thickness ratio.

4.	 The transverse shear deformation has the effect of 
decreasing both buckling loads. Thus, the classical lami-
nate theory overpredicts buckling loads. This is primar-
ily due to the assumed infinite rigidity of the transverse 
normals in the classical laminate theory. Note that the 
assumption does not yield a conservative result; i.e., 
if one designs a beam for buckling load based on the 
classical laminate theory and if no safety factor is used, 
it will fail for a working load smaller than the critical 
buckling load.

Appendix

(1) Consider a laminate beam made of n plies. Each ply has a 
thickness of t

k
 . Then, the thickness of the laminate h is

Then, the location of the mid-plane is h/2 from the top or the 
bottom surface of the laminate. The z-coordinate of each ply 
k surface (top and bottom) is given by

Ply 1:

h =

n∑
k=1

t
k

h
0
= −

h

2
(top surface)

h
1
= −

h

2
+ t

1
(bottom surface)

Table 9   Effects of temperatures on-dimensional critical buckling 
loads 

(
PL

2
/
E
2
bh

3
)
 of simply supported symmetric (0/90/0) beam 

under three sets of thermal loading conditions

ΔT (°C) Theories L/h

5 10 20

0 EBT 31.7603 31.7603 31.7603
RBT n = 3 8.6132 18.8319 27.0860
RBT n = 5 8.6995 19.0389 27.2063
RBT n = 7 8.8533 19.2562 27.3208
RBT n = 9 8.9819 19.4212 27.4051

100 EBT 31.6747 31.4178 30.3902
RBT n = 3 8.5276 18.4893 25.7159
RBT n = 5 8.6138 18.6964 25.8361
RBT n = 7 8.7676 18.9137 25.9506
RBT n = 9 8.8963 19.0787 26.0350

200 EBT 31.5890 31.0752 29.0200
RBT n = 3 8.4419 18.1468 24.3457
RBT n = 5 8.5282 18.3538 24.4660
RBT n = 7 8.6820 18.5711 24.5805
RBT n = 9 8.8106 18.7361 24.6648

Table 10   Effects of temperatures on non-dimensional critical buck-
ling loads 

(
PL

2
/
E
2
bh

3
)
 of simply supported symmetric (0/90/90/0) 

beam under three sets of thermal loading conditions

ΔT (°C) Theories L/h

5 10 20

0 EBT 28.9344 28.9344 28.9344
RBT n = 3 8.3191 17.7593 24.9880
RBT n = 5 8.3262 17.8269 25.0289
RBT n = 7 8.4471 17.9888 25.1112
RBT n = 9 8.5588 18.1254 25.1787

100 EBT 28.8630 28.6489 27.7926
RBT n = 3 8.2478 17.4739 23.8462
RBT n = 5 8.2549 17.5415 23.8871
RBT n = 7 8.3757 17.7033 23.9694
RBT n = 9 8.4874 17.8400 24.0369

200 EBT 28.7916 28.3635 26.6508
RBT n = 3 8.1764 17.1885 22.7044
RBT n = 5 8.1835 17.2560 22.7453
RBT n = 7 8.3043 17.4179 22.8276
RBT n = 9 8.4160 17.5545 22.8951
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Ply k: (k = 2, 3,… n − 2, n − 1)

(2) Find the value of the reduced stiffness matrix [Q] for each 
ply using its six elastic moduli, E

1
,E

2
, G

12
,G

13
, G

23
, �

12
 in 

constants Q11,Q12,Q22,Q66, Q44 and Q55.
(3) Find the value of the transformed reduced stiffness 

matrix for each ply using the [Q̄] matrix calculated in step 
2, and the angle of the ply and transformed coefficient of 
thermal expansion can be referred to any standard texts such 
as (Reddy (1997)).

(4) Knowing the thickness, t
k
 , of each ply, find the coordi-

nate of the top and bottom surface, h
i
, i = 1… , n, of each 

ply, using the following equation:
Ply n:

(5) Use the [Q̄] matrices from step 3 and the loca-
tion of each ply from step 4 to find the six beam stiffness 
(A11, B11,D11,B

s
11
,Ds

11
,Hs

11
 and As

55
 ) from Eq. (7).

(6) Substitute the stiffness matrix values found in step 5 
and the applied forces and moments in Eq. (6).

(7) Solve the three simultaneous Eqs.  (14a–14c). 
Closed-form solutions are obtained using the Navier solu-
tion for simply supported laminated composite beams 
Eqs. (15a–15c), and the eigenvalue problem is solved to get 
the corresponding eigenvalues for buckling load equation 
with the effect temperature reduces the critical buckling load 
(18) and the critical temperature Eq. (19).
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