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Abstract
In this work, forced vibration analysis of isotropic thin circular plate resting on nonlinear viscoelastic foundation is investi-
gated. The dynamic analogue of the Von Kármán equations is used to establish the governing equations. The system coupled 
nonlinear partial differential equations are transformed to system of nonlinear ordinary differential equation using Galerkin 
decomposition method. Consequently, the analytical solutions are provided using differential transformation method with 
Padè Laplace after treatment technique. The developed solutions are verified using the existing results in the literature, and 
good agreement is observed. Subsequently, the analytical solutions are used to investigate the effects of various parameters 
on the dynamic response of the plate. From the results, it is observed that nonlinear frequency ratio of vibrating circular 
plate increases with increased linear elastic foundation and tensile force. Nevertheless, it is established that the nonlinear 
frequency ratio of the plate decreases as nonlinear Winkler foundation and compressive force increase. Also, the results 
revealed that clamped edge and simply supported edge condition recorded the same softening nonlinearity. However, axisym-
metric case of vibration gives lower nonlinear frequency ratio compared to symmetric case. Also, maximum deflection occurs 
when excitation force is zero; likewise attenuation deflection is observed due to the presence of viscoelastic foundation. 
It is expected that the findings from this research will enhance the design of structures subjected to vibration under where 
circular plates are used.

Keywords Vibration · Isotropic circular plate · Deflection · Nonlinear viscoelastic foundation · Differential transform 
method

List of Symbols
h  Plate thickness
ρ  Mass density
D  Flexural rigidity of isotropic plate
Ω  Dimensionless natural frequency
ν  Poisson’s ratio of isotropic plate

Abbreviations
a, b  Dimension of the plate
d

dr
  First-order differential operator with respect to x

w  Transverse deflection
x, y  Rectangular space Cartesian coordinate along the 

length of thin plate

1 Introduction

The dynamic behaviours of circular plates have been a sub-
ject of great research interest for the past few decades. In 
such research, it has been shown that thin circular plates 
may exhibit a flexural vibration, having the same order as 
the thickness of the plate. In that case, linear model is not 
sufficient enough to predict the dynamic behaviour of the 
circular plates because physical scenario such as resonance, 
jump phenomenon and hysteresis are often encountered 
(Nayfeh and Mook 1979). In order to describe the vibra-
tion of the structure under such condition, Von Kármán 
equation is used to include the geometric nonlinearities in 
the vibration governing equation, taking cognisance of the 
stretching of the midplane. One of such studies was pre-
sented by Dumir (1986) where the dynamic behaviour of 
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circular plates resting on elastic foundation was analysed 
using a semi-analytical method. The author made consid-
eration to plates with edges restrained against rotation and 
in-plane displacement using Von Kármán principle. Touzé 
et al. (2002) studied asymmetric nonlinear vibrations of free-
edge circular plates using multiple scales method with intro-
duction of slight imperfections into the plate. The authors 
focused on the scenario where one configuration that is not 
directly excited by the load obtains energy via nonlinear 
coupling with other configurations. Von Kármán equations 
are considered in the modelling of the governing equation. 
Subsequently, Dai et al. (2011) investigated nonlinear plates 
vibration based on Von Kármán principle using Galerkin 
method resulting in tangential stiffness matrix. In another 
study, Xie and Xu (2013) determined general solution for 
nonlinear oscillations based on Von Kármán’s theory along 
with quasi-steady aerodynamic theory in establishing the 
governing equation. In a later work, Dai et al. (2014) re-
examined deflection of Von Kármán plate with imperfect 
initial deflection using semi-analytical method.

Foundations are important parts of systems owing to 
the preponderant application in engineering. The role of 
foundation in protecting structural system under vibration 
from failure cannot be underestimated. Part of the aims of 
the authors is to investigate the dynamic behaviour of vis-
coelastic nonlinear foundation on a thin vibrating isotropic 
circular plate. Zhu et al. (2015) examined the nonlinear 
viscoelastic foundation model as a three-parameter model, 
meaning the layers are indicated by linear elastic springs, 
cubic nonlinearity elastic springs and shear deformation. 
The investigation of dynamic response of beam resting on 
elastic foundation was performed by Yankelevsky et al. 
(1989), based on the findings nonlinear model is more 
practical and more realistic than linear model. In another 
study, Wu and Thompson (2004) conducted a research on 
the effect of linearity and nonlinearity on the wheel–rail 
impact. It was concluded that the linear model is not suit-
able for wheel–rail impact problem. In a similar work, 
Senalp et al. (2010) investigated the effects of speed and 
damping of load on nonlinear dynamic response of beams 
resting on nonlinear foundation. Also, Civalek (2013) 
based on his study stated that the influence of nonlinear 
and shear parameters on the amplitude of oscillations is 
vastly significant compared to the linear model. In a fur-
ther study, Kanani et al. (2014) examined the influence of 
nonlinear foundation on large amplitude of a beam. The 
foundation was modelled to include shear layer of Paster-
nak and nonlinear Winkler foundations. The authors real-
ized that increasing the nonlinear parameter of the foun-
dation can augment the system nonlinearity. Meanwhile, 
shear and linear parameters can weaken the nonlinearity. 
Since the nonlinearity of the system is affected by the 
above-mentioned parameters, the system nonlinearity can 

be controlled by linear and shear. Younesian et al. (2019) 
reviewed elastic and viscoelastic foundations on linear and 
nonlinear model. Based on the authors’ finding, there are 
limitations in the use of elastic foundation compared to 
adoption of viscoelastic element. Other studies on related 
field are reported by Haciyev et al. (2019), Sofiyev et al. 
(2017), Lin and Dangal (2017), Lin et al. (2018) and Linlin 
and Xing (2019).

Various analytical studies in the previous work have 
shown that analysis of nonlinear models is very difficult to 
handle using exact method, and recourse is made to semi-
analytical and numerical method. In an attempt to obtain 
numerical solution for structure on nonlinear foundation, 
Allahverdizadeh et al. (2008) employed Kantorovich aver-
aging method to analyse nonlinear free and forced vibration 
of functionally graded plates. However, for semi-analytical 
solutions, El Kaak et al. (2016) studied geometrical nonlin-
earity of free axisymmetric vibrations of functionally graded 
circular plate using iterative and explicit semi-analytical 
solution. In another work, Yazdi (2016) assessed the use 
of homotopy perturbation method on forced vibration of 
orthotropic circular plate on elastic nonlinear foundation. 
The effect of elastic foundation parameter was considered. 
According to the findings, the influence of Winkler and Pas-
ternak foundation on the frequency ratio is much signifi-
cant. Also, Togun and Bagdatl (2016) examined the free and 
forced vibration of nanobeam resting on Winkler and Paster-
nak foundation using Perturbation series. In a further work, 
Sobamowo (2017) used differential transformation method 
(DTM) to analysis carbon nanotube resting on Pasternak 
foundation. DTM is adopted as the method of solution for 
this study based on the fact that the method is a closed form 
series solution with fast convergence coupled with being 
easier to use and reduction of computational cost compared 
to other methods of solutions like numerical method with 
huge volume of calculation and convergence study limita-
tion. More so, for perturbation method, the need for small 
parameter is also a limitation. Likewise, the restriction of 
HPM to weakly nonlinear and lack of proper guideline on 
choice of initial approximation in iterative method are some 
of the difficulties DTM overcome.

Various studies are presented in the literature including 
axisymmetric vibration of circular plate resting on elastic 
foundation, meanwhile investigation on the symmetric vibra-
tion on viscoelastic three-parameter medium is still limited. 
Therefore, this study examines forced vibration of symmetric 
and axisymmetric circular plate resting on viscoelastic three 
foundation parameters. Most of the above works are mainly 
related with the amplitude–frequency response of the circular 
plates. However, damping and forcing effect included studies 
on the nonlinear vibration properties of plate systems are also 
rather limited. The damping effects are considered, and non-
linear vibration behaviours of the circular plates are illustrated. 
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Practical application of problem includes liquid storage tanks, 
pipelines and slab track for floating railway track to mention 
a few.

2  Problem Formulation and Mathematical 
Analysis

Considering a circular plate as shown in Fig. 1, the plate is 
considered resting on Pasternak and Winkler foundations 
under simply supported and clamped edge conditions. Von 
Kármán’s deflection theory by Touzé et al. (2002) is consid-
ered in the modelling of the governing equation based on the 
following assumptions:

(1) Thin plate is assumed.
(2) Kirchhoff–Love hypotheses are assumed to be satisfied.
(3) Only the nonlinear terms of lowest order are kept in the 

expression of the strains as functions of the displace-
ment.

(4) The in-plane and rotatory inertia terms are neglected.

The governing differential equations as reported by Kerr 
(1964), Dumir (1986) and Yamaki (1961) are

where t is the time, r is the radial coordinate, w∗ is the trans-
verse deflection, E is the Young’s modulus of the plate. The 
foundation of the circular plate is visco-Pasternak medium, 
kw is the Winkler foundation, ks is the Pasternak foundation, 
kp is the nonlinear Winkler, q is the uniformly distributed 
transverse load, � is the excitation frequency, c is the damper 
modulus parameters, while � is the material density, h is the 
thickness of the plate, flexural rigidity D = Eh3∕12(1 − �2) , 
F is the Airy stress function, ∇ is the Laplacian and Pois-
son’s ratio is �.

The transverse deflection of the plate is assumed to be

(1)

D∇4w∗(r, �, t) + kww
∗(r, �, t) − ks∇

2w∗(r, �, t) − kpw
3∗(r, �, t)

+ c
�w∗(r, �, t)

�t
+ �h

�2w∗(r, �, t)

�t2
−

h

r

�

�r

(
�F

�r

�w∗

�r

)
= q cos(�t),

(2)∇4F = −
(
E

r

)
�w∗

�r

�2w∗

�r2
,

w(R, �, t) =

∞∑
m=0

w∗(R, t) cos (m�),

w∗ is the vertical displacement at a given point of coordi-
nates with respect to spatial coordinate and time of the mid-
dle surface of the plate.

Using dimensionless parameters

we arrived at the following equations

where

2.1  Boundary Condition

The following boundary conditions are used (Figs. 2, 3): 

• Clamped edge condition

w =
w∗

h
, F =

F∗

Eh2
, R =

r

a
, D =

Eh3

12(1 − �2)
,

(3)

1

12(1 − �2)

(
�4w

�R4
+

2

R

�3w

�R3
−

(
2m2 + 1

R2

)
�2w

�R2

+

(
2m2 + 1

R3

)
�w

�R
−

(
4m2 − m4

R4

)
w

)
−

1

R

�

�R

(
�F

�R

�w

�R

)

= Q0 cos (��) −
1

12(1 − �2)

�2w

��2
− ks

�2w

�R2
+

ks

R

�w

�R

− kww +
3

4
kpw

3 −
C

12(1 − �2)

�w

��
,

(4)�2F

�R2
+

1

R

�F

�R
−

1

R2
F = −

(
1

R

)
�w

�R

�2w

�R2
,

(5)

� =

[√
D

�∗ha4

]
t, kw =

kwa
4

Eh3
, kp =

kpa
4

Eh
,

ks =
ksa

2

Eh3
, Q0 =

qa4

Eh4,
C =

ca4

Eh3

Fig. 1  Showing uniform thick-
ness circular plate resting on 
four-parameter foundations

Circular Plate

Pasternak foundation

Damper and Winkler foundation

a Q o

Z, w x

Fig. 2  Schematic of a clamped–clamped supported condition
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• Simply Supported edge condition

• The initial conditions:

 
For the Airy stress functions, free edge and constrained 

immovable edge are considered. The boundary conditions 
in dimensionless form are

3  Method of Solution: Differential 
Transformation Method

3.1  Principle of Differential Transformation Method

Differential transformation method (DTM) proposed by 
Zhao (1986) is a closed form series approximate solution, 
very powerful, reliable and easy to comprehend semi-ana-
lytical method for solving linear, nonlinear, partial and 
ordinary differential equations. DTM involves transforma-
tion techniques which are applied to the governing equa-
tion along with the governing boundary conditions to form 
algebraic equations. The resulting solution of the algebraic 
equations form the solution of the system in series form. 
The accuracy of the results compared to numerical method 

(6)
W|R=1 = 0,

�W

�R

||||R=1 = 0,

W|R=0 = 0,
�W

�R

||||R=0 = 0,

(7)

W|R=1 = 0,

(
�2W

�R2
+

�

R

�W

�R

)|||||R=1
= 0,

W|R=0 = 0,

(
�2W

�R2
+

�

R

�W

�R

)|||||R=0
= 0,

(8)W|�=0 = To;
�W

��

||||�=0 = 0,

(9)R = 1 ∶
�F

�R
= 0,

�2F

�R2
−

�

R

�F

�R
= 0.

and experimental is very high. The basic definitions and 
operational properties are as follows:

Considering a function �(t) that is analytic in the 
domain t  , the function �(t) will be differentiated continu-
ously with rest to space t

For t = ti , then �(t, k) = �
(
ti, k

)
 , where k belongs to 

the set of nonnegative integers, denoted as the k-domain . 
Therefore, Eq. (10) is written as

where �k is the spectrum of �(t) at t = ti.
�(t) is expressed in Taylor’s series, then �(t) is pre-

sented as

Equation (12) is the inverse of �(k) transverse deflec-
tion using the symbol “ D ” representing the differential 
transform process, and combining Eqs. (11) and (12), we 
have (Table 1)

3.2  Transformation of the Governing Equation 
to Ordinary Differential Equation

An approximate solution is obtained by assuming the non-
linear free vibrations to have the same spatial shape, i.e.

(10)dk�(t)

�tk
= �(t, k), for all t ∈ �

(11)�(k) = �
(
ti, k

)
=

[
dk�(t)

�tk

]

t=ti

,

(12)�(t) =

∞∑
k

[(
t − ti

)k
k!

]
�(k).

(13)�(t) =

∞∑
k

[(
t − ti

)k
k!

]
�(k) = D−1�(k).

a Qo

Z, w x

Fig. 3  Schematic of a simply supported conditions at both edges of 
the rectangular plate

Table 1  Operational properties of differential transformation method

S/n Function Differential transform

1 �(t) ± f (t) �(k) ± F(k)

2 ��(t) ��(k)

3 d�(t)

dt
(k + 1)�(k + 1)

4 d2�(t)

dt2
(k + 1)(k + 2)�(k + 2)

5 �(t)f (t)
∑k

l=0
F(l)�(k − l)

6 tm
�(k − m) ⇒

1 if k = m

0 if k ≠ m

7 �3(t)
∑k

l=0

∑k−l

p=0
�(l)�(p)�(k − l − p)

8 �(t)
d�(t)

dt

∑k

l=0
(k − l + 1)�(l)�(k − l + 1)
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Substituting Eqs. (14) into (4) and solving the ordinary 
differential equation (ODE) provides

The value of F is accordingly found to be finite at the 
origin c1 = 0 . Additionally, c3 is the constant of integration 
to be determined from in-plane boundary conditions.

The substitution of the expressions for w and F given 
by Eqs. (14) and (15), respectively, into Eq. (3), also with 
application of the Galerkin procedure in the nonlinear time 
differential equation obtained in the form

We reached

where

(14)w(r, �) =
(
c4r

4 + c2r
2 + 1

)
�(t).

(15)

F(r, t) =
c1

r
− c3r +

(�(t))2r3
(
2c2

4
r4 + 4c2c4r

2 + 3c2
2

)
6

.

(16)

1

∫
0

L�(w,F)w r dr = 0.

(17)M�̈�s(t) + G�̇�s(t) + K𝜑s(t) − V𝜑3
s
(t) = Qo cos𝜔t,

(18)M =
25c2

4

3822
+

(
10 +

25c2

3

)
c4

546
+

25c2

1092
+

5c2
2

546
+

25

1638
,

(19)

K =
5c2

4

546

�
39kw

5
−

728c3

5
−

728ks

5
+ 64

�

+
5c4

546

⎛⎜⎜⎜⎝

�
80 +

91kw

5
−

1092c3

5
−

1092ks

5

�
c2 +

546kw

25
−

1092c3

5
−

1092ks

5
+

320

3

⎞⎟⎟⎟⎠

+
5c2

2

546

�
−
273ks

5
+

273kw

25
−

273c3

5

�

+
5c2

546

�
273kw

10
−

364c3

5
−

364ks

5

�
+

kw

6
,

The initial and boundary conditions are

For a plate with an elastically restrained outer edge, with 
rotational and in-plane stiffnesses k∗

b
 and k∗

i
 , subjected to an 

applied in-plane radial force resultant N∗ at the outer edge, 
the boundary conditions are

where u∗ is the radial displacement at midplane. Introduce 
dimensionless parameters kb, ki and N

The dimensionless boundary conditions are

Equations (25) and (26) are used to find the constants c2 
and c4 while the constant of integration c3 is obtained using 
Eq. (27). The constants values under simply supported con-
ditions are

while for Clamped edge condition they are

(21)

G =
25Cc2

4

3822
+

(
10C +

25Cc2

3

)
c4

546
+

25Cc2

1092
+

5Cc2
2

546
+

25C

1638
.

(22)𝜑(0, r) = a, �̇�(0, r) = 0.

(23)r = a ∶ Mr = k∗
b

�w∗

�r
, Nr = N∗ − k∗

i
u∗,

(24)kb =
12k∗

b
a

Eh3
, N =

(
N∗

Eh

)(
a

h

)2

, ki =
k∗
i
a

Eh
.

(25)R = 1 ∶ W = 0,

(26)
[
(1 − �2)kb + �

]�W
�R

+
�2W

�R2
= 0,

(27)ki

(
�2F

�R2
− �

�F

�R

)
+

�F

�R
= N.

(28)

c2 = −
2(kb�

2 − kb − � − 3)

kb�
2 − kb − � − 5

, c4 =
kb�

2 − kb − � − 1

kb�
2 − kb − � − 5

,

(29)

c3 = −

⎛
⎜⎜⎜⎝

3Nk2
b
�4 − 5k2

b
�5 + 10k2

b
�4 − 6Nk2

b
�2 − 6Nkb�

3 + 10k2
b
�3 + 10kb�

4 − 30Nkb�
2 − 20k2

b
�2

+22kb�
3 + 3Nk2

b
+ 6Nkb� + 3N�2 − 5k2

b
� − 94kb�

2 − 5�3 + 30Nkb + 30N� + 10k2
b
− 22kb�

−32�2 + 75N + 84kb − 25� + 218

⎞
⎟⎟⎟⎠

3
�
kb�

2 − kb − � − 5
�2
(−2 + �)

,

(30)c2 = −2, c4 = 1, c3 = −
3N + 10 − 5�

−6 + 3�
.

(20)

V =
5c4

4

546

(
−
819kp

220
+

728

9

)
+

5c3
4

546

((
273 −

819kp

50

)
c2 −

91kp

5
+ 104

)

+
5c2

4

546

((
364 −

273kp

10

)
c2
2
+

(
728

3
−

2457kp

40

)
c2 −

351kp

10

)

+
5c4

546

((
1092

5
−

819kp

40

)
c3
2
+

(
1092

5
−

351kp

5

)
c2
2
−

819c2kp

10
−

819kp

25

)

+
5c4

2

546

(
−
117kp

20
+

1092

25

)
+

5c3
2

546

(
−
273kp

10
+

273

5

)
−

9c2
2
kp

20
−

3

8
c2kp −

kp

8
,
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3.3  Determination of Nonlinear Natural Frequency 
Ratio

The dynamic response of the structural analysis is carried 
out under the transformation

Applying Eqs. (31) on (17), we have

G = 0 for undamped condition

In order to find the periodic solution of Eq. (33), assume 
an initial approximation for zero-order deformation as

Substituting Eqs. (34) into (33) gives

which gives

collect like term

eliminating the secular term, one arrives at

Thus, zero-order nonlinear natural frequency becomes

Therefore, ratio of zero-order nonlinear natural fre-
quency�0 to the linear frequency �b

Following the same procedural approach, the first-order 
nonlinear natural frequency is

(31)� = eiwt,

(32)M�̈�s(t) + G�̇�s(t) + K𝜑s(t) − V𝜑3
s
(t) = Q cos𝜔t,

(33)M�̈�s(t) + K�̇�s(t) − V𝜑3
s
(t) = Qo cos𝜔t.

(34)�0(�) = A cos �.

(35)−M�2
0
A cos � + KA cos � − VA3 cos3 � = Qo cos�t,

(36)
−M�2

0
A cos � + KA cos � − VA3

(
3 cos � + cos 3�

4

)
= Qo cos�t,

(37)

(
KA −M�2

0
A −

3VA3

4

)
cos � −

1

4
VA3 cos 3� = Qo cos�t;

(38)
(
KA −M�2

0
A −

3VA3

4

)
= Q.

(39)�0 ≈

√
K

M
+

3VA2

4M
−

Q

MA
.

(40)
�0

�b

=

√
1 +

3VA2

4K
−

Q

AK
.

(41)

�
1
≈

������� 1

2

⎧⎪⎨⎪⎩

��
K

M

�
−

�
3VA2

4M

��
+

���
K

M

�
−

�
3VA2

4M

��2
−

�
3V2A4

32M2

�⎫⎪⎬⎪⎭
−

Q

AK
.

The ratio of the first-order nonlinear frequency�1 to the 
linear frequency �b gives,

Primary resonance of damped Duffing system is given as 

where the frequency ratio is represented by Ω
�0

 , where � is the 
damping coefficient, Ω is excited frequency k , � and Q are 
constants, A is the amplitude of vibration, and �0 is the natu-
ral frequency of the underlying linear system.

3.4  Modified Differential Transform Method 
Procedure

The small domain limitation of semi-analytical method has 
been overcome by the introduction of after treatment method 
in power series method. Laplace–Padè approximant has proven 
to be very reliable approach that also increases the convergence 
rate of the iteration. The Padè is a form of converting the ana-
lytical solution obtained through DTM method to polynomial 
rational form. The basic procedure are as follows:

1. 

2. Apply Padè approximation to the solution from previous 
step to obtain the following approximation in the follow-
ing rational form:

3. 

3.5  Application of Differential Transformation 
Method to the Duffing Equation

Applying DTM to the Duffing oscillation Eq. (17), along 
with the initial condition Eq. (8), we get

(42)

�
1

�b

≈

������� 1

2

⎧⎪⎨⎪⎩

�
1 −

�
3VA2

4K

��
+

��
1 −

�
3VA2

4K

��2
−

�
3V2A4

32K

�⎫⎪⎬⎪⎭
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(44)

Apply Laplace transform to the series solution and setting s =
1

t
.

(45)

[
L

M

]
=
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2 +⋯PLt

L
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2 +⋯ qMt

M
and setting t =

1

s
.

(46)
Apply inverse Laplace transform on

[
L

M

]
approximant.
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Initial condition are

3.5.1  The Solution Procedure

For k from 0, 1, 2, 3, 4, 5, 6, 7, we have the following:

Using the definition of DTM, solution of Eq. (18) is given 
as

Substituting the values obtained for K,M,V  from Eqs. 
(18)–(20) into Eq. (53), we have

The accuracy of the DTM is improved using the princi-
ple of Modified differential transform method (MDTM). 
Apply Laplace transform to the series solution Eq. (54) as

(47)
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(53)�(t) =

n∑
j=0

�(j)tj,

(54)
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.

Also, replacing s = 1

t
 and calculating Padè approximant 

of 
[
5

6

]
 and letting t = 1

s
 gives the following,

Applying the inverse Laplace transform to the Padè 
approximant of Eq. (56), the MDTM solution is

4  Results and Discussion

The problem titled forced vibration analysis of isotropic 
circular plate resting on viscoelastic foundation is analysed 
and presented here. The accuracy and reliability of the 
presented analytical solution are established and validated 
with results presented in the cited literature Haterbouch 
and Benamar (2003). The validations are displayed in 
Table 3 and confirmed in good harmony with maximum 
5% difference. Two cases were considered, when the num-
ber of nodal diameter m = 0 (symmetric case, even num-
ber) and while m = 1 (axisymmetric case, odd numbers). 
The physical properties of the material used for the analy-
sis are as follows:

(55)
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Young’s modulus = 210.0 GPa, Poisson’s ratio = 0.3, and 
mass density = 7850 kg/m3 and plate thickness of 3 mm. The 
amplitude of vibration considered is Qo = 0.1.

4.1  Convergence Criteria

The convergence criteria are illustrated along with the com-
putational time in Table 2. It is shown that the iteration con-
verges at n = 4; therefore, extending the iterations beyond 
n = 4 only further increases the computational time without 
substantial difference in the solution (Table 3).  

4.2  Effect of Foundation Parameters

The variation of the amplitude with nonlinear frequency 
ratio is shown in Figs. 4, 5, 6 and 7. The frequencies are 
obtained taking into consideration the physical geometry 
properties of the plate and also taking into consideration 
non-dimensional analysis. Invariably, the results are effec-
tive for any thickness-to-radius ratios. It is shown in Fig. 4 
that increase in the value of the nonlinear Winkler founda-
tion parameter results in a reduction in the frequency ratio. 
This is a case of softening nonlinearity properties.    

In Figs. 5, 6 and 7, the nonlinear frequency against the 
amplitude curve of the isotropic circular plate is shown for 
linear foundation parameter variation. From the results, it 
is observed that nonlinear frequency of the circular plate 
increases with the increase in elastic linear foundation 
parameters. The Pasternak parameter has a pronounced 
effect on the nonlinear frequency amplitude curve of the 
circular plate. The values of nonlinear frequency has a 
direct relationship with the Winkler and Pasternak values. 
The parameters can be used to control the nonlinearity of 
structures. Same scenario is observed for symmetric and 
axisymmetric cases likewise under the two boundary condi-
tions considered.

4.3  Effect of Radial Force

Figures 8 and 9 show the influence of outer edge radial force 
consequent on nonlinear frequency ratio. Figure 8 illustrates 
the results obtained for tensile force, while Fig 9 depicts that 

of compressive force. It is observed clearly from the figures 
that nonlinear frequency ratio increases for tensile force with 
an increase in the value of N, while the contrary is observed 
for compressive force. The effect of a compressive force is 
more pronounced than that of a tensile force. This is attrib-
uted to the fact that variation of radial force N may affect the 
stiffness of the isotropic circular plate.

4.4  Effect of Viscoelastic Foundation

The influence of the viscoelastic foundation is presented in 
Figs. 10 and 11. As the viscoelastic parameter increases, 
the deflection on the plate decreases. The excitation of the 
vibration decays with time due to the presence of damper. 
Attenuation of the deflection of the circular plate is observed 
meaning that damages in the system can be reduced with the 
presence of viscoelastic foundation.

Figure 12 shows the comparison of linear with nonlinear 
vibration of the isotropic circular plate, and it is observed 
that the difference is more significant with an increase in 
value of maximum vibration of the structure, while Fig. 13 
shows the relationship between results obtained with DTM 
and MDTM. The advantage of MDTM is illustrated by 
extending the domain of the results. 

4.5  Effect of Symmetric and Antisymmetric Cases

To illustrate the study of symmetric and axisymmetric case 
considered. Results obtained from the analysis are shown 
graphically in Fig. 14. From the result, axisymmetric case is 
shown to possess better results than the symmetric case. The 
frequency ratio is lower for axisymmetric case compared to 
symmetric case due to higher stiffness possessed by axisym-
metric case. This shows that spatial property of the circular 
plate has an impact on vibration of the circular plate.

Table 2  Convergence criteria based on the number of iteration (n) in 
the solutions of circular plate deflection

Iteration (n) Maximum deflec-
tion (mm)

Padè Computa-
tional time 
(s)

4 0.1058 3.2 0.17
7 0.1058 3.2 0.57
12 0.1058 3.2 0.67
17 0.1058 3.2 1.23

Table 3  Frequency ratio for an isotropic circular plate for different 
values of non-dimensional vibration amplitudes

Wmax/h Haterbouch and 
Benamar (2003)

Present study Abs difference %

0.2 1.007 1.006 0.14
0.4 1.028 1.023 0.523
0.5 1.044 1.036 0.772
0.6 1.062 1.052 1.024
0.8 1.107 1.092 1.493
1 1.162 1.144 1.754
1.5 1.326 1.321 0.442
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4.6  Primary Resonance Response

Figure 15 shows the primary resonance response of the iso-
tropic circular plate. From the results, it is observed that 
vibration amplitude is lower than the thickness of the plate 
meaning that the result is reliable. It is also inferred from the 
figure that the nonlinear frequency is a function of ampli-
tude. Increasing the forcing term increases function ampli-
tude of vibration.

4.7  Effect of Boundary Condition

Figures 16 and 17 depict the effect of boundary conditions 
on the nonlinear amplitude frequency response curve of the 
isotropic circular plate. From the results, case of softening 
nonlinearity is observed.

Fig. 4  Influence of nonlinear foundation stiffness variation on ampli-
tude of vibration for symmetric case

Fig. 5  Influence of Pasternak foundation variation on amplitude of 
vibration for symmetric case

Fig. 6  Influence of Winkler foundation parameter variation on ampli-
tude of vibration for symmetric case

Fig. 7  Influence of combine foundation stiffness variation on ampli-
tude of vibration for symmetric case

Fig. 8  Influence of tensile force variation on amplitude of vibration 
for symmetric case
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Fig. 9  Influence of compressive force variation on amplitude of 
vibration for symmetric case

Fig. 10  Influence of viscoelastic foundation on vibration of the circu-
lar plate for symmetric case

Fig. 11  Influence of viscoelastic foundation on vibration of the circu-
lar plate for axisymmetric case

Fig. 12  Comparison of midpoint deflection time history for the linear 
and nonlinear analysis

Fig. 13  Midpoint deflection time history for the nonlinear analysis of 
isotropic circular plate

Fig. 14  Influence of asymmetric and symmetric parameter m on the 
nonlinear amplitude–frequency response curves of the isotropic cir-
cular plate
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5  Conclusions

In this study, the forced vibration analysis of isotropic cir-
cular plate resting on nonlinear viscoelastic foundation 
is investigated. The governing coupled partial differential 
equation is transformed into nonlinear ordinary differen-
tial equation using Galerkin decomposition method. The 
ODE is solved analytically using DTM with Padè Laplace 
approximant technique. Symmetric and axisymmetric 
cases are considered. The results obtained are verified with 
results published in the cited literature, and good harmony 
is observed. The developed analytical solutions are used to 
investigate the effect of elastic foundations, radial force, 
damper and varying amplitude on the dynamic behaviour 
of the isotropic circular plate. Based on the parametric 
studies, the following were observed.

1. Nonlinear Winkler foundation parameter results in 
reduction in the frequency ratio, while nonlinear fre-
quency ratio increases with increase linear elastic foun-
dation. Pasternak parameter has a pronounced effect on 
the nonlinear frequency

2. Nonlinear frequency ratio increases for tensile force, 
whereas contrariwise is observed for compressive force. 
The effect of compressive force is more pronounced than 
that of tensile force.

3. The deflection of the circular plate decreases as the vis-
coelastic foundation parameters increases.

4. For primary resonance obtained, vibration amplitude 
is lower than the thickness of the plate and maximum 
amplitude occurs at Q = 0.

5. Axisymmetric case of vibration gives lower frequency 
ratio compared to symmetric case.

6. Same softening nonlinearity is observed for both simply 
supported and clamped edge condition.

The present study reveals major elements controlling 
the nonlinearity of vibrating thin circular plate under 
external force. Also, the versality of DTM with Padè-
approximant technique has been demonstrated. It is hoped 
that the present study will improve understanding in the-
ory of vibration of circular plate.
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