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Abstract
Based on Euler–Bernoulli beam theory, this paper investigates large post-buckling deformation of a slender elastic beam 
with fixed-pinned end. Owing to the asymmetric boundary conditions, it is difficult to establish analytic solution. Based on 
the Maclaurin series expansion and orthogonal Chebyshev polynomials, the governing differential equation with both sinu-
soidal nonlinearity and cosinusoidal nonlinearity can be reduced to a polynomial equation, and the geometry condition with 
sinusoidal nonlinearity can also be simplified to be a cubic polynomial integral equation. The admissible lateral displace-
ment function to satisfy the fixed-pinned boundary conditions is derived in an elegant way. The analytical approximations 
are obtained with the harmonic balance method. Two approximate formulae for axial load and lateral load are established 
for small as well as large angle of rotation at the pinned end. These approximate solutions show excellent agreement with 
those of the shooting method for a large range of the rotation angle at the pinned end. Moreover, due to brevity of expres-
sions, the present analytical approximate solutions are convenient to investigate effects of various parameters on the large 
post-buckling response of fixed-pinned beams.
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1  Introduction

There are many practical cases where post-buckling of struc-
tures may occur, such as satellite tethers, marine cables, 
robotic arms and slender rod in building or bridge. When 
the slenderness ratio is very large, there is a large displace-
ment within the elastic range. The stability of slender rods 
has drawn the attention of many scientists since Euler clas-
sical contributions in the eighteenth century (Lee 1990; Lee 
and Oh 2000; Nayfeh and Emam 2008; Vaz and Mascaro 
2005; Wang 1981). Studies show that the shear force in 
the equilibrium state is negligible for the Euler beams with 

common supporting conditions, such as simply supported, 
fixed–fixed and cantilever. However, for the asymmetric 
boundary and the statically indeterminate characteristics of 
the fixed-pinned beam, the shear force cannot be ignored, 
which will result in its post-buckling problem in a strong 
nonlinear problem.

Kocatürk and Akbaş (2010) established a total Lagran-
gian finite element model of the simply supported beam to 
study geometrically nonlinear static problem. The solution 
was obtained numerically by the Newton–Raphson proce-
dure. Then, they studied thermal post-buckling analysis 
of Timoshenko beams with various boundary conditions 
(Kocaturk and Akbas 2011). Akbas (2014) investigated 
the large post-buckling of Timoshenko beams subjected to 
non-follower axial compression loads. Wang (1996) pro-
posed the perturbation solution of the large post-buckling 
of an elastic rod with fixed-pinned ends and suffered axial 
compression. The solutions for buckling, initial post-buck-
ling (perturbation), large loads (asymptotic) and numerical 
integration of the fixed-pinned rod were developed by Vaz 
and Silva (2003). Li et al. (2015), Li and Zhou (2005), 
Song and Li (2007) considered various post-buckling 
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problems for the slender beam with fixed-pinned end by 
employing shooting method.

Employing the elliptic integration, many scholars 
obtained the solution of the post-buckling problem of 
fixed-pinned beams. Yan et al. (2019) derived explicit ana-
lytical expressions of buckled beams with fixed-pinned 
ends. Humer (2013) studied the solution in terms of ellip-
tic integrals for the buckling and post-buckling problem 
of beams with the influence of axial compressibility and 
shear deformation. Applying a geometrically exact theory 
of the elastica, Prechtl et al. (2012) presented a geometri-
cally exact solution to the aforementioned Euler buckling 
problems. The governing equilibrium equation and Jacobi 
equation of the elastic rod with various boundary condi-
tions were derived from variational principles by Batista 
(2015), and their solutions were presented in terms of the 
Jacobi elliptical functions. Mikata et al. (2007), Singh and 
Goss (2018) studied the solutions in terms of the Jacobi 
elliptical functions for a clamped-pinned beam. Sano and 
Wada (2018) studied snap buckling of an elastic strip 
with fixed-pinned ends. However, the exact solution was 
expressed by the elliptic integral of the second kind, which 
needed to be solved numerically, and was inconvenient for 
application.

To the authors’ knowledge, the previous researches on the 
post-buckling problem of a fixed-pinned beam are limited to 
the solution in terms of numerical form or elliptic integral 
form. No one has derived a simple and convenient explicit 
analytical formula for the post-buckling of a fixed-pinned 
beam. In this paper, the analytical solution for the large 
post-buckling deformation of a slender elastic beam with 
fixed-pinned ends is investigated. The governing differential 
equation is established with Euler–Bernoulli beam theory. 
Employing the Maclaurin series expansion and orthogonal 
Chebyshev polynomials, the nonlinear governing equation 
included sinusoidal function and cosinusoidal function can 
be reduced to a polynomial equation. A reasonable initial 
approximation satisfying the boundary conditions is given, 
and the analytical solutions for the large post-buckling defor-
mation of a fixed-pinned beam are obtained by the harmonic 
balance method.

2 � Mathematical Model and Solution 
Methodology

The sketch depicted in Fig.  1 shows undeformed and 
deformed configurations of a slender elastic beam subjected 
to an axial load, fixed at one end and pinned at the other end. 
A classic Euler–Bernoulli beam model investigating large 
post-buckling deflection is written as (Humer 2013; Vaz and 
Silva 2003; Wang 1996):

and the boundary conditions are

Geometric requirements are

Equation (3) can also be written as

where

and S ∈ [0, L] is the actual curve length, L is the length of 
the beam, (X, Y) constitutes Cartesian coordinates of the 
beam, P and Q are the axial load and lateral load and EI is 
the bending stiffness of the beam, respectively. The analysis 
of the asymmetrically supported Euler buckling beam with 
one end clamped and the other end pinned is complicated.
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Fig. 1   Schematic of the slender elastic beam
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A new independent variable � = �∕2 − �∕2s is introduced. 
Then, Eq. (1) can be rewritten in the following dimensionless 
form:

where

and the boundary conditions are

and the geometry conditions are rewritten as

In the present work, along with the Maclaurin series expan-
sion and the Chebyshev polynomials, and let � = au , a new 
nonlinear equation with no trigonometric function is con-
structed (Yu et al. 2013):

where

Substituting Eqs. (11) and (12) in Eq. (7), the nonlinear 
equation could be expressed as

Using Eqs.  (10) and (11), the extra condition could be 
obtained
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Following the harmonic balance approximation, a reason-
able initial approximation satisfying the boundary condi-
tions could be taken as

where b is the root of Eq. (15). Note that Eq. (15) which is a 
3rd algebraic equation could be analytically solved.

In the following step, harmonic balancing process will 
be performed: substituting Eq. (16) in Eq. (14), and letting 
the resulting coefficients of the items cos � and cos 3� vanish 
(Sun et al. 2009; Wu et al. 2006; Yu et al. 2012), give

where

From Eq. (17), the analytical approximations for � and � 
can be solved and expressed as function of a, as

and the analytical approximate solution for � can be obtained 
as
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3 � Results and Discussion

The exact (numeric) solutions �e , �e , �e could be obtained 
by solving Eqs.  (3), (4), (7) and (9) with a shooting 

method. The approximate solutions �0,�0 could be calcu-
lated, respectively, by Eq. (18). For comparison, exact and 
approximate values of � and � with respect to the angle 
of rotation a are shown in Figs. 2 and 3, respectively. 
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Fig. 2   Comparison of the exact and approximate values of � with 
respect to the rotation angle a 
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Fig. 3   Comparison of the exact and approximate values of � with 
respect to the rotation angle a 
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Fig. 4   Comparison of the exact and approximate values of �(s) : a for a = 0.5, b for a = 1.0 and c for a = 1.6
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Figures 2 and 3 indicate that Eq. (18) could give excellent 
approximations to parameters � and � for small as well as 
large rotation angle a.

The exact (numeric) solutions �e and approximate solu-
tion �0 given in Eq. (19) are displayed in Fig. 4: (a) for 
a = 0.5, (b) for a = 1.0 and (c) for a = 1.6. From Fig. 4, one 
could find that Eq. (19) could present excellent approxi-
mate accuracy of � for a large range of rotation angle a. 
Note that a = 1.6 means the angle of rotation in pinned end 
exceeding �∕2 and it is quite a large deformation. Further-
more, if one would like to obtain solutions with higher 
approximate accuracy, further approximations need to 
be constructed with Newton harmonic method (Wu et al. 
2006; Yu et al. 2012) or the improved Galerkin method 
(Sun et al. 2015). The length of the formulae, however, 
must be longer.

Finally, approximate solutions of lateral displacement 
y and axial displacement x analytically obtained from 
Eqs. (11), (12) and (16) are plotted in Fig. 5.

4 � Conclusions

This paper has focused on large post-buckling deformation 
of a slender elastic column with fixed-pinned ends, based 
on the Euler–Bernoulli beam theory. An accurate and brief 
approach is provided to solve the problem mentioned-above. 
The approximate solutions have been established. Results 
for lateral load, axial load, lateral displacement and axial 
displacement are presented in dimensionless format. Com-
pared with the solution calculated by applying the shoot-
ing method, the results obtained by the new method show 
excellent accuracy for a large range of the rotation angle 
in the pinned end. The new approach presented here offers 
analytical approximate solutions which help in analytically 

investigating the effect of the physical parameters on the 
post-buckling response of the beam with shear force sub-
jected to terminal forces with fixed-pinned ends. The method 
and accurate approximations derived here are very useful for 
robotic arms and slender rod in building or bridge engineer-
ing applications. By applying the explicit and analytical for-
mulas, the applied force and deflection can be explicitly ana-
lyzed with ease and without numerical integration. However, 
there is a gap between the model and actual structure for the 
sake of many hypotheses. Therefore, the more practical and 
precise models should be constructed by reducing assump-
tions. An improved analytical approximate method will be 
investigated to solve other structures with shear deformation, 
such as beams, bars or plates supported by nonlinear elastic 
foundation.
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