TECHNICAL NOTE

Efects of Inherent Structural Characteristics on Seismic Performances of Aseismically Base‑Isolated Buildings

Peyman Narjabadifam1 [·](http://orcid.org/0000-0002-4694-4256) Patrick L. Y. Tiong2 · Ramin Mousavi‑Alanjagh1

Received: 9 May 2018 / Accepted: 25 October 2019 / Published online: 4 November 2019 © Shiraz University 2019

Abstract

Efects of inherent characteristics of both isolation system (IS) and superstructure on seismic performances of aseismically base-isolated buildings subjected to near- and far-feld ground motions are investigated through extensive numerical analyses. ISs considered are friction pendulum system (FPS) and high-damping laminated rubber bearing (HRB), as the most practical ISs. Superstructures are 3-, 7-, and 11-story buildings with steel and reinforced concrete moment-resisting and braced frames. Seven isolation strategies are practically designed by the ISs, using three target displacements and two coefficients of friction. Eighty-four structural models are created for the 12 superstructures isolated by the two ISs. 1176 nonlinear time history analyses are carried out on the two-dimensional models of the isolated buildings subjected to seven near-feld and seven far-feld ground motions. Base shears, story displacements, and story accelerations are studied as the performance criteria. It is shown that the efectiveness of aseismic base isolation depends signifcantly on inherent mass, stifness, and damping of the structure. The effect of isolation damping is more than mass and stiffness of the superstructure. The effectiveness of aseismic base isolation with the design strategies controlled by target displacement increases by increase in the inherent mass and stifness of the superstructure, while facing reduction due to inherent increase in the isolation damping. The efects are similar in near- and far-feld ground motions. Seismic performances of FPS are less sensitive to the efects of inherent structural characteristics. With the conditions and parameters set in this study, it is found that FPS performs better than HRB, specifcally in near-feld excitations.

Keywords Aseismic base isolation · Inherent structural characteristics · Ground motion · Sensitivity · Seismic performances

1 Introduction

Aseismic isolation is a well-accepted efective method for protecting structures against earthquakes. It is generally used in the foundation level and is known as base isolation. This strategy of structural design is based on reducing the demand instead of increasing the capacity. Increasing the capacity can sometimes be uneconomical or impractical and may lead to situations in which the structure itself is undamaged but the contents are damaged or destroyed and the occupants injured. Aseismic base isolation reduces the seismic demand by

 \boxtimes Peyman Narjabadifam narjabadi@tabrizu.ac.ir reducing the fundamental frequency of the structure and also provides an amount of damping. If this technology is used properly, the seismic performance of the structure will be improved (Tavakoli et al. [2014](#page-16-0)). Base isolation of a structure can result in the reduction of inter-story drifts and foor accelerations, which are considered as the performance measures in most of the design codes such as IBC ([2012](#page-15-0)) and ASCE 41-13 [\(2013\)](#page-15-1). The frst application of aseismic base isolation refers to the ancient Iran (Sepahbodnia [2006](#page-16-1); Botis and Harbich [2012](#page-15-2); Bek et al. [2013](#page-15-3)). It continues to get considerable attention, particularly after the recent strong earthquakes such as the Kobe earthquake in 1995. Base isolation technology is used in many countries (Warn and Ryan [2012](#page-16-2)). To date, diferent isolation systems (ISs) have been developed (Martelli et al. [2014](#page-16-3); Narjabadifam [2015;](#page-16-4) Falborski and Jankowski [2017](#page-15-4)). Isolated buildings have performed well in the previous earthquakes (Du and Han [2014\)](#page-15-5). Seismic performances, however, depend on the characteristics of both structures and earthquakes (Kelly

¹ Department of Civil Engineering, Faculty of Engineering, University of Bonab, Bonab 5551761167, Iran

² Department of Research and Development, Base Isolation Technology (Asia), 41300 Klang, Selangor, Malaysia

Fig. 1 The building frame studied by Tavakoli et al. ([2014\)](#page-16-0)

[1999\)](#page-16-5). Several studies have been carried out about the roles of the properties of superstructures and ISs on the performances of base-isolated structures. Jangid [\(2002](#page-16-6)) studied these performances through a parametric study and concluded that structural parameters significantly influence the effect of isolation. Jain and Thakkar ([2004](#page-15-6)) investigated the effect of structural stifness and showed that increasing stifness in superstructure increases the efectiveness of isolation. Jalali and Narjabadi-fam [\(2006\)](#page-15-7) presented a study on the effects of additional mass and damping on the seismic performances of isolated buildings and indicated that the performances can be improved by the modifcation of dynamic properties of superstructures. In a study by Providakis [\(2009](#page-16-7)), the effects of supplemental damping on laminated rubber bearings (LRBs) and friction pendulum systems (FPSs) were investigated and it was shown that additional damping is the main parameter afecting the seismic response of isolated buildings located in near-fault regions. It had already been revealed by Kelly ([1999\)](#page-16-5) and Hall [\(1999\)](#page-15-8) that isolated buildings subjected to near-fault ground motions are struggling with large displacements and the solution for this problem is to use damping to mitigate displacements. Sharbatdar et al. ([2011\)](#page-16-8) have also studied the seismic performances of structures isolated with FPS and high-damping laminated rubber bearing (HRB), showing that large displacement and velocity pulses of near-fault motions severely afect the performances of base isolation. The references reviewed above are not the only references related to the subject, and some other remarkable works have also been reported by Fan et al. [\(1990\)](#page-15-9), Kulkarni and Jangid [\(2003\)](#page-16-9), Hong and Kim ([2004](#page-15-10)), Matsagar

Fig. 2 Flowchart of the research

Name	Description
3TMS	3-story traditional moment-resisting steel
3FMS	3-story FPS-isolated moment-resisting steel
277772	

Table 2 The structural models

and Jangid [\(2004\)](#page-16-10), Rabiei ([2008](#page-16-11)), Sharma and Jangid ([2009](#page-16-12)), Abrishambaf and Ozay [\(2010](#page-15-11)), Ounis and Ounis [\(2013](#page-16-13)), Chun and Hur [\(2015](#page-15-12)), Tolani and Sharma [\(2016\)](#page-16-14), Folic and Stanojev [\(2016](#page-15-13)), and Bhandari et al. ([2017](#page-15-14)). In practice, however, it is still required to investigate the effects of inherent characteristics of both superstructure and IS to reveal the practical efectiveness of ISs, remaining as an important engineering question. This is intrinsically diferent than the investigations of the efects of additional mass and damping or stifening the superstructure. A comprehensive study to investigate the

Fig. 3 The HRB isolator and its mechanical behavior (AGOM [2017](#page-15-15))

efects of inherent structural characteristics on seismic performances of ISs, in this regard, has been carried out within a postgraduate research program to fnd the answer to the abovediscussed question. Next sections report on the methodology and outcomes of this research.

2 The Methodology of Research

For the investigation of effects of inherent structural characteristics on seismic performances of ISs, a detailed parametric study is required. Numerical analyses for such a study must be nonlinear, due to the nonlinearities of isolators, and the structures must be properly designed. Both the design and the analysis procedures must be verifed before to be sure about the accuracy of results. The reference work for the purpose of verifcation is the work reported by Tavakoli et al. ([2014](#page-16-0)). They have studied the responses of the base-fxed and isolated building frames and reported the base shears of a base-fxed and isolated 4-story reinforced concrete building frame, as shown in Fig. [1](#page-1-0). The same has been carried out in this research, and the results have been compared with the results reported by Tavakoli et al. [\(2014\)](#page-16-0). Base shears are compared in Table [1](#page-1-1).

As can be seen, the base shears obtained are close to those reported by Tavakoli et al. ([2014\)](#page-16-0). So, the design and the analysis procedures used in this research are verifed.

Flowchart of the research conducted as the basis for this paper is represented in Fig. [2,](#page-1-2) with the details given for the structural characteristics varying inherently in the

Structure	$D_d(m)$	$K_{\rm eff}$ (kN/m)	K_e (kN/m)	F_{v} (kN)
3HMS	0.2	537.2149	2238.395	22.3
	0.3	239.159	996.4996	14.9
	0.4	134.8407	561.8361	11.2
3HBS	0.2	547.15	2279.792	22.7
	0.3	243.575	1014.898	15.2
	0.4	137.3244	572.1852	11.4
3HMC	0.2	646.501	2693.757	26.9
	0.3	379.835	1582.648	23.7
	0.4	656.323	2734.681	54.6
3HBC	0.2	626.631	2610.964	26.1
	0.3	467.012	1945.887	29.1
	0.4	636.1509	2650.629	53.0
7HMS	0.2	1242.612	5177.549	51.7
	0.3	552.669	2302.79	34.5
	0.4	202.399	843.3324	16.8
7HBS	0.2	1292.287	5384.531	53.8
	0.3	574.747	2394.782	35.9
	0.4	323.608	1348.37	26.9
7HMC	0.2	1789.046	7454.357	74.5
	0.3	1037.72	4323.832	64.8
	0.4	1032.541	4302.255	86.0
7HBC	0.2	1530.731	6378.048	63.7
	0.3	1139.089	4746.203	71.1
	0.4	1133.404	4722.516	94.4
11HMS	0.2	1967.879	8199.495	81.9
	0.3	492.506	2052.111	41.0
	0.4	875.010	3645.877	54.6
11HBS	0.2	2087.10	8696.253	86.9
	0.3	927.998	3866.659	57.9
	0.4	522.312	2176.301	43.5
11HMC	0.2	2683.211	11,180.04	111.8
	0.3	2737.676	11,406.98	171.1
	0.4	2724.009	11,350.04	227.0
11HBC	0.2	2236.128	9317.201	93.1
	0.3	1917.602	7990.008	119.8
	0.4	2270.126	9458.86	189.1

Table 3 The mechanical properties of HRBs in this research

practical ranges. This research investigates the efects of inherent structural characteristics through 1176 nonlinear time history analyses (NTHAs) on 84 structural models (as described in Tables [3](#page-3-0) and [4](#page-4-0)) subjected to 14 near- and farfeld ground motions. The superstructures are 3-, 7-, and 11-story steel and reinforced concrete moment-resisting (MR) and braced frame buildings (12 cases) with diferent inherent structural characteristics in terms of mass, stifness, and damping, while the superstructure damping will not be studied due to its negligible effect discussed already in the literature (e.g., Jangid [2002;](#page-16-6) Jalali and Narjabadifam [2006](#page-15-7)). Seven isolation strategies are designed based on

Fig. 4 The FPS isolator and its mechanical behavior (OILES [2017\)](#page-16-16)

three design displacements (D_d) and two coefficients of friction (*µ*, representing the lubricated and nonlubricated sliding surfaces in practice) using HRB and FPS.

3 Superstructures

The superstructures are two-dimensional models of typical 3-, 7-, and 11-story buildings on soil type III in a region with very high level of relative seismic hazard of Standard No. 2800 (2015), designed according to ACI 318-11 ([2011](#page-15-16)) and AISC 341-10 ([2010\)](#page-15-17) using ETABS ([2016\)](#page-15-18).

The seismic performances of these superstructures are studied for three earthquake-resistant structural systems resulting in 36 structural models described in Table [2](#page-2-0).

4 Isolation Systems

The isolators considered for this research are HRB and FPS, as the most practical ISs. The mechanical behavior of HRB is shown in Fig. [3](#page-2-1). These isolators provide damping around 20% according to AGOM [\(2017](#page-15-15)), FIP ([2017](#page-15-19)), Maurer ([2017\)](#page-16-15), DIS [\(2017\)](#page-15-20), and OILES ([2017\)](#page-16-16). The Isolator1 nonlinear link element (rubber isolator) of ETABS is used to model the HRBs with the design details given in Table [3.](#page-3-0) Figure [4](#page-3-1) shows the force–displacement behavior for FPS isolator. Frictional parameters (rate parameter, coefficient of friction at slow and fast velocities) are calculated based on Dolce et al. [\(2005](#page-15-21)). FPSs are modeled by Isolator2 nonlinear

Table 4 The mechanical properties of FPSs in this research

Structure	$D_d(m)$	μ_{Nominal}	K_{eff} (kN/m)	K_e (kN/m)	$\mu_{\rm Fast}$	Rate parameter	Radius (m)
3FMS	0.1	0.02	660	5500	0.024	0.008	$\,1\,$
	0.2	0.02	605	5500	0.024	0.008	$\,1\,$
	$0.2\,$	0.05	495	13,500	0.093	0.016	1.5
	0.3	0.02	311	5500	0.024	0.008	$\sqrt{2}$
3FBS	$0.1\,$	0.02	648	5400	0.024	0.008	$\,1\,$
	0.2	0.02	594	5400	0.024	0.008	$\mathbf{1}$
	0.2	0.05	504	13,750	0.093	0.016	1.5
	0.3	0.02	396	5400	0.024	0.008	1.5
3FMC	$0.1\,$	0.02	780	6500	0.024	0.008	$\mathbf{1}$
	$0.2\,$	0.02	715	6500	0.024	0.008	$\mathbf{1}$
	$0.2\,$	0.05	595	16,250	0.092	0.016	1.5
	0.3	0.02	368	6500	0.024	0.008	$\boldsymbol{2}$
3FBC	0.1	0.02	756	6300	0.024	0.008	$\,1\,$
	$0.2\,$	0.02	693	6300	0.024	0.008	$\,1\,$
	$0.2\,$	0.05	577	15,750	0.092	0.016	1.5
	0.3	0.02	357	6300	0.024	0.008	$\boldsymbol{2}$
7FMS	0.1	$0.02\,$	1500	12,500	0.024	0.009	$\,1\,$
	0.2	$0.02\,$	1375	12,500	0.024	0.009	$\mathbf{1}$
	$0.2\,$	0.05	1191	32,500	0.090	0.016	1.5
	0.3	0.02	708	12,500	0.024	0.009	$\sqrt{2}$
7FBS	$0.1\,$	0.02	1848	15,400	0.024	0.009	$\mathbf{1}$
	0.2	0.02	1430	13,000	0.024	0.009	$\mathbf{1}$
	$0.2\,$	0.05	1155	38,500	0.090	0.016	$\sqrt{2}$
	0.3	0.02	736	13,000	0.024	0.009	$\sqrt{2}$
7FMC	0.1	0.02	1560	18,000	0.024	0.009	1.5
	0.2	0.02	1380	18,000	0.024	0.009	1.5
	$0.2\,$	0.05	1650	45,000	0.088	0.016	1.5
	0.3	$0.02\,$	1020	18,000	0.024	0.009	$\sqrt{2}$
7FBC	$0.1\,$	$0.02\,$	821	15,400	0.024	0.009	\mathfrak{Z}
	$0.2\,$	$0.02\,$	667	15,400	0.024	0.009	\mathfrak{Z}
	$0.2\,$	0.05	898	38,500	0.089	0.016	3
	0.3	0.02	616	15,400	0.024	0.009	\mathfrak{Z}
11FMS	$0.1\,$	0.02	1716	19,800	0.024	0.009	1.5
	$0.2\,$	$0.02\,$	1518	19,800	0.024	0.009	1.5
	$0.2\,$	0.05	1815	49,500	0.089	0.016	1.5
	0.3	$0.02\,$	1122	19,800	0.024	0.009	$\sqrt{2}$
11FBS	$0.1\,$	0.02	2520	21,000	0.024	0.009	$\mathbf{1}$
	$0.2\,$	0.02	2310	21,000	0.024	0.009	$\,1$
	0.2	0.05	1925	52,500	0.088	0.016	1.5
	$0.3\,$	$0.02\,$	1190	21,000	0.024	0.009	$\sqrt{2}$
11FMC	$0.1\,$	$0.02\,$	1890	27,000	0.023	0.009	\overline{c}
	$0.2\,$	$0.02\,$	2070	27,000	0.023	0.009	$\sqrt{2}$
	$0.2\,$	0.05	898	38,500	0.086	0.016	\mathfrak{Z}
	$0.3\,$	$0.02\,$	1530	27,000	0.023	0.009	$\sqrt{2}$
$11\mathrm{FBC}$	$0.1\,$	$0.02\,$	1200	22,500	0.024	0.009	3
	0.2	0.02	975	22,500	0.024	0.009	3
	$0.2\,$	0.05	1312	56,250	0.088	0.016	3

Event name, year	Record station	Mag- nitude (M_W)	R_{Rup} (km)	PGA(g)
Bam, 2003	Bam	6.6	1.7	0.629
Tabas, 1978	Tabas	7.3	\overline{c}	0.86
Imperial Valley, 1979	El Centro	6.5	10.3	0.212
Northridge, 1994	Jensen	6.7	5.4	0.617
Manjil , 1990	Abbar	7.3	12.5	0.498
Duzce, 1999	Duzce	7.1	6.6	0.52
Kocaeli, 1999	Gebze	7.5	10.9	0.143

Table 6 Far-feld ground motions used in the NTHAs

link element (friction isolator) of ETABS with the design details given in Table [4.](#page-4-0)

5 Ground Motions

The structures are subjected to seven near-field and seven far-feld ground motion records. The records are selected and downloaded from the ground motion database of PEER ([2017\)](#page-16-17). The events are the same for both the near- and far-feld records. The stations are selected as the nearest stations to the origin in the cases of nearfeld records, and the largest distances are selected for the far-feld records.

Table [5](#page-5-0) shows the details for the near-feld ground motion records, regarding the names of the stations that the ground motions have been recorded, magnitude of the main event, closest distance to the rupture, and the peak ground acceleration in the record. Far-feld ground motion records are similarly shown in Table [6](#page-5-1) for their technical details, the same as those given above for the near-feld records.

All the ground motions are scaled to the design spectrum of the structures, using SeismoMatch ([2016](#page-16-18)). The design spectrum is obtained based on the specifc requirements of the Iranian guideline for design and practice of

base ISs in buildings ([2010\)](#page-15-22) known as guideline No. 523 of office of deputy for strategic supervision of the bureau of technical execution system of the vice presidency for strategic planning and supervision and the Iranian guidelines for design of seismic base-isolated buildings ([2016\)](#page-15-23) considered in addition to the Iranian code of practice for seismic-resistant design of buildings ([2015](#page-15-24)) known as the yellow book or Standard No 2800. The matching algorithm is the default well-known wavelets algorithm of the SeismoMatch, proposed by Hancock et al. ([2006](#page-15-25)). Matching is carried out for the period range 0.05–2.05 s based on the period range of the structural models varied between 0.1 and 2 s, as reported in Tables [7](#page-6-0) and [8.](#page-7-0)

Figure [5](#page-8-0) shows the near-feld spectra obtained from SeismoMatch for the near-feld ground motion records of Table [5](#page-5-0) scaled to match the design spectrum within the period range of the structural models.

Figure [6](#page-8-1), similarly, shows the scaled far-feld spectra obtained from SeismoMatch for the far-feld ground motion records of Table [6](#page-5-1).

All the 14 scaled ground motion records are used in both nonlinear (for the base-isolated building frames) and linear (for the fxed-base building frames) time history analyses carried out by ETABS, when the results are presented and discussed in the next section.

6 Results and Discussion

Seismic performances of the aseismically base-isolated building frames are studied in terms of base shears, story accelerations, and story displacements obtained from 1176 NTHAs on the structural models introduced in Tables [2,](#page-2-0) [3,](#page-3-0) and [4](#page-4-0) subjected to the ground motion records of Tables [5](#page-5-0) and [6](#page-5-1) scaled to the design spectrum as shown in Figs. [5](#page-8-0) and [6.](#page-8-1) These performance criteria are also studied through 168 additional linear time history analyses for the traditional fxed-base buildings (see the descriptions for 3TMS, 3TBS, 3TMC, 3TBC, 7TMS, 7TBS, 7TMC, 7TBC, 11TMS, 11TBS, 11TMC, and 11TBC in Table [2](#page-2-0)) subjected to the same records in order to provide the opportunity of comparing the seismic performances of the base-isolated buildings to those of the traditional fxed-base buildings.

Table [7](#page-6-0) summarizes the base shears obtained from the analyses carried out on the isolated and the fxed-base buildings subjected to the near-feld records. The base shears are reported on average over the all isolation strategies (three cases for HRB and four cases for FPS) designed with the details given in Tables [3](#page-3-0) and [4,](#page-4-0) respectively, for isolation with HRB and FPS. The same are reported in Table [8](#page-7-0) for the buildings subjected to the far-feld records. The data provided in Tables [7](#page-6-0) and [8](#page-7-0) are used to generate the diagrams of Figs. [7](#page-8-2) and [8](#page-9-0) in order to refect the **Table 7** Base shears in nearfeld ground motion records

sensitivities of the ISs to the inherent structural characteristics, regarding base shear as the main performance criteria indicating the energy input during ground motion.

Detailed efects of the inherent structural characteristics on base shears are represented by the trend lines logarithmically ftted on the analytical data in Figs. [9](#page-10-0), [10,](#page-10-1) and [11](#page-10-2). As it was already mentioned in Sect. [2,](#page-2-2) superstructure mass and stifness and isolation damping are considered as the variables. The isolation stifness is not discussed because it is basically controlled through the design for the target displacement. The effect of the superstructure damping is also neglected compared to the efect of the damping in IS.

As far as the discussion regarding other performance criteria (story acceleration and story displacement) is considered, for the purpose of brevity the sensitivity diagrams and the trend-line curves refecting the efects of pre-defned inherent structural characteristics on the seismic performance are presented without reporting the numerical data given in tables. Figures [12](#page-11-0) and [13](#page-11-1) refect the sensitivities of the ISs (in terms of reducing the story accelerations) to the inherent structural characteristics. Figure [12](#page-11-0) presents the sensitivities of the ISs in near-feld ground motions, and

Table 8 Base shears in far-feld ground motion records

Fig. [13](#page-11-1) reflects the situation in far-field ground motions. Detailed effects of the inherent structural characteristics on story accelerations are also represented in Figs. [14](#page-12-0), [15,](#page-12-1) and [16](#page-12-2). Similarly, Figs. [17](#page-13-0) and [18](#page-13-1) refect the sensitivities of the ISs (in terms of reducing the story displacements) to the inherent structural characteristics. Detailed effects of the inherent structural characteristics on story accelerations are also represented in Figs. [19,](#page-14-0) [20,](#page-14-1) and [21.](#page-14-2)

Comparing the dashed lines passing separately over the average responses of FPS and HRB in Figs. [7](#page-8-2) and [8,](#page-9-0) it is clear that FPS is less sensitive to the inherent structural characteristics, in terms of reducing the base shear. It can also

be obviously concluded from the average response curves on the histograms of Figs. [7](#page-8-2) and [8](#page-9-0) that FPS is almost always more efective than HRB, when the base shear is considered, in both the near- and far-feld ground motions. The average 65% reduction of base shear in the lighter structures compared to 85% reduction of base shear in the heavier structures in Fig. [9](#page-10-0) indicates that aseismic base isolation is more efective in heavier structures. As shown in Fig. [10](#page-10-1), base isolation further reduces the base shear if the superstructure is stifer. A minimum amount of damping is useful for the reduction of base shear through aseismic base isolation, as it is shown in Fig. [11](#page-10-2) for FPS. The higher sensitivity

Fig. 5 Near-feld spectra scaled to design spectrum

Fig. 6 Far-feld spectra scaled to the design spectrum

of HRB to the inherent structural characteristics is more evident based on the higher zigzaggedness of the dashed line passing over its average responses compared to those of FPS in Figs. [12](#page-11-0) and [13](#page-11-1). It is again clear that FPS better controls the story accelerations compared to HRB, in both the near- and far-feld ground motions. Story accelerations in the structure mounted on FPS are almost 20% less than those controlled by HRB. Based on the data presented in Fig. [14,](#page-12-0) the efectiveness of HRB in reducing the story acceleration reduces obviously by the inherent increase in the superstructure mass, while the effect is lighter for the effectiveness of FPS in controlling the story acceleration. The efect of the stifness in terms of controlling the story accelerations is like its efect on base shear. Damping is always useful for the reduction of story accelerations.

Both FPS and HRB are almost similarly sensitive to the inherent structural characteristics, in terms of controlling the story displacements (see Figs. [17](#page-13-0) and [18](#page-13-1)). The sensitivities are less than those in terms of the base shears and story accelerations. HRB is, however, more efective than FPS in terms of reducing the story displacements, always, in both the near- and far-feld ground motions. All the efects of the inherent structural mass, stifness, and damping on the

Fig. 7 The sensitivities of the ISs to the inherent structural characteristics, in terms of reducing the base shear, in the near-feld ground motions

control of story displacements via base isolation are less important compared to the efects of those on the control of story accelerations and base shears (compare Figs. [19,](#page-14-0) [20](#page-14-1), [21](#page-14-2) to Figs. [14](#page-12-0), [15](#page-12-1), [16](#page-12-2) and Figs. [9,](#page-10-0) [10,](#page-10-1) [11,](#page-10-2) [12,](#page-11-0) [13,](#page-11-1) [14,](#page-12-0) [15](#page-12-1), [16\)](#page-12-2). It is, however, remarkable that inherent increase

Fig. 8 The sensitivities of the ISs to the inherent structural characteristics, in terms of reducing the base shear, in the far-feld ground motions

in the isolation damping will increase the story displacements, as it can be concluded from Fig. [21.](#page-14-2) It is expectable because the damping generally adds an amount of stifness to the IS. Superstructure stifness increases the efectiveness of isolation in terms of reducing the story displacements a little. As far as the effects of the inherent structural mass

are considered, Fig. [19](#page-14-0) shows that the efectiveness of base isolation in terms of controlling the story displacements reduces for the heavier structures.

7 Conclusions

The outcomes of an extensive parametric study investigating the efects of the inherent structural characteristics on the performances of aseismic isolation were reported. It was discussed that this study is diferent than the investigations of the efects of additional mass and damping or stifening the superstructure, which are aimed at evaluation of the performance enhancement. The purpose of this study is to understand the efects of the inherent structural characteristics to reveal the practical effectiveness of ISs (isolation systems), which is also different than the study of the aging effects that result in some deteriorations through the increases in post-yield stifnesses and characteristic strengths (McVitty and Constantinou [2015\)](#page-16-19).

Mass, stifness, and damping (the fundamental dynamic characteristics) were varied through the variation of the materials, the structural systems of the superstructures, heights of the superstructures, types of the ISs, and the design parameters of the ISs to practically capture the efects of the inherent structural characteristics. The materials used in the superstructures were steel and concrete, as in the everyday practice of construction, leading to the consideration of the two common types of buildings (steel-framed and reinforced concrete buildings). Structural systems considered were braced frames (X-bracing for steel-framed and shear walls for reinforced concrete buildings) and momentresisting frames, as the two practical systems. The heights were varied based on the numbers of the stories of the buildings designed with 3, 7, and 11 stories. All the buildings were designed according to the provisions of the Iranian code of practice for seismic-resistant design of buildings known as the yellow book or Standard No 2800 (2015) for soil type III in a region with very high relative risk of seismic hazard. The ISs were chosen to be HRB (high-damping laminated rubber bearing) or FPS (friction pendulum system), as the most famous currently used practical ISs. Damping and coefficient of friction, varied in the practical ranges, were, respectively, selected as the main design parameters of ISs. The seismic performance criteria were base shear (as the criterion for the energy input) and story acceleration and displacement (as the serviceability criteria). The methodology was described, and the results were discussed including the sensitivities of the ISs to the inherent structural characteristics together with the efectiveness of the ISs in terms of reducing the performance criteria. The conclusions are summarized as follows:

Fig. 9 The efects of the inherent superstructure mass on the reduction of base shear through aseismic isolation

Fig. 10 The efects of the inherent superstructure stifness on the reduction of base shear through aseismic isolation

Fig. 11 The efects of the inherent structural damping on the reduction of base shear through aseismic isolation

Fig. 12 The sensitivities of the ISs to the inherent structural characteristics, in terms of reducing the story acceleration, in the near-feld ground motions

• The inherent structural mass has a positive effect on the reduction of energy input through aseismic base isolation. This means that aseismic base isolation is more

Fig. 13 The sensitivities of the ISs to the inherent structural characteristics, in terms of reducing the story acceleration, in the far-feld ground motions

efective for the structures with larger mass. The story accelerations and story displacements, however, will poorly be controlled in the heavier superstructures.

Fig. 14 The efects of the inherent superstructure mass on the story acceleration control through aseismic isolation

Fig. 15 The efects of the inherent superstructure stifness on the story acceleration control through aseismic isolation

Fig. 16 The efects of the inherent structural damping on the story acceleration control through aseismic isolation

Fig. 17 The sensitivities of the ISs to the inherent structural characteristics, in terms of reducing the story displacement, in the near-feld ground motions

Based on the results, it can also be concluded that additional mass will help the aseismic base isolation in energy input reduction. This is in accordance with the results reported already by Jalali and Narjabadifam ([2006](#page-15-7)) through

Fig. 18 The sensitivities of the ISs to the inherent structural characteristics, in terms of reducing the story displacement, in the far-feld ground motions

the investigation of the efects of additional mass, stifness, and damping on the performances of buildings base-isolated using lead-plug laminated rubber bearings.

Fig. 19 The efects of the inherent superstructure mass on the story displacement control through aseismic isolation

Fig. 20 The efects of the inherent superstructure stifness on the story displacement control through aseismic isolation

Fig. 21 The efects of the inherent structural damping on the story displacement control through aseismic isolation

The inherent stiffness of superstructure is useful for the improvement of the performances of aseismic base isolation, regarding all the performance criteria including the energy input and the mitigation of the responses. In the other words, aseismic base isolation performs better with the stifer superstructures.

The stifening of the superstructure will also useful in aseismic base isolation, as it was already indicated by Jain and Thakkar ([2004](#page-15-6)) investigating the efects of stifening on the performances of aseismic base isolation.

• The damping provided inherently by the IS further reduces the story accelerations, while it has a reverse efect on the energy input and story displacements. Damping is, however, required for the mitigation of the large isolation displacements in near-feld ground motions.

It should be added that better performances are expected by the modern damping mechanisms like the hysteretic damping provided by austenitic shape memory alloys, as it has been demonstrated by Cardone et al. [\(2011\)](#page-15-26), regarding also the outcomes of the research by Kelly ([1999](#page-16-5)) and its discussion by Hall ([1999\)](#page-15-8).

- The seismic performances of base isolation by FPS are less sensitive to the inherent structural characteristics, when compared to HRB.
- The effectiveness of FPS in reducing the energy input is more than HRB in both near- and far-feld ground motions. FPS is also able to better control the story accelerations. Story displacements are, at the same time, better controlled by HRB. It should, however, be noted that while the design displacements of FPS and HRB are taken to be the same in this study, the levels of energy dissipation capabilities should be compared with more details, which was not the scope of this paper, but suggested for further investigations.

References

- Abrishambaf A, Ozay G (2010) Effects of isolation damping and stiffness on the seismic behaviour of structures. In: Mladenov V, Psarris K, Mastorakis N, Caballero A, Vachtsevanos G (ed) Advances in control, chemical engineering, civil engineering, and mechanical engineering. WSEAS Press, pp 76–82
- ACI 318–11 (2011) Building code requirements for structural concrete and commentary. American Concrete Institute, Farmington Hills, MI
- AGOM (2017) AGOM International, Ossona, Italy. agom.it/download/ Catalogue/Seismic-Isolation. Accessed 19 October 2017
- AISC 341–10 (2010) Seismic provisions for structural steel buildings. American Institute for Steel Construction, Chicago, IL

- ASCE, SEI 41–13 (2013) Seismic evaluation and retroft of existing buildings. American Society of Civil Engineers, Reston
- Bek M, Oseli A, Saprunov A, Zhumagulov BT, Mian SM, Gusev BV, Zarnic R, Bernstorff BV, Holecek N, Emri I (2013) High pressure dissipative granular materials for earthquake protection of houses. Anali Pazu 3(2):79–86
- Bhandari M, Bharti SD, Shirmali MK (2017) Datta TK (2017) The numerical study of base-isolated buildings under near-feld and far-feld earthquake. J Earthq Eng Publ Online 15:1–19
- Botis M, Harcich C (2012) A brief history upon seismic isolating systems. Bull Transilvania Univ Brasov Ser I Eng Sci 5(54):93–98
- Cardone D, Narjabadifam P, Nigro D (2011) Shaking table tests of the smart restorable sliding base IS (SRSBIS). J Earthq Eng 15(8):1157–1177
- Chun YS, Hur MW (2015) Efects of isolation period diference and beam-column stifness ratio on the dynamic response of reinforced concrete building. Int J Concr Struct Mater 9(4):439–451
- DIS (2017) Dynamic ISs, McCarran, NV, USA. www.dis-inc.com. Accessed 19 October 2017
- Dolce M, Cardone D, Croatto F (2005) Frictional behavior of steel-PTFE interfaces for seismic isolation. Bull Earthq Eng 3(1):75–99
- Du H, Han M (2014) Impact and energy analysis of deformation-limited base-isolated structure in shaking table test. Appl Mech Mater 638–640:1811–1817
- ETABS (2016) Integrated building design software. Computers and Structures Inc., Berkeley
- Falborski T, Jankowski R (2017) Experimental study on efectiveness of a prototype seismic IS made of polymeric bearings. Appl Sci 2017(7–808):1–18
- Fan FG, Ahmadi G, Tadjbakhsh IG (1990) Multi-story base-isolated buildings under a harmonic ground motion–Part II: sensitivity analysis. Nucl Eng Des 123(1):17–26
- FIP (2017) FIP industiale, Selvazzano, Italy. [www.fpindustriale.it](http://www.fipindustriale.it). Accessed 19 October 2017
- Folic R, Stanojev M (2016) Seismic protection of structures – application of base isolation in buildings. In: Proceedings of the 4th international conference on contemporary achievements in civil engineering, 22 April, Subotica, Serbia
- Guideline for design of base-isolated buildings (2016) Guidelines No. S 550 for design of base-isolated buildings–in Persian. Road, Housing, and Urban Development Research Center, Tehran, Iran
- Guidelines for design and practice of base ISs in buildings (2010) Guidelines No. 523 for design and practice of base ISs in buildings–in Persian. Office of Deputy for Strategic Supervision of the Bureau of Technical Execution System of the Vice Presidency for Strategic Planning and Supervision, Tehran, Iran
- Hall JM (1999) Discussion–the role of damping in seismic isolation. Earthq Eng Struct Dyn 28(12):1717–1720
- Hancock J, Watson-Lamprey J, Abrahamson NA, Bommer JJ, Markatis A, McCoy E, Mendis R (2006) An improved method of matching response spectra of recorded earthquake ground motion using wavelets. J Earthq Eng 10(sup001):67–89
- Hong WK, Kim HC (2004) Performance of a multi-story structure with a resilient-friction base IS. Comput Struct 82(27):2271–2283
- IBC (2012) International building code. International Code Council, Country Club Hills
- Iranian code of practice for resistant design of buildings (2015) Iranian code of practice for seismic resistant design of buildings; BHRC–PN S-253 known as Standard No. 2800. Road, Housing, and Urban Development Research Center, Tehran, Iran
- Jain SK, Thakkar SK (2004) Efect of superstructure stifening in base isolated tall buildings IE (I). J Civil Eng 85:142–148
- Jalali A, Narjabadifam P (2006) Optimum modal characteristics for multi-story buildings isolated with LRBs. In: Proceedings of the 4th international conference on earthquake engineering, 12–13 October, Taipei, Taiwan

Jangid RS (2002) Parametric study of base-isolated structures. Adv Struct Eng 5(2):113–122

- Kelly JM (1999) The role of damping in seismic isolation. Earthq Eng Struct Dyn 28(1):3–20
- Kulkaeni JA, Jangid RS (2003) Efects of superstructure fexibility on the response of base-isolated structures. Shock Vib 10(1):1–13
- Martelli A, Clemente P, De Stefano A, Forni M, Salvatori A (2014) Recent development and application of seismic isolation and energy dissipation and conditions for their correct use. In: Ansal A (ed) Geotechnical, geological, and earthquake engineering– volume 34: book series; perspectives on european earthquake engineering and seismology, volume 1. Springer Open, Chapter 14, pp 449–488
- Matsagar VA, Jangid RS (2004) Infuence of isolator characteristics on the response of base-isolated structures. Eng Struct 26(12):1735–1749
- Maurer (2017) Maurer Company. Munich, Germany. [www.maure](http://www.maurer.eu) [r.eu](http://www.maurer.eu). Accessed 19 October 2017
- McVitty WJ, Constantinou MC (2015) Property modifcation factors for seismic isolators: design guidance for buildings. Technical report MCEER-15-0005, MCEER (Multidisciplinary Center for Earthquake Engineering Research), Bufalo, NY, USA
- Narjabadifam P (2015) Shape memory alloy (SMA)-based superelasticity-assisted slider (SSS). In: Proceedings of the 7th international conference on seismology and earthquake engineering, 18–21 May, Tehran, Iran
- OILES (2017) OILES Company, Tokyo, Japan. [www.oiles.co.jp/en/](http://www.oiles.co.jp/en/menshin/building/menshin/products/fps) [menshin/building/menshin/products/fps](http://www.oiles.co.jp/en/menshin/building/menshin/products/fps). Accessed 19 October 2017
- Ounis HM, Ounis A (2013) Parameters infuencing response of base isolated buildings. Asian J Civil Eng 15(2):259–275
- PEER (2017) PEER ground motion database Beta (Software/Apps). The Pacifc Earthquake Engineering Research Center, Berkeley,

CA, USA. [http://ngawest2.berkeley.edu.](http://ngawest2.berkeley.edu) Accessed 22 November 2017

- Providakis CP (2009) Efect of supplemental damping on LRB and FPS seismic isolators under near-fault ground motions. Eng Struct 29(1):80–90
- Rabiei M (2008) Efect of bearing characteristics on the response of friction pendulum base-isolated buildings under three components of earthquake excitation. In: Proceedings of the 2008 NZSEE, New Zealand
- SeismoMatch (2016) A computer program for adjusting earthquake records to match a specifc target response spectrum. SeismoSoft, Pavia
- Sepahbodnia A (2006) Achaemenid engineers constructed Pasargadae to withstand seven Richter scale earthquakes. CAIS–circle of ancient Iranian studies, London, UK. [http://www.cais-soas.](http://www.cais-soas.com/News/2006/August2006/27-08-achaemenid.htm) [com/News/2006/August2006/27-08-achaemenid.htm.](http://www.cais-soas.com/News/2006/August2006/27-08-achaemenid.htm) Accessed 3 July 2009
- Sharbatdar MK, Hoseini Vaez SR, Ghodrati Amiri G, Naderpour H (2011) Seismic response of base-isolated structures with LRB and FPS under near fault ground motions. Proced Eng 14:3245–3251
- Sharma A, Jangid RS (2009) Behaviour of base-isolated structures with high initial isolator stifness. Int J Civil Environ Struct Constr Archit Eng 3(2):49–54
- Tavakoli HR, Naghavi F, Goltabar AR (2014) Dynamic responses of the base-fxed and isolated building frames under far- and nearfault earthquakes. Arab J Sci Eng 39(4):2573–2585
- Tolani S, Sarma A (2016) Efectiveness of base isolation technique and infuence of isolator characteristics on response of a base isolated building. Am J of Eng Res 5(5):198–209
- Warn GP, Ryan KL (2012) A review of seismic isolation for buildings: historical development and research needs. Buildings 2:300–325

