RESEARCH PAPER

Forced Vibration Analysis of Isotropic Thin Circular Plate Resting on Nonlinear Viscoelastic Foundation

Saheed Afolabi Salawu1 · Gbeminiyi Musibau Sobamowo2 · Obanishola Mufutau Sadiq1

Received: 21 August 2019 / Accepted: 14 March 2020 / Published online: 8 April 2020 © Shiraz University 2020

Abstract

In this work, forced vibration analysis of isotropic thin circular plate resting on nonlinear viscoelastic foundation is investigated. The dynamic analogue of the Von Kármán equations is used to establish the governing equations. The system coupled nonlinear partial diferential equations are transformed to system of nonlinear ordinary diferential equation using Galerkin decomposition method. Consequently, the analytical solutions are provided using diferential transformation method with Padè Laplace after treatment technique. The developed solutions are verifed using the existing results in the literature, and good agreement is observed. Subsequently, the analytical solutions are used to investigate the efects of various parameters on the dynamic response of the plate. From the results, it is observed that nonlinear frequency ratio of vibrating circular plate increases with increased linear elastic foundation and tensile force. Nevertheless, it is established that the nonlinear frequency ratio of the plate decreases as nonlinear Winkler foundation and compressive force increase. Also, the results revealed that clamped edge and simply supported edge condition recorded the same softening nonlinearity. However, axisymmetric case of vibration gives lower nonlinear frequency ratio compared to symmetric case. Also, maximum defection occurs when excitation force is zero; likewise attenuation defection is observed due to the presence of viscoelastic foundation. It is expected that the fndings from this research will enhance the design of structures subjected to vibration under where circular plates are used.

Keywords Vibration · Isotropic circular plate · Defection · Nonlinear viscoelastic foundation · Diferential transform method

List of Symbols

- *h* Plate thickness
- *ρ* Mass density
- *D* Flexural rigidity of isotropic plate
- Ω Dimensionless natural frequency
- *ν* Poisson's ratio of isotropic plate

Abbreviations

- *a*, *b* Dimension of the plate
- d d*r* First-order diferential operator with respect to *x*

 \boxtimes Saheed Afolabi Salawu 129042077@live.unilag.edu.ng; safolu@outlook.com

Gbeminiyi Musibau Sobamowo mikegbeminiyi@gmail.com

Obanishola Mufutau Sadiq sadiq_om@yahoo.com

¹ Department of Civil and Environmental Engineering, University of Lagos, Akoka 100213, Nigeria

Department of Mechanical Engineering, University of Lagos, Akoka, Lagos, Nigeria

- *w* Transverse defection
- *x*, *y* Rectangular space Cartesian coordinate along the length of thin plate

1 Introduction

The dynamic behaviours of circular plates have been a subject of great research interest for the past few decades. In such research, it has been shown that thin circular plates may exhibit a fexural vibration, having the same order as the thickness of the plate. In that case, linear model is not sufficient enough to predict the dynamic behaviour of the circular plates because physical scenario such as resonance, jump phenomenon and hysteresis are often encountered (Nayfeh and Mook [1979\)](#page-11-0). In order to describe the vibration of the structure under such condition, Von Kármán equation is used to include the geometric nonlinearities in the vibration governing equation, taking cognisance of the stretching of the midplane. One of such studies was presented by Dumir ([1986\)](#page-11-1) where the dynamic behaviour of

circular plates resting on elastic foundation was analysed using a semi-analytical method. The author made consideration to plates with edges restrained against rotation and in-plane displacement using Von Kármán principle. Touzé et al. [\(2002\)](#page-11-2) studied asymmetric nonlinear vibrations of freeedge circular plates using multiple scales method with introduction of slight imperfections into the plate. The authors focused on the scenario where one confguration that is not directly excited by the load obtains energy via nonlinear coupling with other confgurations. Von Kármán equations are considered in the modelling of the governing equation. Subsequently, Dai et al. [\(2011](#page-11-3)) investigated nonlinear plates vibration based on Von Kármán principle using Galerkin method resulting in tangential stifness matrix. In another study, Xie and Xu [\(2013\)](#page-11-4) determined general solution for nonlinear oscillations based on Von Kármán's theory along with quasi-steady aerodynamic theory in establishing the governing equation. In a later work, Dai et al. [\(2014](#page-11-5)) reexamined defection of Von Kármán plate with imperfect initial defection using semi-analytical method.

Foundations are important parts of systems owing to the preponderant application in engineering. The role of foundation in protecting structural system under vibration from failure cannot be underestimated. Part of the aims of the authors is to investigate the dynamic behaviour of viscoelastic nonlinear foundation on a thin vibrating isotropic circular plate. Zhu et al. [\(2015\)](#page-11-6) examined the nonlinear viscoelastic foundation model as a three-parameter model, meaning the layers are indicated by linear elastic springs, cubic nonlinearity elastic springs and shear deformation. The investigation of dynamic response of beam resting on elastic foundation was performed by Yankelevsky et al. ([1989](#page-11-7)), based on the fndings nonlinear model is more practical and more realistic than linear model. In another study, Wu and Thompson ([2004\)](#page-11-8) conducted a research on the efect of linearity and nonlinearity on the wheel–rail impact. It was concluded that the linear model is not suitable for wheel–rail impact problem. In a similar work, Senalp et al. ([2010](#page-11-9)) investigated the effects of speed and damping of load on nonlinear dynamic response of beams resting on nonlinear foundation. Also, Civalek [\(2013\)](#page-11-10) based on his study stated that the infuence of nonlinear and shear parameters on the amplitude of oscillations is vastly signifcant compared to the linear model. In a further study, Kanani et al. ([2014](#page-11-11)) examined the infuence of nonlinear foundation on large amplitude of a beam. The foundation was modelled to include shear layer of Pasternak and nonlinear Winkler foundations. The authors realized that increasing the nonlinear parameter of the foundation can augment the system nonlinearity. Meanwhile, shear and linear parameters can weaken the nonlinearity. Since the nonlinearity of the system is afected by the above-mentioned parameters, the system nonlinearity can

be controlled by linear and shear. Younesian et al. ([2019\)](#page-11-12) reviewed elastic and viscoelastic foundations on linear and nonlinear model. Based on the authors' fnding, there are limitations in the use of elastic foundation compared to adoption of viscoelastic element. Other studies on related feld are reported by Haciyev et al. [\(2019](#page-11-13)), Sofyev et al. ([2017\)](#page-11-14), Lin and Dangal [\(2017\)](#page-11-15), Lin et al. ([2018\)](#page-11-16) and Linlin and Xing ([2019](#page-11-17)).

Various analytical studies in the previous work have shown that analysis of nonlinear models is very difficult to handle using exact method, and recourse is made to semianalytical and numerical method. In an attempt to obtain numerical solution for structure on nonlinear foundation, Allahverdizadeh et al. [\(2008](#page-11-18)) employed Kantorovich averaging method to analyse nonlinear free and forced vibration of functionally graded plates. However, for semi-analytical solutions, El Kaak et al. ([2016\)](#page-11-19) studied geometrical nonlinearity of free axisymmetric vibrations of functionally graded circular plate using iterative and explicit semi-analytical solution. In another work, Yazdi ([2016\)](#page-11-20) assessed the use of homotopy perturbation method on forced vibration of orthotropic circular plate on elastic nonlinear foundation. The effect of elastic foundation parameter was considered. According to the fndings, the infuence of Winkler and Pasternak foundation on the frequency ratio is much signifcant. Also, Togun and Bagdatl ([2016\)](#page-11-21) examined the free and forced vibration of nanobeam resting on Winkler and Pasternak foundation using Perturbation series. In a further work, Sobamowo [\(2017](#page-11-22)) used diferential transformation method (DTM) to analysis carbon nanotube resting on Pasternak foundation. DTM is adopted as the method of solution for this study based on the fact that the method is a closed form series solution with fast convergence coupled with being easier to use and reduction of computational cost compared to other methods of solutions like numerical method with huge volume of calculation and convergence study limitation. More so, for perturbation method, the need for small parameter is also a limitation. Likewise, the restriction of HPM to weakly nonlinear and lack of proper guideline on choice of initial approximation in iterative method are some of the difficulties DTM overcome.

Various studies are presented in the literature including axisymmetric vibration of circular plate resting on elastic foundation, meanwhile investigation on the symmetric vibration on viscoelastic three-parameter medium is still limited. Therefore, this study examines forced vibration of symmetric and axisymmetric circular plate resting on viscoelastic three foundation parameters. Most of the above works are mainly related with the amplitude–frequency response of the circular plates. However, damping and forcing efect included studies on the nonlinear vibration properties of plate systems are also rather limited. The damping effects are considered, and nonlinear vibration behaviours of the circular plates are illustrated. Practical application of problem includes liquid storage tanks, pipelines and slab track for foating railway track to mention a few.

2 Problem Formulation and Mathematical Analysis

Considering a circular plate as shown in Fig. [1,](#page-2-0) the plate is considered resting on Pasternak and Winkler foundations under simply supported and clamped edge conditions. Von Kármán's defection theory by Touzé et al. [\(2002](#page-11-2)) is considered in the modelling of the governing equation based on the following assumptions:

- (1) Thin plate is assumed.
- (2) Kirchhof–Love hypotheses are assumed to be satisfed.
- (3) Only the nonlinear terms of lowest order are kept in the expression of the strains as functions of the displacement.
- (4) The in-plane and rotatory inertia terms are neglected.

The governing diferential equations as reported by Kerr [\(1964\)](#page-11-23), Dumir [\(1986\)](#page-11-1) and Yamaki [\(1961](#page-11-24)) are

$$
D\nabla^4 w^*(r,\theta,t) + \bar{k}_w w^*(r,\theta,t) - \bar{k}_s \nabla^2 w^*(r,\theta,t) - \bar{k}_p w^{3*}(r,\theta,t)
$$

+
$$
c \frac{\partial w^*(r,\theta,t)}{\partial t} + \rho h \frac{\partial^2 w^*(r,\theta,t)}{\partial t^2} - \frac{h}{r} \frac{\partial}{\partial r} \left(\frac{\partial F}{\partial r} \frac{\partial w^*}{\partial r} \right) = q \cos(\omega t),
$$

(1)

$$
\nabla^4 F = -\left(\frac{E}{r}\right) \frac{\partial w^*}{\partial r} \frac{\partial^2 w^*}{\partial r^2},\tag{2}
$$

where *t* is the time, *r* is the radial coordinate, w^* is the transverse defection, *E* is the Young's modulus of the plate. The foundation of the circular plate is visco-Pasternak medium, $k_{\rm w}$ is the Winkler foundation, $k_{\rm s}$ is the Pasternak foundation, k_p is the nonlinear Winkler, q is the uniformly distributed transverse load, ω is the excitation frequency, c is the damper modulus parameters, while ρ is the material density, h is the thickness of the plate, flexural rigidity $D = Eh^3/12(1 - v^2)$, *F* is the Airy stress function, ∇ is the Laplacian and Poisson's ratio is ν .

The transverse defection of the plate is assumed to be

$$
w(R, \theta, t) = \sum_{m=0}^{\infty} w^*(R, t) \cos(m\theta),
$$

w∗ is the vertical displacement at a given point of coordinates with respect to spatial coordinate and time of the middle surface of the plate.

Using dimensionless parameters

$$
w = \frac{w^*}{h}
$$
, $F = \frac{F^*}{Eh^2}$, $R = \frac{r}{a}$, $D = \frac{Eh^3}{12(1 - v^2)}$,

we arrived at the following equations

$$
\frac{1}{12(1 - v^2)} \left(\frac{\partial^4 w}{\partial R^4} + \frac{2}{R} \frac{\partial^3 w}{\partial R^3} - \left(\frac{2m^2 + 1}{R^2} \right) \frac{\partial^2 w}{\partial R^2} + \left(\frac{2m^2 + 1}{R^3} \right) \frac{\partial w}{\partial R} - \left(\frac{4m^2 - m^4}{R^4} \right) w \right) - \frac{1}{R} \frac{\partial}{\partial R} \left(\frac{\partial F}{\partial R} \frac{\partial w}{\partial R} \right)
$$

$$
= Q_0 \cos \left(\omega \tau \right) - \frac{1}{12(1 - v^2)} \frac{\partial^2 w}{\partial \tau^2} - k_s \frac{\partial^2 w}{\partial R^2} + \frac{k_s}{R} \frac{\partial w}{\partial R}
$$

$$
- k_w w + \frac{3}{4} k_p w^3 - \frac{C}{12(1 - v^2)} \frac{\partial w}{\partial \tau},\tag{3}
$$

$$
\frac{\partial^2 F}{\partial R^2} + \frac{1}{R} \frac{\partial F}{\partial R} - \frac{1}{R^2} F = -\left(\frac{1}{R}\right) \frac{\partial w}{\partial R} \frac{\partial^2 w}{\partial R^2},\tag{4}
$$

where

$$
\tau = \left[\sqrt{\frac{D}{\gamma^* h a^4}}\right] t, \quad k_{\rm w} = \frac{\bar{k}_{\rm w} a^4}{E h^3}, \quad k_{\rm p} = \frac{\bar{k}_{\rm p} a^4}{E h},
$$
\n
$$
k_{\rm s} = \frac{\bar{k}_{\rm s} a^2}{E h^3}, \quad Q_0 = \frac{q a^4}{E h^4}, \quad C = \frac{c a^4}{E h^3}
$$
\n(5)

2.1 Boundary Condition

The following boundary conditions are used (Figs. [2,](#page-2-1) [3\)](#page-3-0):

• Clamped edge condition

Fig. 2 Schematic of a clamped–clamped supported condition

$$
W|_{R=1} = 0, \left. \frac{\partial W}{\partial R} \right|_{R=1} = 0,
$$

\n
$$
W|_{R=0} = 0, \left. \frac{\partial W}{\partial R} \right|_{R=0} = 0,
$$
\n(6)

• Simply Supported edge condition

$$
W|_{R=1} = 0, \left. \left(\frac{\partial^2 W}{\partial R^2} + \frac{v}{R} \frac{\partial W}{\partial R} \right) \right|_{R=1} = 0,
$$

$$
W|_{R=0} = 0, \left. \left(\frac{\partial^2 W}{\partial R^2} + \frac{v}{R} \frac{\partial W}{\partial R} \right) \right|_{R=0} = 0,
$$
 (7)

The initial conditions:

$$
W|_{\tau=0} = T_o; \quad \frac{\partial W}{\partial \tau}\bigg|_{\tau=0} = 0,\tag{8}
$$

For the Airy stress functions, free edge and constrained immovable edge are considered. The boundary conditions in dimensionless form are

$$
R = 1: \quad \frac{\partial F}{\partial R} = 0, \quad \frac{\partial^2 F}{\partial R^2} - \frac{v}{R} \frac{\partial F}{\partial R} = 0. \tag{9}
$$

3 Method of Solution: Diferential Transformation Method

3.1 Principle of Diferential Transformation Method

Diferential transformation method (DTM) proposed by Zhao [\(1986\)](#page-11-25) is a closed form series approximate solution, very powerful, reliable and easy to comprehend semi-analytical method for solving linear, nonlinear, partial and ordinary diferential equations. DTM involves transformation techniques which are applied to the governing equation along with the governing boundary conditions to form algebraic equations. The resulting solution of the algebraic equations form the solution of the system in series form. The accuracy of the results compared to numerical method

Fig. 3 Schematic of a simply supported conditions at both edges of the rectangular plate

and experimental is very high. The basic defnitions and operational properties are as follows:

Considering a function $\varphi(t)$ that is analytic in the domain *t*, the function $\varphi(t)$ will be differentiated continuously with rest to space *t*

$$
\frac{d^k \varphi(t)}{dt^k} = \varphi(t, k), \quad \text{for all} \ \ t \in \tau \tag{10}
$$

For $t = t_i$, then $\phi(t, k) = \phi(t_i, k)$, where *k* belongs to the set of nonnegative integers, denoted as the *k*-domain. Therefore, Eq. (10) is written as

$$
\theta(k) = \phi(t_i, k) = \left[\frac{\mathrm{d}^k \varphi(t)}{\partial t^k}\right]_{t=t_i},\tag{11}
$$

where θ_k is the spectrum of $\varphi(t)$ at $t = t_i$.

 $\varphi(t)$ is expressed in Taylor's series, then $\varphi(t)$ is presented as

$$
\varphi(t) = \sum_{k}^{\infty} \left[\frac{\left(t - t_i\right)^k}{k!} \right] \varphi(k). \tag{12}
$$

Equation ([12\)](#page-3-2) is the inverse of $\theta(k)$ transverse deflection using the symbol "*D*" representing the diferential transform process, and combining Eqs. (11) and (12) , we have (Table [1](#page-3-4))

$$
\varphi(t) = \sum_{k}^{\infty} \left[\frac{\left(t - t_i\right)^k}{k!} \right] \vartheta(k) = D^{-1} \vartheta(k). \tag{13}
$$

3.2 Transformation of the Governing Equation to Ordinary Diferential Equation

An approximate solution is obtained by assuming the nonlinear free vibrations to have the same spatial shape, i.e.

Table 1 Operational properties of diferential transformation method

S/n	Function	Differential transform
$\mathbf{1}$	$\varphi(t) \pm f(t)$	$\theta(k) \pm F(k)$
2	$\alpha \varphi(t)$	$\alpha \theta(k)$
\mathcal{F}	$\frac{d\varphi(t)}{dt}$	$(k+1)\vartheta(k+1)$
$\overline{4}$	dt $\frac{d^2 \varphi(t)}{dt^2}$	$(k + 1)(k + 2)\theta(k + 2)$
5	$\varphi(t)f(t)$	$\sum_{l=0}^{k} F(l)\vartheta(k-l)$
6	t^m	$\delta(k-m) \Rightarrow \begin{cases} 1 & \text{if } k=m \\ 0 & \text{if } k \neq m \end{cases}$
	$\varphi^3(t)$	$\sum_{l=0}^{k} \sum_{p=0}^{k-l} \vartheta(l) \vartheta(p) \vartheta(k-l-p)$
8	$\varphi(t) \frac{d\varphi(t)}{dt}$	$\sum_{l=0}^{k} (k-l+1)\vartheta(l)\vartheta(k-l+1)$

$$
w(r,\tau) = (c_4r^4 + c_2r^2 + 1)\varphi(t). \tag{14}
$$

Substituting Eqs. (14) (14) (14) into (4) and solving the ordinary diferential equation (ODE) provides

$$
F(r,t) = \frac{c_1}{r} - c_3 r + \frac{(\varphi(t))^2 r^3 \left(2c_4^2 r^4 + 4c_2 c_4 r^2 + 3c_2^2\right)}{6}.
$$
\n(15)

The value of *F* is accordingly found to be finite at the origin $c_1 = 0$. Additionally, c_3 is the constant of integration to be determined from in-plane boundary conditions.

The substitution of the expressions for *w* and *F* given by Eqs. (14) (14) (14) and (15) (15) , respectively, into Eq. (3) (3) , also with application of the Galerkin procedure in the nonlinear time diferential equation obtained in the form

$$
\int_{0}^{1} L'(w, F)w \ r \ dr = 0.
$$
\n(16)

We reached

$$
M\ddot{\varphi}_s(t) + G\dot{\varphi}_s(t) + K\varphi_s(t) - V\varphi_s^3(t) = Q_o \cos \omega t, \qquad (17)
$$

where

$$
M = \frac{25c_4^2}{3822} + \frac{\left(10 + \frac{25c_2}{3}\right)c_4}{546} + \frac{25c_2}{1092} + \frac{5c_2^2}{546} + \frac{25}{1638},
$$
 (18)

$$
K = \frac{5c_4^2}{546} \left(\frac{39k_w}{5} - \frac{728c_3}{5} - \frac{728k_s}{5} + 64\right)
$$

$$
5c_4 \left(\left(80 + \frac{91k_w}{5} - \frac{1092c_3}{5} - \frac{1092k_s}{5}\right)c_2 + \frac{546k_w}{25} - \right)
$$

$$
+\frac{5c_4}{546} \left(\frac{80 + \frac{w}{5} - \frac{w}{5} - \frac{1002k_s}{5} - \frac{1002k_s}{5}}{1092c_3 - \frac{1092k_s}{5} + \frac{320}{3}} + \frac{5c_2^2}{546} \left(-\frac{273k_s}{5} + \frac{273k_w}{25} - \frac{273c_3}{5} \right) + \frac{5c_2}{546} \left(\frac{273k_w}{10} - \frac{364c_3}{5} - \frac{364k_s}{5} \right) + \frac{k_w}{6},
$$
\n(19)

$$
G = \frac{25Cc_4^2}{3822} + \frac{\left(10C + \frac{25Cc_2}{3}\right)c_4}{546} + \frac{25Cc_2}{1092} + \frac{5Cc_2^2}{546} + \frac{25C}{1638}.
$$
\n(21)

The initial and boundary conditions are

$$
\varphi(0, r) = a, \; \dot{\varphi}(0, r) = 0. \tag{22}
$$

For a plate with an elastically restrained outer edge, with rotational and in-plane stiffnesses k_b^* and k_i^* , subjected to an applied in-plane radial force resultant *N*[∗] at the outer edge, the boundary conditions are

$$
r = a
$$
: $M_r = k_b^* \frac{\partial w^*}{\partial r}$, $N_r = N^* - k_i^* u^*$, (23)

where u^* is the radial displacement at midplane. Introduce dimensionless parameters k_b , k_i and N

$$
k_{\rm b} = \frac{12k_{\rm b}^*a}{Eh^3}, \quad N = \left(\frac{N^*}{Eh}\right)\left(\frac{a}{h}\right)^2, \quad k_{\rm i} = \frac{k_{\rm i}^*a}{Eh}.\tag{24}
$$

The dimensionless boundary conditions are

$$
R = 1: \quad W = 0,\tag{25}
$$

$$
\left[(1 - v^2)k_b + v \right] \frac{\partial W}{\partial R} + \frac{\partial^2 W}{\partial R^2} = 0, \tag{26}
$$

$$
k_i \left(\frac{\partial^2 F}{\partial R^2} - v \frac{\partial F}{\partial R} \right) + \frac{\partial F}{\partial R} = N.
$$
 (27)

Equations (25) and (26) are used to find the constants c_2 and c_4 while the constant of integration c_3 is obtained using Eq. ([27\)](#page-4-4). The constants values under simply supported conditions are

$$
c_2 = -\frac{2(k_b v^2 - k_b - v - 3)}{k_b v^2 - k_b - v - 5}, \quad c_4 = \frac{k_b v^2 - k_b - v - 1}{k_b v^2 - k_b - v - 5},
$$
\n(28)

$$
c_3 = -\frac{\left(\frac{3Nk_b^2v^4 - 5k_b^2v^5 + 10k_b^2v^4 - 6Nk_b^2v^2 - 6Nk_bv^3 + 10k_b^2v^3 + 10k_bv^4 - 30Nk_bv^2 - 20k_b^2v^2 + 22k_bv^3 + 3Nk_b^2 + 6Nk_bv + 3Nv^2 - 5k_b^2v - 94k_bv^2 - 5v^3 + 30Nk_b + 30Nv + 10k_b^2 - 22k_bv\right)}{3(k_bv^2 - k_b - v - 5)^2(-2 + v)},
$$
\n(29)

$$
V = \frac{5c_4^4}{546} \left(-\frac{819k_p}{220} + \frac{728}{9} \right) + \frac{5c_4^3}{546} \left(\left(273 - \frac{819k_p}{50} \right) c_2 - \frac{91k_p}{5} + 104 \right)
$$

+ $\frac{5c_4^2}{546} \left(\left(364 - \frac{273k_p}{10} \right) c_2^2 + \left(\frac{728}{3} - \frac{2457k_p}{40} \right) c_2 - \frac{351k_p}{10} \right)$
+ $\frac{5c_4}{546} \left(\left(\frac{1092}{5} - \frac{819k_p}{40} \right) c_2^3 + \left(\frac{1092}{5} - \frac{351k_p}{5} \right) c_2^2 - \frac{819c_2k_p}{10} - \frac{819k_p}{25} \right)$
+ $\frac{5c_4^4}{546} \left(-\frac{117k_p}{20} + \frac{1092}{25} \right) + \frac{5c_2^3}{546} \left(-\frac{273k_p}{10} + \frac{273}{5} \right) - \frac{9c_2^2k_p}{20} - \frac{3}{8}c_2k_p - \frac{k_p}{8},$ (20)

while for Clamped edge condition they are

$$
c_2 = -2, \quad c_4 = 1, \quad c_3 = -\frac{3N + 10 - 5\nu}{-6 + 3\nu}.\tag{30}
$$

3.3 Determination of Nonlinear Natural Frequency Ratio

The dynamic response of the structural analysis is carried out under the transformation

$$
\tau = e^{iwt},\tag{31}
$$

Applying Eqs. (31) (31) on (17) (17) , we have

$$
M\ddot{\varphi}_s(t) + G\dot{\varphi}_s(t) + K\varphi_s(t) - V\varphi_s^3(t) = Q\cos\omega t,\tag{32}
$$

 $G = 0$ for undamped condition

$$
M\ddot{\varphi}_s(t) + K\dot{\varphi}_s(t) - V\varphi_s^3(t) = Q_o \cos \omega t.
$$
 (33)

In order to find the periodic solution of Eq. (33) (33) , assume an initial approximation for zero-order deformation as

$$
\varphi_0(\tau) = A \cos \tau. \tag{34}
$$

Substituting Eqs. [\(34](#page-5-2)) into ([33\)](#page-5-1) gives

$$
-M\omega_0^2 A \cos \tau + KA \cos \tau - VA^3 \cos^3 \tau = Q_o \cos \omega t, \qquad (35)
$$

which gives

$$
-M\omega_0^2 A \cos \tau + KA \cos \tau - VA^3 \left(\frac{3 \cos \tau + \cos 3\tau}{4}\right) = Q_o \cos \omega t,
$$
\n(36)

collect like term

$$
\left(KA - Mo_0^2A - \frac{3VA^3}{4}\right)\cos\tau - \frac{1}{4}VA^3\cos 3\tau = Q_o\cos\omega t;\tag{37}
$$

eliminating the secular term, one arrives at

$$
\left(KA - M\omega_0^2 A - \frac{3VA^3}{4}\right) = Q.
$$
\n(38)

Thus, zero-order nonlinear natural frequency becomes

$$
\omega_0 \approx \sqrt{\frac{K}{M} + \frac{3VA^2}{4M} - \frac{Q}{MA}}.\tag{39}
$$

Therefore, ratio of zero-order nonlinear natural frequency ω_0 to the linear frequency ω_b

$$
\frac{\omega_0}{\omega_b} = \sqrt{1 + \frac{3VA^2}{4K} - \frac{Q}{AK}}.
$$
\n(40)

Following the same procedural approach, the frst-order nonlinear natural frequency is

$$
\omega_1 \approx \sqrt{\frac{1}{2} \left\{ \left[\left(\frac{K}{M} \right) - \left(\frac{3V A^2}{4M} \right) \right] + \sqrt{\left[\left(\frac{K}{M} \right) - \left(\frac{3V A^2}{4M} \right) \right]^2 - \left(\frac{3V^2 A^4}{32M^2} \right) \right\} - \frac{Q}{AK}}.
$$
\n(41)

The ratio of the first-order nonlinear frequency ω_1 to the linear frequency ω_b gives,

$$
\frac{\omega_1}{\omega_b} \approx \sqrt{\frac{1}{2} \left[1 - \left(\frac{3VA^2}{4K} \right) \right] + \sqrt{1 - \left(\frac{3VA^2}{4K} \right) \right]^2 - \left(\frac{3V^2A^4}{32K} \right) \left(-\frac{Q}{AK} \right)}}.
$$
\n(42)

Primary resonance of damped Duffing system is given as

$$
\left[1 - \left(\frac{\Omega}{\omega_0}\right)^2 + \frac{3}{4} \frac{\varepsilon k A^2}{\omega_0^2}\right]^2 + \left(2\varsigma \frac{\Omega}{\omega_0}\right)^2 = \left(\frac{Q}{A\omega_0^2}\right)^2, \quad (43)
$$

where the frequency ratio is represented by $\frac{\Omega}{\omega_0}$, where ς is the damping coefficient, Ω is excited frequency k , ε and Q are constants, *A* is the amplitude of vibration, and ω_0 is the natural frequency of the underlying linear system.

3.4 Modifed Diferential Transform Method Procedure

The small domain limitation of semi-analytical method has been overcome by the introduction of after treatment method in power series method. Laplace–Padè approximant has proven to be very reliable approach that also increases the convergence rate of the iteration. The Padè is a form of converting the analytical solution obtained through DTM method to polynomial rational form. The basic procedure are as follows:

- 1. (44) Apply Laplace transform to the series solution and setting $s = \frac{1}{t}$.
- 2. Apply Padè approximation to the solution from previous step to obtain the following approximation in the following rational form:

$$
\left[\frac{L}{M}\right] = \frac{P_0 + P_1 t + P_2 t^2 + \cdots P_L t^L}{q_0 + q_1 t + q_2 t^2 + \cdots q_M t^M}
$$
 and setting $t = \frac{1}{s}$. (45)

3. (46) Apply inverse Laplace transform on $\left[\frac{L}{M}\right]$] approximant.

3.5 Application of Diferential Transformation Method to the Dufng Equation

Applying DTM to the Duffing oscillation Eq. (17) (17) (17) , along with the initial condition Eq. (8) (8) , we get

$$
\varphi[k+2] = \frac{\left\{-K\varphi[k] - V\sum_{l=0}^{k} \sum_{p=0}^{l} \varphi[l-p] \varphi[p] \varphi[k-l] + G(k+1)\varphi[k+1] + Q\frac{\omega^{k}}{k!} \sin\left(\frac{\pi k}{2}\right)\right\}}{M(k+1)(k+2)}.
$$
\n(47)

.

Initial condition are

$$
\varphi[0] = A: \qquad \varphi[1] = 0,\tag{48}
$$

3.5.1 The Solution Procedure

For *k* from 0, 1, 2, 3, 4, 5, 6, 7, we have the following:

$$
\varphi[2] = \frac{1}{2} \left(\frac{-VA^3 - KA + Q\omega}{M} \right),\tag{49}
$$

$$
\varphi[3] = -\frac{G(-VA^3 - KA + Q\omega)}{6M^2},\tag{50}
$$

$$
\varphi[4] = \frac{1}{12} \frac{1}{M} \left(-\frac{1}{2} \frac{K(-VA^3 - KA + Q\omega)}{M} - \frac{3}{2} \frac{VA^2(-VA^3 - KA + Q\omega)}{M} \right),\n+ \frac{1}{2} \frac{G^2(-VA^3 - KA + Q\omega)}{M^2} - \frac{1}{2} Q\omega
$$
\n(51)

$$
\varphi[5] = \frac{1}{20} \frac{1}{M} \left(\frac{-\frac{KG(-VA^{3} - KA + Q\omega)}{6M^{2}} - \frac{1}{2} \frac{VA^{2}G(-VA^{3} - KA + Q\omega)}{M^{2}} - \frac{1}{20} \frac{VA^{2}C(-VA^{3} - KA + Q\omega)}{M^{2}} \right) \frac{1}{3} \frac{1}{M} \left(\frac{1}{2} \frac{1}{2}
$$

Using the definition of DTM, solution of Eq. (18) (18) is given as

$$
\vartheta(t) = \sum_{j=0}^{n} \varphi(j)t^{j},\tag{53}
$$

Substituting the values obtained for *K*, *M*, *V* from Eqs. (18) – (20) (20) into Eq. ([53](#page-6-0)), we have

$$
\varphi(t) = \frac{1}{10} + \frac{94277t^2}{47251} - \frac{59081t^3}{29611} - \frac{840837t^4}{3959} + \frac{335612t^5}{1329} + \frac{4365731t^6}{499} - \frac{1613849t^7}{143} - \frac{6125021t^8}{32} + \frac{10655874t^9}{41} + \frac{28318184t^{10}}{11} - \frac{40017257t^{11}}{11} - \frac{138629879t^{12}}{6}.
$$
 (54)

The accuracy of the DTM is improved using the principle of Modifed diferential transform method (MDTM). Apply Laplace transform to the series solution Eq. [\(54\)](#page-6-1) as

$$
L[w(t)] = \frac{1}{10s} + \frac{188554}{47251s^3} - \frac{352810}{29471s^4} - \frac{871633}{171s^5} + \frac{6151624}{203s^6} + \frac{44094758}{7s^7} - \frac{56879713}{s^8} - \frac{7.71 \times 10^7}{s^9} + \frac{9.43 \times 10^8}{s^{10}} + \frac{9.34 \times 10^{10}}{s^{11}} - \frac{1.45 \times 10^{12}}{s^{12}} - \frac{1.10 \times 10^{14}}{s^{13}}.
$$
 (55)

Also, replacing $s = \frac{1}{t}$ and calculating Padè approximant of $\left[\frac{5}{6}\right]$ and letting $t = \frac{1}{s}$ gives the following, 6 and letting $t = \frac{1}{s}$ gives the following,

$$
\left[\frac{5}{6}\right] = \frac{\frac{s}{10} + \frac{5935}{6624s^2} + \frac{698288}{1179s^3} + \frac{1423780}{661s^4} + \frac{17909531}{30s^5}}{1 + \frac{29675}{3312s} + \frac{2253116}{383s^2} + \frac{4494714}{211s^3} + \frac{40509958}{7s^4} + \frac{2560431}{325s^5} + \frac{34624657}{6s^6}}{56}
$$

Applying the inverse Laplace transform to the Padè approximant of Eq. ([56\)](#page-6-2), the MDTM solution is

$$
\varphi(t) = \left(\frac{4}{219654619} + \frac{i}{355614789}\right) e^{\left(-\frac{61199}{20529} - \frac{525887i}{7753}\right)t} \n+ \left(\frac{4}{219654619} - \frac{i}{355614789}\right) e^{\left(-\frac{61199}{20529} + \frac{525887i}{7753}\right)t} \n- \left(\frac{1063}{651429} + \frac{389i}{5352618}\right) e^{\left(-\frac{36757}{24505} - \frac{215193i}{6082}\right)t} \n- \left(\frac{1063}{651429} - \frac{389i}{5352618}\right) e^{\left(-\frac{36757}{24505} + \frac{215193i}{6082}\right)t} \n+ \left(\frac{8559}{165770} + \frac{183i}{2866424}\right) e^{\left(\frac{3433}{2964589} - \frac{44888i}{44929}\right)t} \n+ \left(\frac{8559}{165770} - \frac{183i}{2866424}\right) e^{\left(\frac{3433}{2964589} + \frac{44888i}{44929}\right)t}.
$$
\n(57)

4 Results and Discussion

The problem titled forced vibration analysis of isotropic circular plate resting on viscoelastic foundation is analysed and presented here. The accuracy and reliability of the presented analytical solution are established and validated with results presented in the cited literature Haterbouch and Benamar ([2003\)](#page-11-26). The validations are displayed in Table [3](#page-7-0) and confrmed in good harmony with maximum 5% diference. Two cases were considered, when the number of nodal diameter $m = 0$ (symmetric case, even number) and while $m = 1$ (axisymmetric case, odd numbers). The physical properties of the material used for the analysis are as follows:

Young's modulus = 210.0 GPa, Poisson's ratio = 0.3, and mass density = 7850 kg/m³ and plate thickness of 3 mm. The amplitude of vibration considered is $Q_o = 0.1$.

4.1 Convergence Criteria

The convergence criteria are illustrated along with the computational time in Table [2](#page-7-1). It is shown that the iteration converges at $n=4$; therefore, extending the iterations beyond $n=4$ only further increases the computational time without substantial diference in the solution (Table [3](#page-7-0)).

4.2 Efect of Foundation Parameters

The variation of the amplitude with nonlinear frequency ratio is shown in Figs. [4,](#page-8-0) [5,](#page-8-1) [6](#page-8-2) and [7.](#page-8-3) The frequencies are obtained taking into consideration the physical geometry properties of the plate and also taking into consideration non-dimensional analysis. Invariably, the results are efective for any thickness-to-radius ratios. It is shown in Fig. [4](#page-8-0) that increase in the value of the nonlinear Winkler foundation parameter results in a reduction in the frequency ratio. This is a case of softening nonlinearity properties.

In Figs. [5](#page-8-1), [6](#page-8-2) and [7](#page-8-3), the nonlinear frequency against the amplitude curve of the isotropic circular plate is shown for linear foundation parameter variation. From the results, it is observed that nonlinear frequency of the circular plate increases with the increase in elastic linear foundation parameters. The Pasternak parameter has a pronounced efect on the nonlinear frequency amplitude curve of the circular plate. The values of nonlinear frequency has a direct relationship with the Winkler and Pasternak values. The parameters can be used to control the nonlinearity of structures. Same scenario is observed for symmetric and axisymmetric cases likewise under the two boundary conditions considered.

4.3 Efect of Radial Force

Figures [8](#page-8-4) and [9](#page-9-0) show the infuence of outer edge radial force consequent on nonlinear frequency ratio. Figure [8](#page-8-4) illustrates the results obtained for tensile force, while Fig [9](#page-9-0) depicts that

Table 2 Convergence criteria based on the number of iteration (*n*) in the solutions of circular plate defection

Iteration (n)	Maximum deflec- tion (mm)	Padè	Computa- tional time (s)
$\overline{4}$	0.1058	3.2	0.17
7	0.1058	3.2	0.57
12	0.1058	3.2	0.67
17	0.1058	3.2	1.23

of compressive force. It is observed clearly from the fgures that nonlinear frequency ratio increases for tensile force with an increase in the value of *N,* while the contrary is observed for compressive force. The efect of a compressive force is more pronounced than that of a tensile force. This is attributed to the fact that variation of radial force *N* may afect the stifness of the isotropic circular plate.

4.4 Efect of Viscoelastic Foundation

The infuence of the viscoelastic foundation is presented in Figs. [10](#page-9-1) and [11](#page-9-2). As the viscoelastic parameter increases, the defection on the plate decreases. The excitation of the vibration decays with time due to the presence of damper. Attenuation of the defection of the circular plate is observed meaning that damages in the system can be reduced with the presence of viscoelastic foundation.

Figure [12](#page-9-3) shows the comparison of linear with nonlinear vibration of the isotropic circular plate, and it is observed that the diference is more signifcant with an increase in value of maximum vibration of the structure, while Fig. [13](#page-9-4) shows the relationship between results obtained with DTM and MDTM. The advantage of MDTM is illustrated by extending the domain of the results.

4.5 Efect of Symmetric and Antisymmetric Cases

To illustrate the study of symmetric and axisymmetric case considered. Results obtained from the analysis are shown graphically in Fig. [14](#page-9-5). From the result, axisymmetric case is shown to possess better results than the symmetric case. The frequency ratio is lower for axisymmetric case compared to symmetric case due to higher stifness possessed by axisymmetric case. This shows that spatial property of the circular plate has an impact on vibration of the circular plate.

Fig. 4 Infuence of nonlinear foundation stifness variation on amplitude of vibration for symmetric case

Fig. 5 Infuence of Pasternak foundation variation on amplitude of vibration for symmetric case

4.6 Primary Resonance Response

Figure [15](#page-10-0) shows the primary resonance response of the isotropic circular plate. From the results, it is observed that vibration amplitude is lower than the thickness of the plate meaning that the result is reliable. It is also inferred from the fgure that the nonlinear frequency is a function of amplitude. Increasing the forcing term increases function amplitude of vibration.

4.7 Efect of Boundary Condition

Figures [16](#page-10-1) and [17](#page-10-2) depict the effect of boundary conditions on the nonlinear amplitude frequency response curve of the isotropic circular plate. From the results, case of softening nonlinearity is observed.

Fig. 6 Infuence of Winkler foundation parameter variation on amplitude of vibration for symmetric case

Fig. 7 Infuence of combine foundation stifness variation on amplitude of vibration for symmetric case

Fig. 8 Infuence of tensile force variation on amplitude of vibration for symmetric case

Fig. 9 Infuence of compressive force variation on amplitude of vibration for symmetric case

Fig. 10 Infuence of viscoelastic foundation on vibration of the circular plate for symmetric case

Fig. 11 Infuence of viscoelastic foundation on vibration of the circular plate for axisymmetric case

Fig. 12 Comparison of midpoint defection time history for the linear and nonlinear analysis

Fig. 13 Midpoint defection time history for the nonlinear analysis of isotropic circular plate

Fig. 14 Infuence of asymmetric and symmetric parameter m on the nonlinear amplitude–frequency response curves of the isotropic circular plate

Fig. 15 Infuence of varying vibration amplitude on the nonlinear amplitude–frequency response curves of the isotropic circular plate

Fig. 16 Infuence of simply supported boundary conditions on the nonlinear amplitude–frequency response curves of the isotropic circular plate

Fig. 17 Infuence of clamped edge boundary conditions on the nonlinear amplitude–frequency response curves of the isotropic circular plate

5 Conclusions

In this study, the forced vibration analysis of isotropic circular plate resting on nonlinear viscoelastic foundation is investigated. The governing coupled partial diferential equation is transformed into nonlinear ordinary diferential equation using Galerkin decomposition method. The ODE is solved analytically using DTM with Padè Laplace approximant technique. Symmetric and axisymmetric cases are considered. The results obtained are verifed with results published in the cited literature, and good harmony is observed. The developed analytical solutions are used to investigate the effect of elastic foundations, radial force, damper and varying amplitude on the dynamic behaviour of the isotropic circular plate. Based on the parametric studies, the following were observed.

- 1. Nonlinear Winkler foundation parameter results in reduction in the frequency ratio, while nonlinear frequency ratio increases with increase linear elastic foundation. Pasternak parameter has a pronounced efect on the nonlinear frequency
- 2. Nonlinear frequency ratio increases for tensile force, whereas contrariwise is observed for compressive force. The effect of compressive force is more pronounced than that of tensile force.
- 3. The defection of the circular plate decreases as the viscoelastic foundation parameters increases.
- 4. For primary resonance obtained, vibration amplitude is lower than the thickness of the plate and maximum amplitude occurs at $Q = 0$.
- 5. Axisymmetric case of vibration gives lower frequency ratio compared to symmetric case.
- 6. Same softening nonlinearity is observed for both simply supported and clamped edge condition.

The present study reveals major elements controlling the nonlinearity of vibrating thin circular plate under external force. Also, the versality of DTM with Padèapproximant technique has been demonstrated. It is hoped that the present study will improve understanding in theory of vibration of circular plate.

Acknowledgements The authors acknowledge the support of university of Lagos for providing the material support for the research.

Authors' Contribution SA analysed and interpreted the data required for this research; he also put up the manuscript while MG's contribution was a major one in the writing of the manuscript. All authors read and approved the fnal manuscript.

Funding We appreciate the support of the Herzer Research Group, University of Lagos, Nigeria.

Compliance with Ethical Standards

Conflict of interest Confict of interest on behalf of all authors; the corresponding author states that there is no confict of interest.

Availability of Data and Material The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

- Allahverdizadeh A, Naei MH, Bahrami MN (2008) Nonlinear free and forced vibration analysis of thin functionally graded plates. J Sound Vib 310:966–984. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.jsv.2007.08.011) [jsv.2007.08.011](https://doi.org/10.1016/j.jsv.2007.08.011)
- Civalek Ö (2013) Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-diferential quadrature coupled approaches. Compos Part B Eng 50:171–179
- Dai H, Paik JK, Atluri SN (2011) The global nonlinear Galerkin method for the solution of Von-Karman nonlinear plate equations: an optimal and faster iterative method for the direct solution of nonlinear algebraic equation. Comput Mater Contin 23(2):155–185
- Dai H, Yue X, Atluri SN (2014) Solutions of the Von Kármán plate equations by Galerkin method, without inverting the tangent stifness matrix. J Mech Mater Struct 9(2):195–226. [https://doi.](https://doi.org/10.2140/jomms.2014.9.195) [org/10.2140/jomms.2014.9.195](https://doi.org/10.2140/jomms.2014.9.195)
- Dumir PC (1986) Nonlinearvibration and postbuckling of isotropic thin circular plates on elastic foundations. Appl Acoust 107(2):253–263
- El Kaak R, El Bikri K, Benamar R (2016) Geometrically nonlinear free axisymmetric vibrations analysis of thin circular functionally graded plates using iterative and explicit analytical solution. Int J Acoust Vib 21(2):209.<https://doi.org/10.20855/ijav.2016.21.2414>
- Haciyev VC, Sofyev AH, Kuruoglu N (2019) On the free vibration of orthotropic and inhomogeneous with spatial coordinates plates resting on the inhomogeneous viscoelastic foundation. Mech Adv Mater Struct 26(10):886–897. [https://doi.org/10.1080/15376](https://doi.org/10.1080/15376494.2018.1430271) [494.2018.1430271](https://doi.org/10.1080/15376494.2018.1430271)
- Haterbouch M, Benamar R (2003) The effects of large vibration amplitudes on the axisymmetric mode shapes and natural frequencies of clamped thin isotropic circular plates, part I: iterative and explicit analytical solution for nonlineartransverse vibrations. J Sound Vib 265:123–154
- Jain R, Nath Y (1986) Efect of foundation nonlinearity on the nonlinear transient response of orthotropic shallow spherical shells. Ing Arch 56(4):295–300
- Kanani A, Niknam H, Ohadi A, Aghdam M (2014) Efect of nonlinear elastic foundation on large amplitude free and forced vibration of functionally graded beam. Compos Struct 115:60–68
- Kerr AD (1964) Elastic and viscoelastic foundation models. J Appl Mech Trans ASME 31(3):491.<https://doi.org/10.1115/1.3629667>
- Lin J, Dangal T (2017) Method of particular solutions using polynomial basis functions for the simulation of plate bending

vibration problems. Appl Math Modell 49:452–469. [https://doi.](https://doi.org/10.1016/j.apm.2017.05.012) [org/10.1016/j.apm.2017.05.012](https://doi.org/10.1016/j.apm.2017.05.012)

- Lin J, Zhang C, Sun L, Lu J (2018) Simulation of seismic wave scattering by embedded cavities in an elastic half-plane using the novel singular boundary method. Adv Appl Math Mech 10(2):322–342. <https://doi.org/10.4208/aamm.OA-2016-0187>
- Linlin S, Xing W (2019) A frequency domain formulation of the singular boundary method for dynamic analysis of thin elastic plate. Eng Anal Bound Elem 98:77–87. [https://doi.org/10.1016/j.engan](https://doi.org/10.1016/j.enganabound.2018.10.010) [abound.2018.10.010](https://doi.org/10.1016/j.enganabound.2018.10.010)

Nayfeh AH, Mook DT (1979) Nonlinear oscillations. Wiley, New York

- Senalp AD, Arikoglu A, Ozkol I, Dogan VZ (2010) Dynamic response of a fnite length Euler-Bernoulli beam on linear and nonlinear viscoelastic foundations to a concentrated moving force. J Mech Sci Technol 24(10):1957–1961
- Sobamowo MG (2017) Nonlinear thermal and flow-induced vibration analysis of fuid-conveying carbon nanotube resting on Winkler and Pasternak foundations. Therm Sci Eng Prog 4:133–149. [https](https://doi.org/10.1016/j.tsep.2017.08.055) [://doi.org/10.1016/j.tsep.2017.08.055](https://doi.org/10.1016/j.tsep.2017.08.055)
- Sofyev AH, Karaca Z, Zerin Z (2017) Non-linear vibration of composite orthotropic cylindrical shells on the non-linear elastic foundations within the shear deformation theory. Compos Struct 159:53–62.<https://doi.org/10.1016/j.compstruct.2016.09.048>
- Togun N, Bagdatl SM (2016) Nonlinear vibration of a nanobeam on a pasternak elastic foundation based on non-local Euler-Bernoulli beam theory. Math Comput Appl 21(3):1–19. [https://doi.](https://doi.org/10.3390/mca21010003) [org/10.3390/mca21010003](https://doi.org/10.3390/mca21010003)
- Touzé C, Thomas O, Chaigne A (2002) Asymmetric nonlinearforced vibrations of free-edge circular plates. Part 1: theory. J Sound Vib 258(4):649–676. <https://doi.org/10.1006/jsvi.2002.5143>
- Wu T, Thompson D (2004) The effects of track non-linearity on wheel/rail impact. Proc Inst Mech Eng Part F J Rail Rapid Transit 218(1):1–15
- Xie D, Xu M (2013) A simple proper orthogonal decomposition method for von Kármán plate undergoing supersonic fow. Comput Model Eng Sci 93(5):377–409
- YamaKi N (1961) Infuence of large amplitudes on fexural vibrations of elastic plates. ZAMM J Appl Math Mech/zeitschrift für Agew Math Mech 41(12):501–510
- Yankelevsky DZ, Eisenberger M, Adin MA (1989) Analysis of beams on nonlinear winkler foundation. Comput Struct 31(2):287–292
- Yazdi AA (2016) Assessment of homotopy perturbation method for study the forced nonlinear vibration of orthotropic circular plate on elastic foundation. Latin Am J Solid Struct 13:243–256
- Younesian D, Hosseinkhani A, Askari H, Esmailzadeh E (2019) Elastic and viscoelastic foundations: a review on linear and nonlinear vibration modeling and applications. Nonlinear Dyn 97:853–895. <https://doi.org/10.1007/s11071-019-04977-9>
- Zhang XM, Wang BL, Kong XR, Xiao AY (2012) Application of homotopy perturbation method for harmonically forced dufing systems. Appl Mech Mater 110–116:2277–3228.[https://doi.](https://doi.org/10.4028/www.scientific.net/AMM.110-116.2277) [org/10.4028/www.scientifc.net/AMM.110-116.2277](https://doi.org/10.4028/www.scientific.net/AMM.110-116.2277)
- Zhao JK (1986) Diferential transformation and its applications for electrical circuits. Huazhong University Press, Wuhan (in chinese)
- Zhu S, Cai C, Spanos PD (2015) A nonlinear and fractional derivative viscoelastic model for rail pads in the dynamic analysis of coupled vehicle-slab track systems. J Sound Vib 335:304–320. [https://doi.](https://doi.org/10.1016/j.jsv.2014.09.034) [org/10.1016/j.jsv.2014.09.034](https://doi.org/10.1016/j.jsv.2014.09.034)

