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Abstract
In this paper, a finite element model is developed for lateral–torsional stability analysis of axially functionally graded beams 
with tapered bi-symmetric I-section subjected to various boundary conditions. Considering the coupling between the lateral 
displacement and the twist angle, the equilibrium equations are derived via energy method in association with Vlasov’s thin-
walled beam theory. The system of equilibrium equations is then transformed to a unique differential equation in terms of 
the angle of twist. Finally, new 4 * 4 elastic and buckling stiffness matrices are exactly determined by constructing the weak 
form of the governing equation and using cubic Hermite interpolation functions. Contemplating three comprehensive numeri-
cal examples, the influences of different parameters such as axial variation of material properties, tapering ratios, moment 
gradient, transverse load height and end conditions on lateral stability resistance of considered members are discussed in 
detail. It is believed that the numerical outcomes of this paper can be useful for future studies of web and/or flanges tapered 
I-beams with axially varying materials subjected to different boundary conditions.

Keywords  Tapered doubly symmetric beam · Axially functionally graded materials (AFGMs) · Lateral stability analysis · 
Finite element method (FEM)

1  Introduction

The non-prismatic beams with thin-walled open cross sec-
tions have been commonly adopted in structural components 
ranging from civil engineering to aeronautical applications 
due to their ability to improve strength and stability and also 
utilize structural material more efficiently. With the develop-
ment of manufacturing process, beams with varying cross 
section are now adopted with different materials such as 
wood, steel and composite materials. Functionally graded 
materials (FGMs) as a new class of advanced materials 
are made up by gradually and smoothly changing the com-
position of two or more different materials in any desired 
direction. Engineers can thus produce structural elements 

with favorable resistance and manage the distribution of 
material properties. Due to smooth variations in material 
properties, functionally graded materials (FGMs) can also 
overcome some disadvantages and weaknesses of laminated 
composites such as delamination and stress concentration. 
FGM possesses characteristics that can be acquired in 
accordance with the volume fraction of the phase material 
based on different theories such as polynomial, exponen-
tial and trigonometric volume fraction laws. Among these 
functions, power-law distribution (Yung and Munz 1996; 
Jin and Paulino 2001) and exponential function (Delale 
and Erdogan 1983; Jin and Noda 1994; Jin and Batra 1996; 
Erdogan and Wu 1996; Gu and Asaro 1997; Erdogan and 
Chen 1998) are extensively used to describe the material 
properties variation for FGM. The use of axially function-
ally graded (AFG) materials during past 20 years has been 
increasing in complicated engineering configurations such 
as nano-/microresonators (Li and Balachandran 2006), the 
outer surface of aircraft fuselages (Steinberg 1986; Lyu et al. 
2008) and nanotubes (Sears and Batra 2004) due to their 
conspicuous characteristics such as high strength, thermal 
resistance and optimal distribution of weight. The exact esti-
mation of stability limit state and vibration characteristics 
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of this kind of members is of fundamental importance in the 
design. A large number of studies have been thus devoted by 
different researchers to accurately probe free vibration and 
static behavior of functionally graded beam with variable 
cross section.

Closed-form solutions for the flexural and lateral–tor-
sional stability of thin-walled beams have been carried out 
since the early works of Timoshenko and Gere (1961), 
Vlasov (1959) as well as Bazant and Cedolin (1991) for 
I-beams under some representative load cases. Yang and 
Yau (1987) formulated a general finite element model to 
investigate the instability of a doubly symmetric tapered 
I-beam by considering the effect of geometrical nonlinear-
ity. Kim and Kim (2000) proposed a finite element 
approach for the lateral–torsional buckling and vibration 
analyses of doubly symmetric I tapered thin-walled beams. 
Vibration and instability analyses of functionally graded 
thin-walled beam with circular cylindrical section were 
performed by Oh et al. (2005). Andrade and Camotim 
(2004,2005) and Andrade et al. (2007a, b, 2010; ) pre-
sented some useful works about the lateral–torsional stabil-
ity analysis of thin-walled beams with doubly and singly 
symmetric I-section under different boundary conditions. 
A one-dimensional finite element solution was proposed 
by Lee (2006) and general laminate stacking sequences. 
Regarding deformation compatibilities of web and flanges, 
the total potential energy was obtained by Lei and Shu 
(2008) to present a finite element model for linear lateral 
stability analysis of web-tapered beams with doubly sym-
metric I-section. Zhang and Tong (2008) assessed the lat-
eral stability capacity of web-tapered doubly symmetric 
I-beam subjected to fixed free and simply supported end 
conditions by formulating the strain energy according to 
deformation compatibilities of two flanges and web of 
I-section. An analytical approach was used by Sina et al. 
(2009) to study the free vibration of functionally graded 
beams based on a new beam theory different from tradi-
tional first-order shear deformation beam assumption. 
Huang and Li (2010) and Huang et al. (2013) studied free 
vibration of axially FG non-prismatic beam where assump-
tions of Euler–Bernoulli and Timoshenko beam theories 
were contemplated. In their studies, the governing motion 
equation of beam was transformed into Fredholm integral 
equations. The exact lateral–torsional stability criterion of 
cantilever strip beam subjected to combined effects of 
intermediate and end transverse point loads by means of 
Bessel functions was proposed by Challamel and Wang 
(2010). Based on first-order shear deformation theory, 
Mohanty et al. (2012) presented an investigation of static 
and dynamic behavior of functionally graded ordinary 
(FGO) beam and functionally graded sandwich (FGSW) 
beam having hinged–hinged boundary condition by utiliz-
ing a new finite element solution. Geometrical stiffness 

matrix of a thin-walled beam element with doubly sym-
metric I-section was derived by Yau and Kuo (2012) by 
applying rigid beam assemblage concept in conjunction 
with stiffness transformation method. Li et al. (2013) stud-
ied the free vibration behavior of exponentially function-
ally graded beams. Chen and Li (2013) proposed a new 
modified couple stress theory for vibration problem of 
microscale composite laminated Timoshenko beam 
(CLTB). Asgarian et al. (2013) studied the lateral–torsional 
behavior of tapered beams with singly symmetric cross 
sections and having different end conditions. The equilib-
rium equation was solved by the power series expansions. 
An analytical technique was proposed by Yuan et al. (2013) 
to obtain the lateral–torsional buckling load of steel web-
tapered tee-section cantilevers subjected to a uniformly 
distributed load and/or a concentrated load at the free end. 
A nonlinear formula based on 1D model for lateral buck-
ling analysis of simply supported tapered beams with dou-
bly symmetric cross sections was proposed by Benyamina 
et al. (2013). Soltani et al. (2014) studied linear stability 
and free vibration behavior of non-prismatic thin-walled 
beams with arbitrary cross section using a new finite ele-
ment solution. An investigation on transverse vibration 
characteristics of rotating functionally graded Timoshenko 
beam made of porous material via the semi-analytical dif-
ferential transform method was accomplished by Ebrahimi 
and Mokhtari (2015). Kuś (2015) investigated a numerical 
procedure for the lateral buckling stability analysis of 
beams with doubly symmetric cross section. In his work, 
the Ritz method has been adopted and the effects of simul-
taneous changes in the web height and flange width are 
taken into consideration. Additionally, Ruta and Szybinski 
(2015) applied Chebyshev series to solve the torsion 
fourth-order differential equation obtained by Asgarian 
et al. (2013) and to determine the critical lateral–torsional 
buckling of simply supported and cantilever beams with 
arbitrary open cross sections. Based on Euler–Bernoulli 
beam model and Vlasov’s theory for torsion, the stability 
analysis of thin-walled FG sandwich box beams with vari-
ous boundary conditions was carried out by Lanc et al. 
(2015). An efficient approach to derive dynamic stiffness 
matrix of AFG Timoshenko beams on viscoelastic founda-
tion subjected to impulsive loads in the Laplace domain 
was introduced by Calim (2016). By contemplating the 
impact of elastic foundation and semirigid end conditions, 
buckling analysis of axially functionally graded Euler–Ber-
noulli beam having non-uniform cross section was per-
formed in detail by Shvartsman and Majak (2016). Fang 
and Zhou (2016) investigated free vibration behavior of 
rotating axially functionally graded Timoshenko beams 
with varying cross section through a new hybrid approach 
based on combination of Chebyshev polynomials and Ritz 
method. The Eringen non-local elasticity was used by 
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Vosoughi (2016) and Vosoughi et al. (2018) to investigate 
the behavior of nanobeam under different mechanical and 
thermal loadings. Based on Vlasov’s assumption, Chen 
et al. (2016) derived the element stiffness matrix of the 
pre-twisted thin-walled straight beam with elliptical sec-
tion and I cross section. Based on six different shear defor-
mation theories, Pradhan and Chakraverty (2017) surveyed 
free vibration behavior of functionally graded beam with 
various end restrains using Rayleigh–Ritz method. By 
using a mathematical approach, new optimization models 
for improving the dynamic performance of functionally 
graded beams with thin-walled box section were suggested 
by Maalawi (2017). Ebrahimi and Hashemi (2017) 
inspected thermo-mechanical vibration behavior of tapered 
beams made of functionally graded (FG) porous material 
subjected to different thermal loadings by applying the dif-
ferential transform method. Nguyen et al. (2016a, b, 2017, 
2019) and Nguyen and Lee (2018) published several 
important papers related to static, vibration and buckling 
analyses of beams with thin-walled cross section made 
from composite and/or FG materials. Effect of uniform 
Winkler–Pasternak elastic foundation on torsional post-
buckling behavior of clamped beam with doubly symmetric 
I-section was investigated by Rao and Rao (2017). Based 
on the transformed-section method and Euler–Bernoulli 
beam theory, free vibration analysis for FG beams with a 
rectangular cross section is carried out by Chen and Chang 
(2017). In order to carry out the free vibration analysis of 
axially functionally graded Euler–Bernoulli beams with 
varying cross section, Ghazaryan et al. (2018) utilized the 
differential transform method (DTM). In the context of the 
surface elasticity theory of Gurtin–Murdoch, buckling 
analysis of thermally affected tapered nanowires with axi-
ally varying material properties was comprehensively con-
ducted by Kiani (2018). Norouzzadeh et al. (2019) devel-
oped a comprehensive size-dependent model to survey the 
linear and geometrically nonlinear bending responses of 
Timoshenkonanobeams. Rezaiee-Pajand et al. (2018) per-
formed lateral–torsional stability analysis of axially trans-
versally functionally graded tapered I-beams. Through the 
BB-BC algorithm and Deb’s constraint handling method, 
Ozbasaran and Yilmaz (2018) presented the shape optimi-
zation procedure of flange and/or web-tapered doubly sym-
metric I-beams subjected to bending about their strong 
axis. Soltani (2017) and Soltani and Asgarian (2019a, b) 
performed stability and free vibration analyses of axially 
functionally graded non-prismatic Euler–Bernoulli and 
Timoshenko beams through a new mathematical mythol-
ogy based on power series approximation. Recently, Gha-
semi and Meskini (2019) perused the free vibrational 
behavior of simply supported power-law FG circular cylin-
drical shells based on Love’s first approximation shell 
theory.

Based on Vlasov’s model (1959) and using small dis-
placements theory, the lateral–torsional stability behavior 
of thin-walled beams with doubly symmetric cross section 
under bending about their strong axis is usually governed by 
two fourth-order differential equations coupled in terms of 
the lateral displacement and the torsion angle. Accordingly, 
the 8 * 8 static and buckling stiffness matrices are formulated 
based on eight displacement parameters, namely translation, 
twist, rotation and warping, at each of end node (Soltani 
et al. 2014).

Besides, to the best knowledge of the authors, the previ-
ous studies on the dynamic and static analyses of tapered 
thin-walled beams are exclusively restricted to members 
made from homogeneous materials or transversely FGMs. 
Although, in the last decades, a large number of studies have 
been performed to investigate stability and vibration behav-
ior of AFG non-prismatic beams, they are capable of pre-
dicting free vibration characteristics and axial critical loads 
of members with rectangular and/or circular cross sections. 
Therefore, the lateral–torsional stability of axially function-
ally graded beams with axially varying thin-walled cross 
section needs more discussions.

Regarding this, the main purpose of this work is to exactly 
survey the lateral stability analysis of axially functionally 
graded non-uniform beams with doubly symmetric open 
cross section subjected to different boundary conditions. 
In this context, the present study intends to develop a new 
finite element solution using two-node four-degree-of-free-
dom element for linear stability analysis of AFG web and/or 
flanges tapered beams under different boundary conditions. 
The usual 8 * 8 elastic and buckling stiffness matrices for 
beam with doubly symmetric thin-walled cross section are 
thus condensed to 4 * 4 ones. The following are the gist of 
this paper:

1.	 Based on Vlasov’s model and using small displacements 
theory, the governing equilibrium equations are derived 
through the energy principle for functionally graded 
non-uniform beams with bi-symmetric I-section.

2.	 The acquired system of linear stability equations are 
coupled in terms of the lateral deflection and the angle 
of twist due to simultaneous bending and torsion defor-
mations. In this stage, the differential equations are 
uncoupled and converted to a single fourth-order dif-
ferential equation where only twist angle is present.

3.	 In the last section, the finite element equations using a 
two-node four-degree-of-freedom element are developed. 
For this, the resulting equilibrium equation is restated in 
an integral form called the weak form. The terms of elastic 
stiffness and buckling stiffness matrices are finally derived 
by means of the expressions of the shape functions of pris-
matic flexural elements made up of homogeneous mate-
rial, known as the Hermitian functions. It is noteworthy 



592	 Iranian Journal of Science and Technology, Transactions of Civil Engineering (2021) 45:589–609

1 3

that in the current finite element formulation, the varia-
tions of applied load, geometrical properties and material 
characteristics are exactly contemplated in the calculation 
procedure of the terms of structural and buckling stiff-
ness matrices. By solving the eigenvalue problem, one can 
acquire the lateral–torsional buckling loads.

According to the steps mentioned above, for measuring 
the effects of non-uniformity ratio, load height position, end 
moment ratio and axial variation of material properties on 
lateral–torsional stability resistance of axially functionally 
graded tapered beam with doubly symmetric section subjected 
to various end conditions, three exhaustive numerical exam-
ples are used. It should be pointed out that material properties 
of functionally graded tapered I-beam are supposed to vary 
through longitudinal direction of the constituents according to 
simple power-law distribution (P-FGM) as well as exponen-
tial one (E-FGM). In the current study, Poisson’s ratio of the 
beams is assumed to be constant. In the case of homogenous 
beam with varying I-section, the exactness of the proposed 
finite element formulation is validated by comparing the 
obtained results with finite element simulations using ANSYS 
software and the available benchmarks. Comments and con-
clusions are presented toward the end of the manuscript.

2 � Derivation of the Equilibrium Equations

A straight tapered thin-walled beam as depicted in Fig. 1 
is taken into account. It is assumed that the beam is made 
from non-homogeneous material with shear (G) and Young’s 
(E) moduli which are variable along the beam’s length. The 
right-hand Cartesian coordinate system with x the initial 
longitudinal axis measured from the left end of the beam, 
the y-axis in the lateral direction and the z-axis along the 
thickness of the beam is considered. The origin of these axes 

(O) is located at the centroid of doubly symmetric I-section. 
The beam is initially subjected to arbitrary distributed force 
qz in z direction along with a line (PP′) on the section con-
tour (Fig. 1). Based on small displacements assumption and 
Vlasov’s thin-walled beam theory for non-uniform torsion, 
the three displacement components of a point M on the sec-
tion contour can be expressed as follows:

In these equations, U is the axial displacement and displace-
ment components V and W represent lateral and vertical dis-
placements (in direction y and z). The term �(y, z) signifies a 
cross-sectional variable that is called the warping function, 
which can be defined based on Saint-Venant’s torsion theory 
and θ is twisting angle.

The equilibrium equations for beam with variable I-sec-
tion are derived if the first variation of the total potential 
energy vanishes:

� illustrates a virtual variation in the last formulation. Ul 
represents the elastic strain energy and U0 expresses the 
strain energy due to effects of the initial stresses. �Π could 
be computed using the following:

(1a, c)
U(x, y, z) = u0(x) − y
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− z
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Fig. 1   Beam with variable 
doubly symmetric I-section 
under external distributed loads: 
Coordinate system, notation for 
displacement parameters and 
definition of load eccentricities
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in which L and A express the element length and the 
cross-sectional area, respectively. ( ��l

xx
,�� l

xz
 ,) and ��∗

xx
 are 

the variation of the linear and the nonlinear parts of strain 
tensor, respectively. �xx , �xy and �xz denote the Piola–Kirch-
hoff stress tensor components. Based on the assumption of 
the Green’s strain tensor, the linear and the nonlinear parts 
of strain–displacement relations and their first variation are:

(4a)
�l
xx
= u�

0
− yv�� − zw�� − ���� → ��l

xx
= �u�

0
− y�v�� − z�w�� − �����

by adopting the quadratic approximation, the vertical dis-
placement of the point P and its first variation are as:

In this equation, zP and yP are used to imply the eccentrici-
ties of the applied loads from the centroid of the cross sec-
tion. Substituting Eqs. (4) to (6) into relation (3), the expres-
sion of the virtual potential energy can be carried out as:

(6)wP = w + yP� − zP
�2

2
→ �wP = �w + yP�� − zP���

In Eq. (3), �0
xy

 and �0
xz

 represent the mean value of the shear 
stress and �0

xx
 signifies initial normal stress in the cross sec-

tion. According to Fig. 1, it is contemplated that the external 
bending moment occurs about the major principal axis ( M∗

y
 ). 

Therefore, the magnitude of bending moment with respect 
to z-axis is equal to zero. Regarding this, the most general 
case of normal and shear stresses associated with the external 
bending moment M∗

y
 and shear force Vz is considered as:

In Eq. (3), wP is the vertical displacement of point P. 
According to kinematics used in Asgarian et al. (2013) and 
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in which M̂t = qzyP and Mt = qzzP denote the first- and 
the second-order torsion moments due to load eccentricities.

The variation of strain energy can be formulated in terms 
of section forces acting on cross-sectional contour of the 
elastic member in the buckled configuration. The section 
stress resultants are presented by the following expressions:

where N is the axial force applied at end member. My and Mz 
denote the bending moments about major and minor axes, 
respectively. Bω is the bi-moment. Msv is the Saint-Venant 
torsion moment. In this stage, by integrating Eq. (7) over 
the cross-sectional area of the beam and using relations 
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(8a)–(8e), the final form of the variation of total potential 
energy ( �Π ) is acquired as:

Or

According to the equation presented above, the first variation 
of total potential energy contains the virtual displacements 
( �u0, �v, �w, �� ) and their derivatives. After appropriate inte-
grations by parts, one gets an expression in terms of virtual 
displacements. After some calculations and needed simplifi-
cations, the following equilibrium equations in the stationary 
state are obtained:

The boundary conditions of the beam can be also expressed 
as:

Assuming E and G to be the elastic parameters for an axi-
ally non-homogeneous material, which can be both variable 
through the longitudinal direction, the expressions of the 
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stress components including the normal and shear ones are 
as:

Substituting the strain–displacement relations defined in 
Eq. (4) into elastic stresses of Eq. (13) and integration over 
the cross-sectional area in the context of principal axes, the 
following components are derived:

In previous expressions, A is the cross-sectional area. Iy and 
Iz denote the second moments of area. J and I� are the Saint-
Venant torsion and warping constants. They are defined as:

This model is also established in the context of small dis-
placements and deformations. According to linear stability, 
nonlinear terms are also disregarded in the equilibrium equa-
tions. Based on these assumptions, the system of equilibrium 
equations for tapered I-beam is finally derived by replacing 
Eq. (14) into Eq. (11):

(13a)�xx = E(x)�xx

(13b)�xz = G(x)�xz

(13c)�xy = G(x)�xy

(14a)
N = ∫A

�xxdA = ∫A

E(x)�xxdA

= ∫A

E(x)(u�
0
− yv�� − z�� − ���)dA = EAu�

0

(14b)My = ∫A

E(x)(u�
0
− yv�� − zw�� − ����)zdA = −EIyw

��

(14c)Mz = −∫A

E(x)(u�
0
− yv�� − zw�� − ����)ydA = EIzv

��

(14d)

B� = −∫A

E(x)(u�
0
− yv�� − zw�� − ����)�dA = EI��

��

(14e)

Msv = ∫
A

G(x)

((
y −

��

�z

)2

+

(
z +

��

�y

)2
)
��dA = GJ��

(15a, e)

A = ∫
A

dA, Iy = ∫
A

z2dA, Iz = ∫
A

y2dA, I� = ∫
A

�2dA

J = ∫
A

((
y −

��

�z

)2

+

(
z +

��

�y

)2
)
dA

(16a)
(
EAu�

0

)�
= 0
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In these differential equations, the successive x-derivatives 
are denoted by ()′, ()″. The last two equilibriums Eqs. (16c, 
d) are coupled differential equations due to the presence of 
lateral deflection and torsion component (v and θ) as well as 
bending moment ( M∗

y
 ), while the equation for the axial and 

vertical displacements (Eqs. 16a, b) are uncoupled from the 
others. Besides, they have no incidence on linear lateral–tor-
sional buckling analysis of elastic beam with bi-symmetric 
thin-walled cross section. The associated boundary condi-
tions are formulated as follows:

The governing equilibrium equation for lateral deformation 
(Eq. (16c)) can be transformed into:

The last expression is incorporated in the fourth equi-
librium equation Eq. (16d). After some simplifications, the 
mentioned equation is then uncoupled from the lateral dis-
placement (v). The following differential equation is derived 
only in terms of the twist angle (θ):

Or

For simplicity, we assume that the distributed load is acted 
without any eccentricity in the lateral direction (yP = 0). 
Therefore, the value of first-order torsion moment ( M̂t ) is 
equal to zero. The characteristics of any geometrical proper-
ties of the beam are a function of the coordinate x due to the 

(16b)
(
EIyw

��
)��

= qz

(16c)
(
EIzv

��
)��

−
(
M∗

y
�

)��

= 0

(16d)
(
EI𝜔𝜃

��
)��

−
(
GJ𝜃�

)�
−M∗

y
v�� = M̂t −Mt𝜃

(17)

N = 0 Or �u0 = 0

EIyw
�� = 0 Or �w� = 0

−(EIyw
��)� = 0 Or �w = 0

(EIzv
��) −M∗

y
� = 0 Or �v� = 0

−(EIzv
��)� + (M∗

y
�)� = 0 Or �v = 0

EI��
�� = 0 Or ��� = 0

−(EI��
��)� + GJ�� = 0 Or �� = 0

(18)v�� =
M∗

y

EIz
�

(19)

[
E(x)I�(x)�

��(x)
]��

−
[
G(x)J(x)��(x)

]�
−

M2
y
(x)

E(x)Iz(x)
�(x) = −Mt(x)�(x)

(20)

E(x)Iz(x)
[
E(x)I�(x)�

��(x)
]��

− E(x)Iz(x)
[
G(x)J(x)��(x)

]�

−M2

y
(x)�(x) + E(x)Iz(x)Mt(x)�(x) = 0

tapering of the web and/or flanges. Due to the presence of 
variable coefficients in the acquired fourth-order differential 
equation in terms of the angle of twist, closed-form solu-
tions are not accessible. In order to overcome this difficulty, 
numerical and analytical techniques such as Rayleigh–Ritz 
method, finite element analysis (FEA), Galerkin’s method, 
finite difference method (FDM) and differential quadrature 
method (DQM) are possible. In the current work, the finite 
element method for linear lateral–torsional stability analysis 
of axially functionally graded web and/or flanges tapered 
doubly symmetric beams with various end conditions is 
employed. The finite element formulation using the exact 
shape functions for homogeneous beam elements with uni-
form cross section is developed in the remaining part of the 
current paper.

3 � Finite Element Formulations

In the previous section, the formulation of differential equa-
tion along with the boundary conditions has been presented 
in a strong form, while, in the current section, the deriva-
tion of weak form of the equilibrium equation of AFG non-
prismatic beam with tapered I-section is outlined to acquire 
approximate solution based on the finite element method. 
The weak form is an integral form of the equilibrium equa-
tion. In order to construct the weak form for the governing 
differential equation, it is essential that we multiply Eq. (20) 
by an arbitrary function ( � ) and integrate the result over the 
problem domain. The weak form of the equilibrium equation 
in terms of bending rotation is thus obtained by:

in which � is a test function which is continuous and satis-
fies the essential end conditions. Thus, the weak form for the 
equilibrium equation becomes:

As can be seen in the above equation, the general quadratic 
functional form cannot be constructed in the presence of 
the second, third and fifth terms in the weak statement of 
the equilibrium equation which possesses a non-symmetric 
bi-linear form.

In the current finite element model, there are two nodes 
with two degrees of freedom per node for each element. The 
two nodes by which the finite element can be assembled into 

(21)
∫

L

0

�

(
(EIz)

(
EI��

��
)��

− (EIz)
(
GJ��

)�
−M∗2

y
� + (EIz)Mt�

)
dx = 0

(22)
∫

L

0

((EIz)(EI�)�
����� + 2(EIz)

�(EI�)�
��

+(EIz)
��(EI�)���� + (EIz)(GJ)�

���

+(EIz)
�(GJ)��� −M∗2

y
�� + (EIz)Mt��)dx = 0
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structure are located at its ends. According to finite element 
rules, it is essential to use local coordinate ( � = x∕Le ). Le 
is the length of each segment. The local -axis is directed 
from node 1 to node 2. The considered degrees of freedom 
at the left and right nods of each element are: �1, �2 (the 
twist angle) and �′1, �′2 (the rate of twist, ��∕�� ). The nodal 
displacements of the beam element in the local coordinate 
at � = 0 and � = 1 are illustrated in Fig. 2.

The terms of the element stiffness matrix can be found 
from the derivation of the interpolation functions. The shape 
functions define the deformation shape of the element by 
applying unit deformation at each of the four degrees of 
freedom, while constraining other nodal displacement. With 
these four interpolation functions, the exact deformed shape 
of the beam element can be expressed in terms of its nodal 
displacements. As it was previously pointed out, the exact 
shape functions of homogeneous and isotropic uniform 
flexural elements, known as Hermitian cubic interpolation 
(cubic spline) functions, are used in the current study. These 
shape functions are as follows:

in which

�i(�), i = 1, 2, 3, 4 are the shape functions corresponding 
to the four degrees of freedom. Substituting the interpolation 
shape functions (Eq. (24)) into Eq. (22), the terms of elastic 
and buckling stiffness matrices of AFG tapered I-beam in 
the non-dimensional coordinate are derived as:

(23)⟨�(�)⟩ =
�
�1(�) �2(�) �3(�) �4(�)

�

(24a, d)

�1(�) = 2�3 − 3�2 + 1

�2(�) = �3 − 2�2 + �

�3(�) = −2�3 + 3�2

�4(�) = �3 − �2

where K∗
ij
 and KMij

 are, respectively, the usual elastic stiffness 
and the buckling stiffness matrices, which accounts for the 
effect of applied bending moment on the stiffness of the 
member.

At this stage, it is important to note that the elastic and 
buckling stiffness matrices [K*] and [KM] developed for an 
AFG beam with tapered I-section can be adopted to deter-
mine the similar stiffness matrices for a uniform beam made 
up of homogenous and isotropic materials. In this condition, 
the flexural rigidity (EIz) is constant over beam’s length and 
the elastic stiffness matrix is reduced to:

By reviewing the above expression, it is important to men-
tion that it is possible to construct the quadratic functional 
form for linear stability analysis of homogenous prismatic 
beam with thin-walled I-section. Thereafter, by assembling 
each element stiffness matrix based on its nodal displace-
ments, the stiffness matrices of the whole structure can be 
achieved. In most finite element method textbooks (Zien-
kiewicz and Taylor 2005; Logan 2007), one can find the 
description of the process of assemblage in details.

It should be pointed out that only the linear lateral stabil-
ity analysis is under consideration in the present study. In 
this regard, the buckling stiffness matrix is proportional to 
the initial stress forces. The critical buckling loads are thus 
evaluated by solving the following eigenvalue problem:

(25a)

K∗
ij
=

1

L3
e
∫

1

0

{
(E(�)Iz(�))(E(�)I�(�))�

��
i
(�)���

j
(�)

}
d�
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2
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e
∫

1

0
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(E(�)Iz(�))

�(E(�)I�(�))�
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(�)���
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(�)

}
d�
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1
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e
∫
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(E(�)Iz(�))
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��
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+
1

Le ∫
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(E(�)Iz(�))(G(�)J(�))�

�
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+
1
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(25b)
KMij
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y
(�)
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+(E(�)Iz(�))Mt(�)�i(�)�j(�)
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(26)
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ij
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1
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e
∫

1
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(27)
([
K∗

]
−
[
KM

])
{d} = 0Fig. 2   Nodal displacement vectors of a tapered I-beam element of 

length Le
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in which {d} are the eigenvectors related to eigenvalues. 
It is well known that for a system with n degrees of freedom, 
there exist n lateral–torsional buckling modes, but in practice 
only the lowest ones are of interest.

4 � Numerical Results

In the previous sections, the equilibrium equation of axially 
functionally graded thin-walled beam with varying cross 
section was acquired; afterward, a new finite element model 
for lateral–torsional stability analysis was formulated. In the 
current section to demonstrate the effects of different param-
eters, namely load height position, moment gradient factor, 
tapering ratio, end conditions and axial variation, of mate-
rial properties on the lateral–torsional critical load, three 
numerical examples are provided and solved through the 
proposed finite element methodology. It should be pointed 
out that material properties of functionally graded web and/
or flanges tapered I-beam are supposed to vary through lon-
gitudinal direction of the constituents according to simple 
power-law distribution (P-FGM) as well as exponential one 
(E-FGM). Based on the studies presented by Delale and 
Erdogan (1983) and Li (2008), it is assumed that the Pois-
son’s ratio is constant through the length.

In the following, the mechanical properties at the left 
support (x = 0) and the right one (x = L) of the beam are, 
respectively, indicated with the subscripts 0 and 1. In order 
to simplify the solution procedure and the presentation of 
acquired results, the following non-dimensional parameters 
are defined as.

Buckling load for beam under concentrated load:

(28a)Pcr =
PcrL

2

E0Iz0

Buckling load for beam under uniformly distributed load:

Buckling moment for beam under gradient moment:

4.1 � Example 1: Lateral–Torsional Buckling 
of Cantilever Web‑Tapered Beam Under 
Concentrated Load

The first example deals with the lateral stability analysis 
of a doubly symmetric web-tapered cantilever I-beam sub-
jected to a concentrated lateral load. The beam exhibits a 
linear web tapering varying from the bigger section (d0) at 
the fixed end to the smaller one (d1) at the free end, as shown 
in Fig. 3, while the bottom and top flanges’ width remain 
constant along the length. The web height is reduced at the 
free end with different tapering ratio � = d0∕d1; 0.1 ≤ � ≤ 1 . 
In the current example, the tip load is applied at two differ-
ent positions of the smaller section at the free end, namely 
at the top flange and at the centroid. The non-dimensional 
geometrical properties for the considered beam are shown 
in Fig. 3.

The aim of the first part of the current example is to 
define the needed number of meshes (n) in the assemblage 
of the stiffness matrices of the considered beam to obtain an 
acceptable accuracy on elastic buckling loads. Regarding 
this, the lowest values of the lateral buckling load parameter 
( Pcr ) of the aforementioned web-tapered beam with thin-
walled section for two load positions, on top flange and cen-
troid, for different values of tapering ratios (α = 0.3, 0.5 and 
1.0) are calculated with respect to the number of segments 
adopted in FE methodology. Through this part, the modulus 

(28b)qcr =
qcrL

3

E0Iz0

(28c)Mcr =
McrL

E0Iz0

Fig. 3   Cantilever web-tapered 
beam with doubly symmetric 
I-sections: geometry and load-
ing properties

(a)

(b)

(c)



598	 Iranian Journal of Science and Technology, Transactions of Civil Engineering (2021) 45:589–609

1 3

of elasticity of the material and Poisson’s ratio are assumed 
to be 200 GPa and 0.3, respectively. The outcomes are veri-
fied with those obtained by finite element technique using 
ANSYS software and the semi-analytical method suggested 
by Asgarian et al. (2013). The web-tapered doubly sym-
metric beam has been modeled using BEAM188 in ANSYS 
software. This member is a two-node element with seven 
degrees of freedom—three translational UX, UY, UZ, three 
rotary ROTX, ROTY, ROTZ and warping of freedom at each 
node. By comparing our numerical results with FE simula-
tions and with the existing ones (Asgarian et al. 2013) pre-
sented in Table 1, it can be stated that numerical results have 
rapid convergence. As n increases from 3 to 7, the relative 
errors between the evaluated results and others obviously 
diminish. Also, the acquired outcomes of the lowest lateral 
buckling parameters are identical to the exact results up to 
two decimal places. The efficiency and performance of the 
proposed finite element solution are thus confirmed. The 
precision and accuracy of the present methodology result 
from the contemplating the variations of external applied 
load, geometrical properties and material characteristics in 
the formulation of static and buckling stiffness matrices. In 
the following computations, we take n = 6 to calculate the 
first buckling load parameters, unless otherwise stated.

In the following, to study the effects of material non-
homogeneity on linear lateral–torsional stability, it is sup-
posed that the material properties of the non-prismatic beam 
are graded smoothly along the beam axis by a power-law dis-
tribution of volume fractions of the constituents. The varia-
tion of Young’s modulus of elasticity along the longitudinal 
direction is thus defined with the following formulation:

in which E0 and E1 represent the values of Young’s modulus 
of the contemplated materials on the left and right support of 
the beam, respectively. m signifies the material non-homoge-
neity index indicating the material variation profile through 
the length of the beam. It is supposed that the web-tapered 
thin-walled beam is made of a mixture of ceramic phase and 
metal phase. Regarding this, two different materials specifi-
cally zirconia (ZrO2) and aluminum (Al) with the following 
characteristics are considered as:

According to the material property variation (Eq. (29)), 
the left side of AFG beam (x = 0) is intended pure ceramic 
(zirconia) and the right end (x = L) is pure metal (aluminum). 
By notifying Eq. (29), it can also be concluded that by rais-
ing the power-law index (m), the proportion of zirconia over 
the beam’s length increases. In this research, the power-law 
exponent (m) varies in the range of 0.5 ≤ m ≤ 3.

In this section, the first non-dimensional buckling load 
parameter ( Pcr ) for web-tapered I-beam made up of homog-
enous materials and axially functionally ones with different 
gradient indexes (m = 1, 2 and 3) are derived using the pro-
posed finite element solution by dividing the beam into six 
equal segments. The dimensionless buckling loads for vari-
ous tapering ratios and two different load height positions 
are arranged in Table 2.

Afterward, the lowest buckling load parameter variation 
versus the taper ratio (α) and the gradient index (m) for cen-
troid and top flange loadings are presented in Fig. 4. Each 

(29)E(x) = E0 + (E1 − E0)
(
x

L

)m

ZrO2∶ E0 = 200GPa; Al ∶ E1 = 70GPa;

Table 1   Effect of number of elements (n) on linear lateral–torsional buckling parameter ( Pcr ) of cantilever tapered beams (centroid and top 
flange loading)

Methodology Number of 
elements (n)

Centroid Top flange

α = 1 α = 0.5 α = 0.3 α = 1 α = 0.5 α = 0.3

Present 1 0.8240 0.7215 0.6801 0.3636 0.4755 0.5405
2 0.7215 0.6722 0.6518 0.3527 0.4643 0.5288
3 0.7170 0.6710 0.6511 0.3520 0.4639 0.5285
4 0.7163 0.6707 0.6510 0.3519 0.4638 0.5284
5 0.7161 0.6707 0.6509 0.3519 0.4638 0.5284
6 0.7160 0.6706 0.6509 0.3518 0.4638 0.5284
7 0.7160 0.6706 0.6509 0.3518 0.4638 0.5284
8 0.7160 0.6706 0.6509 0.3518 0.4638 0.5284
9 0.7160 0.6706 0.6509 0.3518 0.4638 0.5284
10 0.7160 0.6706 0.6509 0.3518 0.4638 0.5284
11 0.7160 0.6706 0.6509 0.3518 0.4638 0.5284
12 0.7160 0.6706 0.6509 0.3518 0.4638 0.5284

References ANSYS: 0.7203 ANSYS: 0.6744 ANSYS: 0.6544 Asgarian et al. 
(2013): 0.3533

Asgarian et al. 
(2013): 0.4608

Asgarian et al. 
(2013): 
0.5243
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of the depictions of Fig. 4a, b presents six different plots 
relating to m = 0.5, 1, 1.5, 2, 2.5 and 3.

It is observable that increasing the gradient index leads 
to the enlargement of dimensionless buckling load for all 
values of tapering ratio. The reason is the higher portion 
of the ZrO2 phase as the value of the gradient index rises. 
For example, the magnitude of lateral buckling param-
eter of prismatic member when the tip load is applied at 
the centroid increases from 0.2272 to 0.2663 and then to 
0.2872, when m increases from 1 to 3. It shows an increase 
by 17.21% and 26.41%, accordingly. Similar behavior can 
also be observed for the critical loads relating to web-tapered 
beams. It is found that for 0.5 ≤ m ≤ 1.5 , the non-dimen-
sional critical loads increase sharply, whereas, for m > 1.5, 
the buckling resistance increases slightly and approaches 
maximum magnitude. By pondering Fig. 4, one can remark 

that the variation of buckling parameter versus the tapering 
ratio is linear for centroid loading position, while this trend 
for top flange loading is nonlinear.

The table and figure indicate that non-uniformity param-
eter has a remarkable influence on the non-dimensional lat-
eral–torsional buckling loads. The tapering parameter weak-
ens the web-tapered beam subjected to a tip point load on the 
shear center due to decreasing the member stiffness, while 
the other results relating to web-tapered I-beams with a con-
centrated load at the top flange of the free end section do not 
follow the similar pattern. In other words, the lateral stability 
strength is enhanced with tapering ratio; for instance, the lat-
eral buckling parameters of homogenous or AFG cantilevers 
with constant cross section (α = 1) are smaller than those of 
web-tapered with tapering ratio equal 0.1. This interesting 
reason is attributed to the fact that the torsion moment due 
to bending load height (Mt) is decreased by descending the 
taper ratio (α) from 1. Finally, it can be stated that this phe-
nomenon is more predominant on lateral buckling resistance 
of cantilever beam subjected to a concentrated load than that 
of web non-uniformity ratio.

4.2 � Example 2: Lateral–Torsional Buckling 
of Pinned–Fixed Double‑Tapered Beam Under 
Uniformly Distributed Load

In the second numerical example, the linear lateral–torsional 
buckling load of power-law FG double-tapered I-beam under 
uniformly distributed load and subjected to pinned–fixed 
boundary condition is perused. As shown in Fig. 5, the geo-
metrical properties of the left end section of the beam are 
constant; nevertheless, the flanges’ width and the web height 
for considered doubly symmetric I-sections are made to vary 
linearly from the pinned end to the fixed one. In the case of 

Table 2   Critical buckling parameters ( Pcr ) of cantilever beam under 
tip load at the free end, for different power-law exponents, load height 
positions and tapering ratios

a Loading position Material properties

Homogenous m = 1 m = 2 m = 3

1 Top flange 0.3518 0.2272 0.2663 0.2872
Centroid 0.7160 0.5049 0.5941 0.6389

0.8 Top flange 0.3884 0.2513 0.2951 0.3185
Centroid 0.6985 0.4930 0.5806 0.6245

0.6 Top flange 0.4356 0.2840 0.3341 0.3610
Centroid 0.6801 0.4804 0.5664 0.6094

0.4 Top flange 0.4950 0.3290 0.3878 0.4191
Centroid 0.6609 0.4671 0.5514 0.5935

0.2 Top flange 0.5622 0.3862 0.4565 0.4928
Centroid 0.6407 0.4528 0.5354 0.5765
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Fig. 4   Variation of lateral buckling parameter of cantilever I-beam under gradient moment, versus end tapering ratio (α) and the gradient index 
(m): a centroid loading, b top flange loading
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tapered web, the height of the beam’s section is (d0) at the 
left support and is linearly changed to d1 = (1 + �)d0 at the 
other end. For the beam with tapered flanges, the width of 
flange is also made to vary linearly to b1 = (1 + �)b0 at the 
other end. The tapering parameters (β and α) can change 
from zero (prismatic beam) to a range of [0.1, 1] for non-
uniform beams. In this example, lateral buckling loads are 
carried out for three different loading positions: the bottom 

flange, the centroid and the top flange. Moreover, the mate-
rial features are identical to the first example.

The aim of the first section of this example is to investi-
gate the influence of web and flanges tapering parameters 
on the lateral stability capacity of the contemplated beam 
made up of homogenous material. Hence, Fig. 6 illustrates 
the variation of the lowest lateral buckling parameters ( qcr ) 
with respect to the web tapering ratio (α) and the flange 

(a)

(b)

(c)

(d)

Fig. 5   a Schematic representation of double-tapered beam with I-section under uniformly distributed load, b configuration of AFG tapered beam 
with pinned–fixed boundary condition, c geometry properties and d loading positions

Fig. 6   Variation of lateral buckling parameter ( qcr ) of homogenous beam with tapered I-section under a distributed load on the shear center for 
different web and flange tapering parameters
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tapering parameter (β), where the distributed transverse 
load is applied on the centroid of I-section through the 
length. According to this figure, it is found out that the lat-
eral buckling parameter increases with an increase in web 
and/or flange non-uniformity ratios (β and α), as a result of 
the enhancement of all geometrical characteristics of cross 
section and consequently flexural stiffness and torsional 
rigidity of the elastic member. Moreover, it is easily evi-
dent that the impact of flanges width tapering parameter 
(β) on the magnitude of non-dimensional lateral–torsional 
buckling load is more predominant than that of web non-
uniformity ratio (α).

The next set of results was derived to demonstrate the 
impact of the power-law exponent and distributed load posi-
tion on the non-dimensional lateral buckling parameters ( qcr ) 
of the power-law FG double-tapered I-beam. Variations of 
the acquired lateral buckling parameters of the aforemen-
tioned tapered beam for different values of tapering ratios 
(β  = α  = 0, 0.2, 0.5 and 0.5) and various gradient indices 
when uniformly transverse load is acted at three different 
locations along the beam’s length, namely top flange, mid-
height and bottom flange, are tabulated in Table 3. Fur-
thermore, for three different load height positions, Fig. 7 
exhibits the effect of tapering ratio (α = β) on variation of 
lateral buckling parameters of pinned–fixed web and flanges 
tapered beam from homogenous material and axially func-
tionally ones. To this end, the power-law exponent is taken 
m = 1, 2 and 3. It is noteworthy that the lowest normal-
ized buckling parameters are derived using the proposed 
finite element solution by dividing the beam into six equal 
segments.

Figure 7 and Table 3 show that the variation of non-uni-
formity parameters has a remarkable influence on the lateral 
stability resistance of double-tapered beams subjected to 

pinned–fixed end conditions. It is also observed that the non-
dimensional lateral buckling loads increase with the increase 
in the gradient index as expected because of the increase 
in the value of elasticity modulus and the value of flexural 
and torsion rigidities of the beam. In other words, the beam 
becomes stiffer and more stable by raising the power-law 
exponent (m).

By comparing the numerical outcomes presented in 
Table 3 and Fig. 7, it can be stated that the location of the 
applied load from the centroidal point of the cross section 
directly affects the lateral–torsional buckling capacity of 
the considered beam. For example, the non-dimensional 
lateral buckling parameter of homogenous prismatic mem-
ber increases from 4.9136 to 6.7453 and then to 9.2043, 
when the load location is changed from top flange to shear 
center then bottom flange. It shows an increase by 37.28% 
and 36.46%, accordingly. In other words, the numerical out-
comes reveal that the bottom flange loading enhances the 
stability characteristics of pinned–fixed beams with constant 
or variable cross section owing to the reduction the rotation 
of bi-symmetric I-section from its original.

4.3 � Example 3: Lateral–Torsional Buckling of Simply 
Supported Web‑Tapered Beam Under Gradient 
Moment

This example represents the linear buckling moments of 
simply supported web-tapered and prismatic thin-walled 
beams under bending moment gradient (M0, ψM0). The gra-
dient moment factor (ψ) varies from + 1 to − 1. In the case 
of web-tapered beam, the web height is made to decrease 
linearly from (d0) at the left support to the (d1 =  α d0) at 
the right one, while the flanges’ width remains constant 
along the member’s length. In this example, tapering ratio 

Table 3   First lateral buckling parameters ( qcr ) for AFG double-tapered I-beam with various material non-homogeneity indexes (m) and three dif-
ferent loading positions

Tapering ratio
α = β

Load height position Material properties

m = 0.5 m = 1 m = 1.5 m = 2 m = 2.5 m = 3 Homogeneous

0 Top flange 2.8825 3.3687 3.6958 3.9120 4.0631 4.1739 4.9136
Centroid 4.0081 4.7463 5.2441 5.5690 5.7899 5.9459 6.7453
Bottom flange 5.5346 6.6381 7.3838 7.8648 8.1832 8.3999 9.2043

0.2 Top flange 3.6179 4.2270 4.6323 4.8967 5.0790 5.2111 6.1500
Centroid 5.1117 6.0570 6.6849 7.0878 7.3570 7.5442 8.5419
Bottom flange 7.1686 8.6088 9.5637 10.1672 10.5584 10.8195 11.7891

0.5 Top flange 5.0286 5.8697 6.4216 6.7752 7.0148 7.1861 8.5236
Centroid 7.1889 8.5168 9.3812 9.9237 10.2785 10.5209 11.9138
Bottom flange 5.0286 12.2532 13.5801 14.3967 14.9125 15.2491 16.5451

0.8 Top flange 6.8783 8.0179 8.7571 9.2238 9.5363 9.7582 11.6277
Centroid 9.8570 11.6664 12.8238 13.5369 13.9958 14.3059 16.2201
Bottom flange 14.0188 16.8301 18.6054 19.6734 20.3343 20.7589 22.4811
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α of web-tapered beams is varied from 0.1 to 1. The non-
dimensional geometrical data of the considered beam are 
pictured in Fig. 8.

In the first part of the current example, for homogenous 
beam with constant I-section (α = 1.0) and web-tapered one 
(α  = 0.4), the lowest buckling moment parameter ( Mcr ) 
variation versus the gradient moment factor (ψ) is shown 
in Fig. 9. After observing the results illustrated in Fig. 9a 
related to prismatic I-beam subjected to gradient moment, 

it can be concluded that there is an excellent agreement 
between the buckling moments calculated by proposed finite 
element formulation and those estimated by the semi-analyt-
ical technique based on the power series method suggested 
by Asgarian et al. (2013). In this loading condition, the rela-
tive difference between the proposed numerical approach 
and the benchmark is less than 1%. Besides, the maximum 
strength is reached when ψ=− 0.8 for the prismatic beam. 
These results are confirmed by Mohri et al. (2013).
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Fig. 7   Variation of lateral buckling parameter of pinned–fixed I-beam under gradient moment, versus end tapering ratio (α) and the gradient 
index (m): a top flange loading, b centroid loading, c bottom flange loading

Fig. 8   Simply supported tapered axially functionally graded beam under moment gradient: geometry properties
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For the beam with tapered I-section (α = 0.4), the critical 
buckling moment variation with ψ is depicted in Fig. 9b. It 
can be stated that under positive and negative gradient fac-
tors, the outcomes of proposed finite element method con-
cord very well with the power series methodology (Asgar-
ian et al. 2013). It is important to note that the buckling 
moments carried out from present numerical study underes-
timate beam strength (1% error). In the case of web-tapered 
beam with doubly symmetric I-section, the maximum lateral 
buckling capacity is achieved for ψ = − 0.8.

After validating the current technique, the variation of 
non-dimensional buckling moment versus the tapering ratio 
(α) and the gradient factor (ψ) is presented in Fig. 10 for 

first lateral–torsional buckling mode. According to Fig. 10 
and for both uniform and web-tapered beams with I-section 
under variable bending moment, nonlinear variation of lat-
eral buckling resistance of beam with gradient factor (ψ) is 
noticed. As shown in Fig. 10, for any value of end moment 
ratio the lateral stability strength of prismatic beam (α = 1) 
and tapered beam with α = 0.1 is most and least, respec-
tively. This can be explained by the fact that a decrease 
in tapering ratio causes the reduction in torsion and bend-
ing rigidities. In other words, the beam becomes weaker 
and more unstable as the tapering ratio diminishes. It is 
also evident that for different non-uniformity parameters, 

(a) (b)

Fig. 9   Variation of buckling moment parameter of homogenous beam with doubly symmetric I-section under gradient moment, versus the gradi-
ent factor ψ: a prismatic beam (α = 1), b tapered beam (α = 0.4)

Fig. 10   Variation of buckling moment parameters of simply supports tapered I-beam under gradient moment, versus end moment gradient factor 
(ψ) and tapering ratio (α)
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the highest lateral–torsional strength is obtained about 
−0.8 ≤ � ≤ − 0.7.

In this example, it is assumed that the Young’s modulus 
of elasticity varies continuously in the longitudinal direction 
according to an exponential function (E-FGM) of the volume 
fractions of the constituent materials, while the Poisson’s 
ratio is supposed to equal 0.3 along the beam axis:

E0 and E1 represent values of Young’s modulus of the 
constituent materials. Note that E0 is root elastic modulus. λ 
signifies a dimensionless parameter defining the gradual 
variation of the material property along the longitudinal 
direction. In the case of an isotropic and homogenous mate-
rial equals zero. The above expression is adopted in several 
papers (Suresh 2001; Aydogdu and Taskin 2007; Arshad 
et al. 2007; Atmane et al. 2011; Mohanty et al. 2012; Li 
et al. 2013, 2018; Şimşek 2015; Wang et al. 2016; Deng 
and Cheng 2016; Khaniki and Rajasekaran 2018; Soltani 
et al. 2019).

Afterward, the lowest buckling moment parameters ( Mcr ) 
for two different non-uniformity ratios (α = 1, 0.5), various 
gradient factors (ψ) with different material parameters (λ) are 
arranged in Table 4. Subsequently, for three different taper-
ing ratios (α = 1, 0.7 and 0.4), Fig. 11 presents the impact 
of end moment gradient parameter (ψ) on variation of criti-
cal buckling moment of contemplated E-FG tapered I-beam 
with respect to gradient parameter (λ). Moreover, Fig. 12 
illustrates the variation of buckling moments of E-FG web-
tapered beam with respect to the tapering ratio (α) and the 
gradient parameter (λ) for pinned–pinned member subjected 
to end moment with two different moment gradient factors 
(ψ = − 1 and 1).  

As given in Table 3 and Figs. 11 and 12, for any value of 
gradient parameters (λ) and end moment ratio (ψ) the corre-
sponding normalized buckling moment for the beam having 

(30a, b)E(x) = E0e
�x

L ; � = ln

(
E1

E0

)

constant cross section is the highest and that for tapered 
beam with the tapering ratio (0.1) is the lowest. Moreover, 
Figs. 11 and 12 show that the variation of non-homogeneity 
parameter has a significant influence on the lateral–tor-
sional stability behavior of simply supported web-tapered 
beams under different circumstances. It can be also stated 
that the critical buckling moment parameters relating to the 
first mode are increased as the gradient parameter increases 
from − 1 to + 1. This statement is reasonable due to the fact 
that modulus of elasticity rises as the value of inhomogene-
ous constant increases over zero (λ > 0), and the gradient 
parameter under zero (λ < 0) indicates a decrease in Young’s 
moduli (see Eq. (30)).

In the following, comparison studies between the buck-
ling resistance of ceramic–metal and metal–ceramic FG 
tapered beam having properties according to the power law 
with different gradient indexes and exponential law are car-
ried out and presented in Fig. 13. In this regard, we have 
determined the first non-dimensional buckling moment for 
web-tapered beams, where in calculations ψ = 0 is chosen. 
Figure 13a reveals the influence of tapering ratio (α) on the 
critical moment of ceramic–metal FG beam with zirconia 
root and having properties corresponding to power law 
with indexes m = 1, 2 and 3 (Eq. (29)) as well as exponen-
tial law (Eq. (30)). The outcomes relating to homogenous 
beam are also plotted in this figure. It should be pointed out 
that the non-dimensional results are the same for pure ZrO2 
and aluminum beams. Compared to Al, ZrO2 has superior 
mechanical properties. The material property distributions 
in AFG I-beam as power law with m ≥ 1 and exponential 
law make the volume fraction of ceramic in the longitudinal 
direction of beam highest and lowest, respectively. In other 
words, power-law distribution of properties makes the beam 
richer in ceramic content. Regarding this, the contemplated 
E-FGM beam has the lowest volume fraction of zirconia, 
and consequently, a weaker and more flexible member com-
pared to a beam having properties according to power law 
is achieved. Since the lateral buckling resistance of beam 

Table 4   Non-dimensional critical moment ( Mcr ) for exponentially FG web-tapered I-beam with different material non-homogeneity parameters 
(λ) and subjected to end moment

Tapering ratio  λ End moment gradient factor (ψ)

1 − 0.8 − 0.6 − 0.4 − 0.2 0 0.2 0.4 0.6 0.8 1

α = 1 − 1 0.8397 1.0098 1.0453 0.9450 0.8091 0.6811 0.5743 0.4895 0.4231 0.3708 0.3290
− 0.5 1.1437 1.2799 1.2489 1.1209 0.9720 0.8334 0.7156 0.6194 0.5420 0.4796 0.4289
0.5 1.8856 1.8632 1.7311 1.5600 1.3861 1.2256 1.0850 0.9650 0.8639 0.7788 0.7072
1 2.2826 2.1872 2.0205 1.8316 1.6453 1.4735 1.3211 1.1888 1.0752 0.9778 0.8944

α = 0.5 − 1 0.6726 0.8479 0.9342 0.8543 0.7275 0.6063 0.5056 0.4266 0.3655 0.3180 0.2806
− 0.5 0.9450 1.1173 1.1277 1.0150 0.8756 0.7448 0.6339 0.5442 0.4728 0.4158 0.3700
0.5 1.6722 1.6905 1.5772 1.4183 1.2549 1.1041 0.9723 0.8603 0.7665 0.6882 0.6226
1 2.0669 1.9975 1.8455 1.6687 1.4938 1.3326 1.1899 1.0665 0.9610 0.8710 0.7944
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is proportional to the stiffness of the members, it is evident 
from this illustration that the critical moment corresponding 
to any value of tapering ratios is the lowest for beam with 
exponential volume fraction law and highest for the homog-
enous beam from ceramic (ZrO2). Accordingly, the buckling 
moment of beam having properties corresponding to simple 
power law with three different power-law exponents (m = 1, 
2, 3) is between the above-mentioned cases. In this case, 
the lateral buckling resistance is higher for higher value of 
volume fraction indexes.

The variation of the lowest normalized buckling moments 
for metal–ceramic tapered I-beams with aluminum root 
versus tapering parameters (α) is plotted in Fig. 13b, for 
simply supported beams having properties corresponding to 
power law with indexes m = 1, 2 and 3 (Eq. (29)) as well as 
exponential law (Eq. (30)). The critical buckling moments 
increase substantially with the increase in non-uniformity 
constant from 0.1 to 1, for both types of property distribution 

similar to the results of beam with zirconia root (Fig. 13a). 
In contrast to ceramic–metal FG beam, the non-dimensional 
critical moment of metal–ceramic member with aluminum 
root diminishes when the power-law index (m) is increased 
from 1 to 3. This phenomenon can be explained by the fact 
that the percentage content of aluminum increases over 
the beam axis and compared to zirconia, this component 
has got lower shear and Young’s modulus, and as a result, 
more flexible beam is acquired. As reflected in this figure, 
the homogenous beam from aluminum and FG beam with 
properties corresponding to polynomial volume fraction law 
with m = 1 has the dimensionless critical moment with the 
smallest and largest values, respectively. Moreover, the pre-
sented outcomes also reveal that FG tapered I-beam with Al 
root with properties corresponding to power law with m = 2, 
m = 3 and exponential volume fraction law have intermedi-
ate stability.

(a) (b)

(c)

Fig. 11   Variation of dimensionless lateral buckling moment of simply supports I-beam under gradient moment, versus end moment gradient fac-
tor (ψ) and the gradient parameter (λ) a uniform beam (α = 1), b tapered beam (α = 0.7), c tapered beam (α =  0.4)
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5 � Conclusions

In this study, lateral–torsional stability analysis of axially 
functionally graded beam with tapered doubly symmetric 
section under different boundary conditions is carried out 
via a new finite element model. For this purpose, a two-
node element with two degrees of freedom, namely the twist 
angle and the rate of twist, at each node is introduced. The 
usual 8 * 8 elastic and lateral buckling stiffness matrices for 
beam with bi-symmetric I-section are thus condensed to 
4 * 4 ones. In this regard, a fourth-order differential equa-
tion in terms of twist angle is obtained by uncoupling the 
system of equilibrium equations governing lateral stability 
behavior of non-prismatic thin-walled beam made up of iso-
tropic functionally graded materials. Afterward, the element 

stiffness matrices including the elastic and buckling ones for 
linear stability analysis of AFG web and/or flanges tapered 
I-beam are derived by formulating the weak statement of 
the resulting equilibrium equation and using cubic Hermi-
tian polynomials. It should be pointed out that the terms of 
structural and buckling stiffness matrices are determined by 
considering the influence of material gradient, varying cross 
section and applied load. It is also important to note that this 
numerical approach does not give the quadratic functional 
form due to the presence of a non-symmetric bi-linear term 
in the weak form. The impact of web and/or flanges tapering 
ratios, axial variation of mechanical properties, end condi-
tions, load height parameter and end moment gradient fac-
tor on lateral buckling resistance of AFG tapered I-beam is 
comprehensively surveyed. It can be stated that the effects 

Fig. 12   Effects of the gradient parameter () on dimensionless lateral–torsional buckling moment ( Mcr ) of simply supported tapered I-beam with 
different tapering ratios subjected to end moment: a ψ = 1, b ψ = − 1
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of linear variation in the cross section and axial inhomoge-
neity in material characteristics play important roles on the 
linear lateral stability capacity of AFG tapered beam. The 
numerical outcomes of this paper can serve as a benchmark 
for future studies for the determination of lateral–torsional 
buckling of axially functionally graded beams with varying 
doubly symmetric cross section and subjected to arbitrary 
load and various boundary conditions.
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