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Abstract
Optimum design parameters of tuned mass dampers are calculated as a function of damper to structure mass ratio and 
inherent damping ratio of the main structure in frequency domain. A robust control algorithm is adopted in order to assure 
response reduction in controlled structure subjected to different earthquakes, and an equivalent single degree-of-freedom 
structure is introduced to reduce the computation cost of optimum design. H∞ norm minimization of this equivalent structure 
is considered as the objective function. Considering inherent structural damping for main structure, the recently developed 
metaheuristic algorithm known as CBO is used to find the optimum values of the design parameters. Using the proposed 
procedure, design charts are prepared for a 10-story shear building.

Keywords  Tuned mass dampers · Earthquake excitation · Metaheuristic algorithm · H∞ norm · Robust control

1  Introduction

In recent decades, control systems have been widely uti-
lized to reduce the response of tall and super-tall buildings 
subjected to lateral loads. Passive control devices are one 
of the great categories of these systems commonly studied 
in past centuries. TMDs are the most established devices in 
this category used in many constructed buildings all over 
the world because of its simple, reliable and economical 
system. A comprehensive list of structures using TMD as 
their control device can be found in the work of Gutierrez 
Soto and Adeli (2013). The 60-story John Hancock in Bos-
ton having two 300-ton TMDs is one of the first controlled 
buildings with TMD that has been constructed in 1977 to 
reduce the building response under wind vibrations. One of 
the famous examples includes the 101-story Taipei 101 in 
Taipei having a 730-ton TMD and constructed in 2004 (Gut-
ierrez Soto and Adeli 2013). The 125-story Shanghai Center 
Tower in Shanghai is the second tallest building in the world 
being opened since 2017. It is a super-tall landmark which 

has the heaviest TMD (about 1000-ton) ever designed (Lu 
et al. 2016).

The main concept of TMD is very simple, and probably 
it was first introduced by Frahm in 1909. Figure 1a shows 
the TMD primary concept, composed of a main mass and 
its stiffness, represented by M and K, whereas the mass and 
stiffness of the damper are denoted with md and kd, respec-
tively. In the literature, this configuration has been tested 
under the main mass harmonic excitation, and it has been 
ascertained that if the damper frequency is set equal to the 
excitation frequency, the main mass displacement response 
will be zero. If the excitation frequency gets close to the 
structural natural frequency, the structural response could 
increase significantly, so in broadband excitation, the TMD 
frequency is set equal to the structural natural frequency to 
prevent resonance.

The proposed setup of Fig. 1a is effective only if the 
excitation frequency is equivalent to the damper frequency, 
and its favorable performance decreases significantly by 
changing the excitation frequency content. Therefore, in 
order to overcome this drawback, Den Hartog added a vis-
cous damper to the auxiliary mass (Fig. 1b). Additionally, 
to get a better performance from the damper, its charac-
teristics should be adjusted such that the main structural 
response is minimum. In the preliminary investigations, 
the vibration equations were solved in frequency domain. 
Den Hartog developed the fixed point method to calculate 
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the optimum free parameters of tuned mass dampers. This 
tuning approach utilizes the feature that the controlled sys-
tem transfer function passes through two fixed points for 
any damping ratio after mounting TMD. As a result, the 
free parameter optimum values are evaluated in a two-step 
procedure. In the first step, the frequency ratio is selected 
to equalize the peak amplitude of these two fixed points, 
and in the next step, two damping ratios are determined in 
a manner that for each of them the transfer function passes 
horizontally through the invariant points. Eventually, the 
mean of these two damping ratios is considered as the 
optimum value of the TMD damping.

Furthermore, Den Hartog proposed closed-form expres-
sions for optimum design parameters (frequency and 
damping ratio) based on the fixed point approach. Den 
Hartog formulae are derived for mass excitation with-
out considering inherent structural damping; thus, other 
researchers, e.g., Ioi and Ikeda (1978) and Warburton 
(1982) have developed different formulae by consider-
ing inherent structural damping under base excitation 
(Fig. 1c).

At the end of the past century, researchers started to 
assess the performance of TMDs on multi-degree-of-
freedom (MDOF) structures under earthquake excitations. 
Figure 2 illustrates an N-story shear building with a TMD 
added on its roof. In this category, the distinguished work of 
Villaverde (1985), Sadek et al. (1997), Gutierrez Soto and 
Adeli (2014) and Salvi and Rizzi (2016) on the performance 
of TMDs attached on shear buildings can be mentioned. In 
Table 1, a brief of closed-form formulae represented in the 
literature are reviewed.

The proposed expressions in Table 1 show the optimum 
TMD parameters dependency on damper to structure mass 
ratio, the ratio of structural damping to its critical damp-
ing, and the amplitude of mode shape in control mode at 
the location of TMD denoted as μ, ξs and φ, respectively. 
It should be noted that the last two variables (μ and φ) are 
calculated for a unit modal participation factor.

In one of the last studies conducted in TMD context, Salvi 
and Rizzi (2016) utilized a gradient method and computed 
optimum TMD parameters under different harmonic and 
white noise base or structural mass excitations. They derived 
new and simple closed-form equations to determine tuning 
parameters used for comparison in our study.

Fig. 1   Development of TMD 
concept: a Frahm model (Den 
Hartog 1947), b Den Hartog 
model (Den Hartog 1947), c 
Warburton Model (Warburton 
1982)

(a) (b) (c)

Fig. 2   An N degree-of-freedom structure with a TMD under earth-
quake excitation
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Although the mass ratio (μ) has been used as tuning 
parameters in some studies, in others, its value is preselected 
because of the construction limitation. Thus, concerning this 
limitation, TMD mass is generally selected between 1 and 
15% of the main mass. Additionally, the value of inherent 
structural damping ratio could be selected 20% maximum. 
However, in many buildings and other structures, damping 
ratio is under 10%, so the upper bound of inherent structural 
damping ratio is considered as 10%.

MDOF structures can take advantage of TMD to control a 
specific vibration mode; however, in these structures, multi-
tuned mass damper (MTMD) that is not dealt with in this 
study can be utilized to control multi-modes.

New definitions for f and μ are necessary for MDOF 
structures. Common definitions presented in the previ-
ous analyses were based on the controlled-mode effective 
mass and frequency, so to control a shear building, if just a 
TMD is used, it is better to control the first mode. In shear 
buildings, the first mode has the most contribution in the 
structural response, so the frequency and mass ratios of the 
MDOF are chosen the same as a SDOF but just for the fre-
quency and the effective mass of the first vibration mode 
(Sadek et al. 1997).

Tuning a TMD for MDOF structures is more compli-
cated in comparison with SDOF structures, so during the 
two recent decades, many different metaheuristic algorithms 
have been implemented to find out the TMD optimum 
parameters for MDOF structures and until today, every year 
many different researches are being conducted in this field. 
Probably, the first use of metaheuristic algorithm on TMD 
context is the work of Hadi and Arfiadi (1998) which found 
the TMD optimum parameters with genetic algorithm. Fur-
thermore, other metaheuristics such as real-coded genetic 
algorithm, ant colony, bee colony, particle swarm optimiza-
tion, harmony search, charged system search, flower pol-
lination have been implemented to estimate the optimum 
TMD parameters (Arfiadi 2016; Bekdas and Nigdeli 2011; 
Farshidianfar and Soheili 2013a, b, c; Nigdeli et al. 2016; 
Bekdas and Nigdeli 2017a, b; Leung et al. 2008; Leung 
and Zhang 2009; Kaveh et al. 2015). In this study, the col-
liding bodies optimization (CBO) algorithm (Kaveh and 
Mahdavi (2014); Kaveh (2017a, b)), as one of the most 

recent metaheuristic algorithms, is utilized to determine the 
optimum TMD parameters. The main feature of CBO is its 
parameter independence. However, in this paper any other 
metaheuristics can be used, see for example, Kaveh (2017a, 
b). The derived results are then compared with those of the 
closed-form formulae from the literature.

The rest of this paper is structured as follows. The sec-
ond section briefly introduces the CBO and its pseudocode 
as applied in the present study. Dynamic notation and for-
mulation for shear building in time and frequency domain 
are reviewed in the third section. In the fourth section, the 
optimization steps are presented. In the fifth section, the 
optimum values of the TMD tuning parameters are calcu-
lated and compared with those of the previous researches, 
and in the sixth section, the controlled structure performance 
is evaluated and compared to the closed-form expressions 
presented in the literature. Finally, in the last section, the 
concluding remarks are outlined.

2 � Colliding Bodies Optimization Algorithm

Having simple formulation, the CBO is one of the 
metaheuristic algorithms recently proposed by Kaveh and 
Mahdavi (2014), and it needs no internal parameter tuning. 
Additionally, it belongs to the population-based metaheuris-
tics which takes inspiration from physical laws of rigid body 
collisions. This method makes a population of solutions in 
each step with each of them being represented with a collid-
ing body (CB). With ordering the solutions based on their 
fitness values, a mass is assigned to each CB proportioned 
inversely to its fitness value. In minimization problems, 
the mass of each CB is calculated based on the following 
formula:

where massi denotes the attributed mass of body i, 2N is 
the number of CBs, and fit(CBi) is the value of objective 

(1)massi =

1

fit(CBi)

∑2N

j=1

1

fit(CBj)

Table 1   Closed-form 
expressions for tuning free 
parameters of TMD
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function for the agent i. Based on the above equation, the 
mass of a CB will increase by decreasing its fitness value. 
These properties are illustrated schematically in Fig. 3. 
Then, all arranged CBs are divided into two parts with equal 
number of members. The first part whose fitness function 
has better quality is considered as stationary, and each CB 
in the second part moves toward its corresponding bodies 
in the first part with velocity proportioned to the difference 
in their fitness values. Based on governing physical laws of 
colliding bodies, CB velocities after collision are specified 
as a function of masses and the CB velocities before colli-
sion. Consequently, the position of CBs is determined based 
on their new velocity, and this procedure is continued until 
the specified termination condition is fulfilled.

The CBO pseudocode for a minimization problem is as 
follows (Kaveh and Mahdavi 2014):

Set initial position for 2N-CBs randomly
Repeat
For each CB, the objective function is calculated
The mass of CBs is assigned inversely proportioned to 
its fitness value
The CBs are lined up in ascending order based on their 
mass
The organized CBs are divided into two parts
The CBs in the second part move toward their relevant 
CBs in the first part.
CBs are colliding with each other, and their velocity after 
collision is evaluated

The new positions of CBs are calculated based on their 
after collision velocities
Until the termination criteria is fulfilled.
Output: founded best solution

In this study, the number of CBs and steps that are used in 
the optimization process is 20 and 30, respectively.

3 � Mathematical Models for Structural 
Vibration

In this section, three different mathematical models used 
for structural vibration assessment are briefly introduced. 
These three models are differential equation, state space rep-
resentation (system of first-order differential equations) and 
transfer function (output to input Laplace ratio). The first 
model is used for modal analysis and the numerical exam-
ple seismic performance assessment. The second model is 
employed for simple representation of vibration equation 
and calculation of the transfer function. Finally, the H∞ 
norm of equivalent structure transfer function of the shear 
building first mode is considered as the objective function 
in the optimization algorithm.

3.1 � Differential Equation

The vibration equation of a MDOF structure subjected to an 
external excitation is represented by Eq. (2) (Chopra 2001):

(a)

(b) (c)

Fig. 3   CBO algorithm steps: a CBs sorted in increasing order b before the collision c after the collision
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where for a structure with N degree-of-freedom, M, C and 
K are mass, damping and stiffness matrices, respectively, 
having dimension N × N. In addition, X(t), Ẋ(t) and Ẍ(t) are 
structural displacement, velocity and acceleration vectors 
with respect to the ground, and U(t) is the external force 
vector, all of which have the dimension N × 1. In Fig. 2, the 
N degree-of-freedom structure with a TMD is shown.

If a TMD is added to the roof of the structure, one degree-
of-freedom will be added to the system, and the matrices 
M, C, K and the vector X(t) for (N + 1) degree-of-freedom 
system will be defined as Eqs. (3)–(6):

where the (i) and (d) indices are used to show the ith floor 
parameters and damper parameters, respectively, as shown in 
Fig. 2. Response history analysis of a structure under earth-
quake excitation is a step-by-step procedure which calculates 
the dynamic response of the structure in time domain dur-
ing and after the earthquake. This analysis is performed in 
MATLAB software with direct integral method.

3.2 � State Space

Writing the equation of motion in state space makes dynamic 
system modeling and analyzing simpler, so in this research, 
the state space form of vibration equation is addressed. In the 
state space, the second-order differential equation of motion 
is reduced to a system of first-order differential equations, 
which have a closed-form solution, so the vibration equa-
tions in state space are (Soong 1990; Debnath et al. 2013):

(2)MẌ(t) + CẊ(t) + KX(t) = U(t)

(3)M = diag[m1 m2 … mN md]

(4)K =

⎛

⎜

⎜
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⎝
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−kd kd
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⎟
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⎜
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c1 + c2 −c2
−c2 c2 + c3 −c3

⋱

−cN cN + kd −cd
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⎞

⎟

⎟

⎟

⎟

⎟

⎠

(6)X(t) = [x1 x2 … xN xd]
T

(7)Ż(t) = AZ(t) + BU(t)

(8)X(t) = CZ(t)

In this equation, if the system has N degree-of-freedom, 
Z(t) is a 2N × 1 vector, A is a system matrix by dimension 
2N × 2N, B is a location matrix with dimension 2N × 1, and 
C is a matrix dependent on the desired output. The matrices 
A and B and the vector Z(t) are defined in the following 
equations:

where 0 and I are zero and identity matrices, respectively.

3.3 � Transfer Function

Transfer function is calculated by Fourier and Laplace trans-
form of Eqs. (7) and (8). In this case, by means of Fourier 
transformation the transfer function is:

In this equation, i =
√

−1 and using transfer function con-
cept, the vibration equation is represented as:

The H∞ norm considered as the objective function in this 
study is defined as follows:

In this equation, 𝜎̄ means the greatest singular value of the 
transfer function matrix and sup� means the smallest higher 
bound of this relation over all frequencies.

4 � Optimization Procedure

Generally, two main schools of thoughts have been pur-
sued in the previous investigations for optimum design 
of TMDs (Salvi and Rizzi 2011). In the first school of 
thought, independent of external loading frequency con-
tent, the optimum parameters are obtained, e.g., in fre-
quency domain, under the white noise excitation (Den 
Hartog 1947; Asami et al. 2002; Warburton 1982; Salvi 
and Rizzi 2017; Leung et al. 2008; Leung and Zhang 2009, 
etc.) or by other methods such as Villaverde (1985) or 
Sadek et al. (1997). In the second school of thought, TMD 
optimum parameters are calculated under a deterministic 
earthquake or harmonic excitation (Bekdas and Nigdeli 
2011; Farshidianfar and Soheili 2013a, b, c; Nigdeli et al. 
2016; Bekdas and Nigdeli 2017a, b; Kaveh et al. 2015), 
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]
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]
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i.e., the performance of the derived results is dependent 
on the excitation frequency content; however, in some of 
these researches, techniques have been used to solve this 
problem. In this paper, efforts have been made for it to 
be based on the first school of thought with a simple pro-
cedure and somehow different from previous researches, 
optimization is simply and quickly performed, and then 
design graphs are generated for optimum design of TMD. 
Therefore, the transfer function infinity norm is preferred 
as the objective function. Thus, the optimum parameters 
are independent from external excitations frequency con-
tent, and the control method is robust. However, to make 
the optimization more efficient and to consider the impor-
tance of the first mode in final response, an equivalent 
SDOF structure is defined based on the first mode charac-
teristics, and the TMD optimum parameters are obtained 
for this equivalent structure.

For the SDOF system, if the damper frequency (ωd) 
and structural frequency (ωs) are defined as Eq. (15), the 
frequency and damping ratios defined by Eq. (16) are con-
sidered as TMD free parameters, and the optimum values 
of these parameters are determined such that the structural 
response is minimized.

In Eq. (16), the frequency ratio (f) is defined as the auxiliary 
mass frequency to main mass frequency, and the damping 
ratio (ξd) is defined for the damper with the ratio of its damp-
ing to the critical damping. In the latter equation, cd and md 
are the damping and the mass of damper, respectively.

General steps of the TMD optimum parameters calcula-
tion for this equivalent structure are as follows:

1.	 A frequency analysis is performed, and natural frequen-
cies and modal shapes are realized.

2.	 Dynamical properties of the first mode (mass, stiffness 
and damping) are determined, and an equivalent SDOF 
structure is constructed.

3.	 CBO algorithm is employed to find the TMD optimum 
parameters as a function of mass ratio and different 
inherent structural damping ratios. In this procedure, 
transfer function H∞ norm of the equivalent structure 
is selected as the objective function, and the frequency 
and damping ratios are applied as the design variables. 
In MATLAB vector notation, the range of tuning values 
is considered as follows: 

(15)�d =

√

kd

md

, �s =

√

K

M

(16)f =
�d

�s

, �d =
cd

2md�d

(17)f = [0∶0.005∶0.5], �d = [0.55∶0.01∶1.2]

4.	 TMD optimum free parameters as a function of mass 
ratio (μ) and inherent structural damping ratio ξs are 
computed. Results are presented in design graphs in 
which optimum parameters are calculated based on the 
proposed method and compared with the closed-form 
formulae presented in the literature.

5 � Numerical Example

In this section, a benchmark shear building is assessed 
(Salvi and Rizzi 2011; Sadek et al. 1997) which is depicted 
in Fig. 4a as a planar linear 10-story frame structure. This 
structure is modeled as a 10-DOF dynamic system with mass 
mk (k = 1, 2, …, 10) lumped at the k-th floor. The structural 
properties are represented in Table 2, and an equivalent 
SDOF structure is shown in Fig. 4b. In this building, a TMD 
on the top of the structure is added to control the structural 
responses under external excitations.

Optimum free parameters at different values of mass 
ratio (μ) and four different inherent structural damping 
ratios (ξs = 0, 2, 5 and 10%) are calculated, and optimum 
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Fig. 4   Design example structure: a the 10-story shear building, b the 
equivalent SDOF structure
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values of the free parameters are plotted as a function of 
μ in Figs. 5 and 6. In these figures, closed-form formulae 
from Villaverde (1985), Sadek et al. (1997) and Salvi and 
Rizzi (2017) derived for MDOF structures are plotted for 
comparison. As can be seen, the present tuning procedure 
has the same general pattern with respect to those proposed 
in the literature; however, the obtained trend of optimum fre-
quency and damping ratios have the most similarity to Sadek 
et al. (1997) and Salvi and Rizzi (2017) estimation, respec-
tively. It should be noted that Sadek et al. (1997) revealed the 
detuning effect of Villaverde (1985) formula when the mass 
ratio is increased. They displayed that if the frequency ratio 
is set equal to one, by increasing the mass ratio, optimum 
parameters determined based on Villaverde (1985) method 
are not optimum.

To assure the acceptable performance of CBO, the H∞ 
norm ratio of controlled to uncontrolled structure at different 

values of damping and mass ratios near the optimum values 
are calculated and illustrated in Fig. 7 at μ = 0.05 and each of 
four different inherent structural damping ratios. The conver-
gence histories of the CBO algorithm are displayed in Fig. 8 
for these four cases.

Figure 7 illustrates the search landscape and the posi-
tion of optimum points in the search space. Additionally, it 
can be seen that by reducing the damping ratio in the main 
structure, the TMD effect is increased considerably, and the 
sensitivity of the system to the change of free parameters is 
reduced. Another point, which should be noted, is the shape 
of regions with equal transfer function amplitude which is 
almost a horizontal ellipse, so the response sensitivity to 
the damping change is smaller than the frequency change.

In this example, although the convergence speed of 
the optimization process is appropriate, if a larger struc-
ture with more constraints wants to be optimized, some 

Table 2   Structural parameters of the 10-story building (Salvi and Rizzi 2011)

Story Mass (× 103 kg) Stiffness 
(× 106 N/m)

Circular 
frequency 
(rad/s)

Period (s) Story Mass (× 103 kg) Stiffness 
(× 106 N/m)

Circular 
frequency 
(rad/s)

Period (s)

1 179 62.47 0.50037 0.99853 6 134 46.79 4.29197 0.23299
2 170 59.26 1.32631 0.75397 7 125 43.67 4.83577 0.20680
3 161 56.14 2.15121 0.46485 8 116 40.55 5.27169 0.18969
4 152 53.02 2.93387 0.34085 9 107 37.43 5.59050 0.17887
5 143 49.91 3.65320 0.27373 10 98 34.31 5.78653 0.17282
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Fig. 5   Optimum damping ratio (ξd-opt) as a function of mass ratio (μ) and four at different inherent structural damping ratios
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approaches may be required to increase the convergence 
speed, e.g., using initial feasible proper solutions instead 
of randomly generated initial solutions, using hybrid forms 
of metaheuristics as an alternative of conventional vari-
ants (Kazemzadeh Azad 2017) or considering competitive 
metaheuristics such as the upper bound strategy (UBS) 
proposed by Kazemzadeh Azad et al. (2013) or guided 

stochastic search (GSS) suggested by Kazemzadeh Azad 
and Hasançebi (2015).

Initial proper feasible solution could be calculated from 
closed-form formulae presented in Table 1, and seeding 
these promising starting points could decrease the optimiza-
tion time considerably. In order to reduce the computational 
time, the upper bound strategy UBS or GSS can also be 
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used. The main issue in the UBS is to detect those candidate 
designs which have no chance to surpass the best design 
found so far during the iterations of the optimum design 
process. After identifying those non-improving designs, 
they are directly excluded from the structural analysis stage, 
resulting in a significant savings in the computational effort. 
UBS is successfully utilized in optimal design of large scale 
structures (Kaveh and Ilchi Ghaazan 2018).

6 � Performance Assessment of Optimum 
Designed TMD Under Different 
Earthquakes

In this section, the performance of the controlled 10-story 
shear building under three far-fault benchmark earthquake 
excitations (Northridge, Morgan Hill and El Centro) is 
envisaged based on the attained design graphs from the past 
section. The peak and root mean square (RMS) building roof 
displacements are considered as the performance criteria. 
In Fig. 9, the first 30 s of the selected earthquake records 
downloaded from peer website are plotted.

In Fig. 10, the roof displacement response history nor-
malized to uncontrolled case is plotted for uncontrolled and 
controlled structures designed based on different methods 
and under three different earthquakes at mass and damping 
ratios equal to 5%.

To make a better comparison between performance and 
efficiency of different methods, the controlled to uncon-
trolled maximum roof displacement is calculated and plotted 

in Figs. 11, 12 and 13 at different mass and damping ratios 
under the three different earthquakes.

In Fig. 11, four graphs are plotted each of which con-
sider a distinct inherent structural damping ratio, and in 
each graph, the controlled to uncontrolled maximum roof 
displacement under Northridge earthquake is calculated by 
four different methods and with the mass ratios in the range 
of 0.5–15%. Generally, all methods show a similar trend, and 
the maximum roof displacement reduces considerably with 
increasing mass ratio for a specific inherent structural damp-
ing ratio. Furthermore, as the inherent structural damping 
ratio decreases, the effectiveness of the TMD for a particular 
method increases, i.e., the ordinate decreases for a definite 
mass ratio within all of the four graphs. Additionally, in all 
of the graphs, the proposed method of this study has almost 
the same values as Salvi and Rizzi expressions resulting in 
the reduction in the maximum response.

Under Morgan Hill and El Centro earthquakes, although 
the performance of this investigation proposed method is 
in a good correlation with Salvi and Rizzi’s method, this 
study performed slightly better under the former earthquake; 
however, both of these methods are dominated by Villaverde 
and Sadek et al.’s methods. Furthermore, under El Centro 
excitation the Salvi and Rizzi method has the best perfor-
mance among all of the compared methods.

To compare the performance of the controlled structure 
with different methods and under different earthquakes 
at a specific mass ratio, Fig. 14 is represented. Since the 
mass ratio is usually considered less than 5% because of 
construction considerations, these bar charts are plotted for 
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Fig. 11   Normalized maximum roof displacement for different methods as a function of mass ratio (μ) for different inherent structural damping 
ratios under Northridge (1994)
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Fig. 12   Normalized maximum roof displacement for different methods as a function of mass ratio (μ) for different inherent structural damping 
ratios under Morgan Hill (1984)
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Fig. 13   Normalized maximum roof displacement for different methods as a function of mass ratio (μ) for different inherent structural damping 
ratios under El Centro (1940)
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Fig. 14   Maximum roof displacement reduction for different methods, μ = 0.05 and four different inherent structural damping ratios under three 
different earthquakes: a Northridge (1994) b Morgan Hill (1984) c El Centro (1940)
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μ = 5%. In these charts, horizontal axes represent four dif-
ferent structural damping ratios and vertical axes represent 
controlled to uncontrolled maximum roof displacement 
response reduction.

In Fig. 14, for each considered earthquake a bar chart is 
plotted. It can be seen that under all earthquake excitations, 
the performance of the TMD is decreased by increasing 
the inherent structural damping, and even under El Centro 
excitation, using TMD designed by the Villaverde or Sadek 
et al. methods increases the displacement response about 
1–2% with respect to uncontrolled structure at higher val-
ues of inherent structural damping ratios, i.e., these methods 
have negative performance in response reduction. As stated 
before, the two methods of Villaverde and Sadek et al. have 
almost the same performance and their difference is less than 
5%. Furthermore, the same statement is true about Salvi and 
Rizzi and the proposed method in this paper.

Under Northridge excitation, tuning the TMD with the 
proposed method in this study has the best performance and 
even for undamped structure, the response is reduced to the 
half of the uncontrolled structure. However, the efficiency of 
the TMD is decreased by increasing the inherent structural 
damping, and finally, in 10% damping, the maximum roof 
displacement reduction is about 15%.

Under Morgan Hill earthquake, two important points can 
be observed. Firstly, the efficiency reduction in TMD with 
increasing inherent structural damping is so smooth, and 
the amount of response reduction in all damping ratios is so 
small and is under 10% for all cases. Secondly, in contrast to 

the two other earthquake excitations, under this earthquake, 
Villaverde (1985) method has the best performance in com-
parison with other methods.

Under El Centro excitation, the general pattern is the 
same as Northridge excitation with the difference being that 
the Salvi and Rizzi method has the best performance in com-
parison with other methods. Maximum roof displacement 
response reduction under this earthquake is for undamped 
structure, and about 41% reduces the maximum roof dis-
placement. Maximum displacement reduction amount is 
declined by increasing the inherent structural damping and 
reaches 7% finally at damping ratio equal to 10%.

Furthermore, in Figs. 15, 16 and 17, the controlled to 
uncontrolled RMS roof displacement is studied for differ-
ent mass and inherent structural damping ratios under three 
different earthquakes and with different methods to assure 
the good performance of the TMD along the entire record 
length.

The study of this performance criterion has the same 
results as the previous criterion, i.e., generally the results 
of the proposed method in this study are almost similar to 
the results of the Salvi and Rizzi method. It should be noted 
that the results of these two methods have the same patterns 
although in some cases, one is slightly better than the other.

Similar to peak displacement criterion showing the good 
performance of the proposed method in all considered earth-
quakes, for RMS criterion, the proposed method has reduced 
the responses under all the considered earthquakes, though 
it does not show the best performance under Morgan Hill 
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Fig. 15   Normalized controlled to uncontrolled RMS structural roof displacement for different methods as a function of mass ratio (μ) for differ-
ent inherent structural damping ratios under Northridge (1994)
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earthquakes which can be due to the earthquake frequency 
content and the effect of higher modes in structural response.

Under Morgan Hill earthquake, by considering the RMS 
criterion, the Villaverde and Sadek et al. methods have 
better performances in comparison with Salvi and Rizzi 

and this study approach. However, at mass ratio equal to 
15%, the performances of all methods become nearly the 
same. Additionally, the RMS displacement reduction at 
controlled structure is much lower in contrast to the other 
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Fig. 16   Normalized controlled to uncontrolled RMS structural roof displacement for different methods as a function of mass ratio (μ) for differ-
ent inherent structural damping ratios under Morgan Hill (1984)
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Fig. 17   Normalized controlled to uncontrolled RMS structural roof displacement for different methods as a function of mass ratio (μ) for differ-
ent inherent structural damping ratios under El Centro (1940)
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two earthquakes, so generally under this earthquake, TMD 
has slightly lower performance.

7 � Conclusions

This study presents a method for optimum design of a TMD 
added to the roof of an MDOF structure based on the H∞ 
norm minimization of an equivalent SDOF using CBO. Fur-
thermore, with the concept of robust control, this approach 
reduces the structural response under different earthquake 
excitations. Two characteristics of this procedure are its sim-
ple implementation and fast convergence. In order to assess 
the performance of the proposed method, two performance 
criteria (peak and RMS roof displacements) are evaluated for 
a 10-story shear building subjected to three different earth-
quake excitations. These criteria are calculated for controlled 
structure with the proposed framework and other proposed 
formulae in the literature, and the results are compared in 
the design charts with each other. The results demonstrate 
the good performance of the proposed method in most of 
the considered cases. This method in parallel with Salvi and 
Rizzi’s method finds the TMD optimum parameters in such 
a way that in most of the cases they dominated the other pro-
posed formula in reducing the structural response. Finally, 
for the studied building, design charts can be used to obtain 
the TMD optimum parameters as a function of μ and ξs.

Overall, the reported numerical results show the poten-
tial of the TMD as a seismic protection system. However, 
the potentially nonlinear structural response should be 
accounted for structures under larger earthquake excitations. 
Furthermore, a detailed seismic performance assessment 
is required for a 3D model under large set of earthquake 
ground motions to consider earthquake excitation uncer-
tainty and the uncertainty to the TMD properties. Moreover, 
investigating the TMD economic performance remains as 
a topic for the authors’ future works utilizing cost-related 
criteria or other economic benefits of the TMD vis-à-vis 
the other passive vibration control solutions. These criteria 
could be considered as optimization objective functions for 
single and/or multi-objective optimization problems.
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