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Abstract
The tunnel desilter is a simple and economical fluidic device which is the most suitable over other alternative devices for the 
region if water is abundantly available. The flow mechanism in the tunnel desilter is so complex that it is difficult to estimate 
the sediment removal efficiency accurately using a conventional regression. Hence, in the present study AI-based techniques, 
adaptive neurofuzzy interface system (ANFIS) and artificial neural network (ANN), were employed to estimate the sedi-
ment removal efficiency of the tunnel desilter using the data-sets collected by conducting the laboratory test. Findings of the 
sensitivity analysis showed that the size of the sediment was the most significant parameter followed by the concentration in 
the estimation of removal efficiency. The results of AI-based modeling were also compared with the available conventional 
predictive regression models, and it was found that the triangular membership function-based ANFIS model outperformed 
the other considered models. Further, ANN was also found to be giving comparable results.

Keywords  Tunnel desilter · Sediment removal efficiency · Adaptive neurofuzzy interface system (ANFIS) · Artificial 
neural network (ANN)

List of Symbols
a	� Nondimensional bed layer thickness (2S) relative to 

depth of flow (D)
C	� Sediment concentration (ppm)
D	� Flow depth (m)
du	� Diameter of under flow outlet which is equal to the 

width of subtunnel (m)
k	� Von Karman’s constant = 0.4
n	� Number of observations
Qi	� Discharge in inlet channel, i.e., discharge in subtun-

nel (m3/s)

R	� Extraction ratio (%)
S	� Sediment size (mm)
U∗	� Shear velocity (m/s)
U�

∗
	� Grain shear velocity (m/s)

V	� Mean velocity of flow (m/s)
xi	� Observed values
x̄	� Mean observed values
yi	� Predicted values
ȳ	� Mean predicted values
z	� Any depth of water from the bed level (m)
α	� Ratio of height of diaphragm slab to depth of water in 

case of tunnel-type silt ejector
�	� Sediment removal efficiency
�	� Fall velocity of the sediment particle (m/s)
�f	� Weight density of fluid (KN/m3)
�s	� Weight density of sediment (KN/m3)
W	� Vertical upward velocity (m/s)
W′	� Width of channel

1  Introduction

The site engineers have been facing the acute problem of 
silting in the canal since the canal system regulated by head-
works came into existence. When carrying capacity of canal 
is less than sediment load intensity, canal tends to aggrade 
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resulting in reduction of its discharging capacity. In case of 
power canals, the sediment laden water damages the blades 
of the hydraulic turbine, thereby affecting the power genera-
tion (Garde and Kothyari 2004). The sediment deposited 
in the canals has to be cleaned manually or mechanically 
necessitating closure with inevitable revenue loss besides 
physical cleaning of the canal itself is a costly affair. Hence, 
it is extremely important that the quantity and quality of sed-
iment carried by canal are controlled. Broadly, two primary 
silt control measures are used, and one is preventive meas-
ures which include sediment excluder (Garde and Pande 
1976; Kothyari et al. 1994; UPIRI 1975) that is installed at 
the mouth of the canal head regulator in the river to check 
the entry of sediments before it finds its way into the canal. 
Although the sediment excluder is efficient, a large amount 
of sediment is bound to enter off taking canal. The other 
primary measures employed in the canal are called curative 
measures which include sediment ejectors to eject the sedi-
ments which enter the canal despite taking care to arrest the 
sediments in the river itself. Further, there exist secondary 
silt control measures as well, such as river training works 
constructed upstream of the head regulator to secure proper 
curvature of the approach channel, proper alignment of the 
canal head regulator, provision of a raised sill for the head 
regulator, under sluice pocket along with requisite length or 
divide wall and the river regulation, but the evidence from 
experience suggests that these secondary measures are not 
equally effective, and sediment finds its way into the pocket 
and enters the canal.

Curative measures which are constructed in the canal 
include mainly traditional settling basins, vortex set-
tling basins, vortex tubes and tunnel desilter devices. The 

traditional settling basins were examined by Garde et al. 
(1990), Raju et al. (1999), Saxena (1996), Schrimpf (1991), 
Singh (1987), Srivastava (1997), Dongre (2002) and Singh 
et al. (2008), but it suffers from three disadvantages: First, 
it requires a relatively larger area, second is long residence 
time, and thirdly, it is affected by the interruption during 
physical cleaning; however, these difficulties have been 
addressed in vortex settling chambers which were studied 
by Athar et al. (2002, 2003), Curi et al. (1979), Mashauri 
(1986), IPRI (1989) and Paul et al. (1991), but these devices 
are not useful when sediment has to be removed for higher 
discharge in the canal and where very fine materials do 
not need to be removed in the case of the irrigation chan-
nel where it is beneficial for the crop. Vortex tube ejectors 
(Blench 1952; Robinson 1962; Lawrence and Sanmuga-
nathan 1981; Atkinson 1994a, b; Orak and Asareh 2015; 
Moradi et al. 2013; Dashtbozorgi and Asareh 2015) have 
their own shortcomings and have been found to be ineffec-
tive in removing the suspended loads.

Tunnel desilter device has an advantage over other dis-
cussed devices as it is simple, effective and does not suf-
fer from the limitations that the above desilter suffers if 
water availability in the region is not a problem. It consists 
of a horizontal diaphragm slab a little above the canal bed 
which separates the sediment laden bottom layers from the 
top layers. Under diaphragm slab, there are tunnels which 
carry these bottom layers into an escape channel to the river 
downstream of diversion head work through shortest path, 
while relatively sediment-free top layer water is passed over 
the diaphragm slab to the canal on the downstream of the 
tunnel desilter. The general view of a typical tunnel desilter 
is shown in Fig. 1. The basic hydraulic principle utilized 

Fig. 1   General view of tunnel 
desilter without diaphragm slab
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in the design of tunnel desilter is that in a mobile chan-
nel, sediment is transported as bed and suspended load. The 
vertical eddy component of the current throws up the finer 
particles which are held in suspension and carried by the 
stream. The coarser material too heavy to be thrown in the 
suspension moves along the bed by rolling or sliding and 
hopping or bouncing, but there is no clear line of demarca-
tion between the bed load and the suspended load due to 
continual interchange of particles leaving and returning to 
the bed. The concentration of material in lower layers is, 
however, greater than that in the upper ones. Therefore, the 
water extracted from the lower layers carries comparatively 
more sediment, thereby reducing the sediment concentration 
in the canal downstream of the tunnel desilter. The definition 
sketch showing hydraulic principle of sediment removal by 
the tunnel desilter is shown in Fig. 2a, b.

Tunnel desilter has been studied by UPIRI (1975), Garde 
and Pande (1976), Dhillon et al. (1977) and IS-6004 (1980), 
but all these work with heavy reliance on physical model 

studies which suffer from the problems of scale effect where 
the hydraulic principles are mainly utilized and the rest of 
the design is performed on the basis of the thumb rules 
evolved from the existing structures (Uppal 1966). Despite 
availability of number of models (Atkinson and Lawrence 
1984; Gautam 2005; Singh 2016), the issue for the estima-
tion of removal efficiency of tunnel desilter remains inclu-
sive. It is realized that the conventional regression technique 
has been applied in forming the model without knowing the 
complexity of phenomenon which takes place in sediment 
ejection process. So these days, the soft computing tools due 
to their own rationality and intelligence have increasingly 
been used in the field of water resources and environmental 
engineering which does not need any information on the 
mechanism of any processes; besides, it overcomes the issue 
related to scale effect and also avoids the time, energy and 
cost incurred in fabricating and running the physical models 
(Solomatine and Xue 2004; Pal et al. 2012, 2013; Ansari 
and Athar 2013; Tiwari et al. 2017; Kumar et al. 2018a, b; 

Fig. 2   Definition sketch show-
ing hydraulic principle of tunnel 
desilter
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Sihag et al. 2017a, b; Parsaie et al. 2018; Sihag et al. 2018). 
Although the estimation of removal efficiency of desilter by 
soft computing tools has been studied by a few researchers 
(Tiwari et al. 2018; Singh 2016; Singh et al. 2016, 2008) no 
study is so far reported in the literature for the use of ANN 
and ANFIS in estimation of removal efficiency of tunnel 
desilter.

The principal aim of the present investigation outlines the 
estimation of removal efficiency of tunnel desilter by apply-
ing AI-based ANN and ANFIS techniques using data col-
lected by conducting experiment in the hydraulic laboratory. 
The estimated model of removal efficiency of tunnel desilter 
by these soft computing tools (AI-based) has also been com-
pared and validated with observed data and the existing con-
ventional inductive relations carried out by the prior authors 
including relative importance of each input parameter on the 
model of the tunnel desilter removal efficiency.

2 � Proposed AI‑Based Methods

2.1 � Overview of ANFIS

ANFIS is a formidable tool for modeling complex nonlinear 
systems based on input and output data. It uses fuzzy rea-
soning of fuzzy logic and learning capacity of neural net-
work to generate output. Figure 3 depicts the basic structural 
design (Jang et al. 1997) of first-order Sugeno fuzzy model 
of ANFIS having 2 inputs (a and b), 4 rules and 1 output (c). 
The said model of Sugeno fuzzy type (Takagi and Sugeno 
1993) has 4 fuzzy rules (if–then), given as:

(1)
Rule 1 ∶ if a is X1 and b is Y1, then f11 = m11a + n11b + q11,

(2)
Rule 2 ∶ if a is X1 and b is Y2, then f12 = m12a + n12b + q12,

(3)
Rule 3 ∶ if a is X2 and b is Y1, then f11 = m21a + n21b + q21,

where X1, X2, Y1 and Y2 are fuzzy sets of input a and b, fij (i, 
j = 1,2) are the outputs within the fuzzy specified region by 
the fuzzy rule, for input a and b, mij, nij and qij (i, j = 1,2) are 
the design parameters that are evaluated during the training 
process.

Figure 3 contains five layers; each layer executes different 
function explained below:

Layer 1 (Input nodes): Every node is an adaptive node, 
and produced membership grade of input and output 
given by this layer is:

where a and b are crisp inputs; Xi and Yj are fuzzy set; 
low-, medium-, high-class size membership function is 
applied, which could be of any shape such as triangular, 
trapezoidal, general bell-shaped, Gaussian function.
Layer 2 (Rule nodes): All nodes are fixed nodes and 
labeled as Π, which plays the role of a simple multiplier, 
and output is given as below:

Layer 3 (Average nodes): Every node is again fixed node 
and labeled as N and plays a normalization role in the 
network, and output is given as below:

Layer 4 (Consequent nodes): Every node is adaptive node 
and output is product of normalized firing strength and 
first-order polynomial and is given as below.

(4)
Rule 4 ∶ if a is X2 and b is Y2, then f22 = m22a + n22b + qc22,

(5)O1

Xi
= �Xi(a), i = 1, 2,

(6)O1

Yi
= �Yj(b), j = 1, 2,

(7)O2

ij
= Wij = �Xi(a)�Yj(b), i, j… = 1, 2,

(8)

O3

ij
= W̄ij =

Wij

W11 +W12 +W21 +W22

, i, j … = 1, 2,

Fig. 3   Structure of ANFIS
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Layer 5 (Output nodes): The only node output in the layer 
is the summation output of the system.

2.2 � ANN

A neural network is a form of artificial intelligence that imi-
tates some function of the human brain. Neural networks are 
general purpose computing tools that can solve complex non-
linear problems (Fischer 1998). The network comprises a large 
number of simple processing elements linked to each other by 
weighted connections according to a specified architecture. 

(9)

O4

ij
= W̄ijfij = W̄ij

(

mija + nijb + qij
)

, i, j… = 1, 2.

(10)

O5

ij
=

2
∑

1

2
∑

1

W̄ijfij =

2
∑

1

2
∑

1

W̄ij

(

mija + nijb + qij
)

=

2
∑

1

2
∑

1

[(

Wija
)

mij +
(

Wijb
)

nij +
(

Wij

)

qij
]

These networks learn from the training data by adjusting the 
connection weights (Bishop 1995). There is a range of artifi-
cial neural network architecture designed and used in various 
fields. In this study, a feed-forward neural network with back-
propagation learning algorithm is used.

The basic element of a back-propagation neural network 
is the processing node. Each processing node behaves like a 
biological neuron and performs two functions. Initially, it sums 
the values of its inputs, which is then passed through an activa-
tion function to generate an output. Any differentiable func-
tion can be used as activation function, � . A back-propagation 
neural network, showing the input layer, one hidden layer and 
the output layer, with interconnecting links being associated 
with weights is shown in Fig. 4.

All the processing nodes are arranged into layers, each fully 
interconnected to the following layer. There is no interconnec-
tion between the nodes of the same layer. In a back-propagation 
neural network, generally, there is an input layer that acts as a 
distribution structure for the data being presented to the net-
work. This layer is not used for any type of processing. After 
this layer, one or more processing layers follow, called the hid-
den layers. The final processing layer is called the output layer.

All the interconnections between each node have an asso-
ciated weight. When a value is passed from the input layer, 
down these interconnections, these values are multiplied by 
the associated weight and summed to derive the net input ( nj ) 
to the unit

in which wji is the weight of the interconnection to unit j 
from unit i (called input) and (oi) is the output of the unit i. 
The net input obtained by the above equation is then trans-
formed by the activation function to produce an output (oj) 
for the unit j. The sigmoid function is defined as:

The shape of the sigmoid function can be modified by 
multiplying nj by a constant, called the gain parameter, 

(11)nj =
∑

i

wji oi

(12)�
(

nj
)

=
1

1 + e−nj

Fig. 4   A back-propagation neural network

Table 1   Proposed existing predictive equations for sediment removal efficiency of tunnel desilter

Sr. no. Equation source Equation Remarks

1 Singh (2016) � = 192.08C−0.392S0.5983R0.3766 Removal efficiency of tunnel ejector
2 Atkinson (1994a)

� =
a⋅
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Removal efficiency of vortex tube ejector

3 Curi et al. (1979)
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] Removal efficiency of vortex-type liquid separator
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Removal efficiency of settling basins
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which is often set to the value one (Schalkoff 1992). The val-
ues of the interconnecting weights are not set by the analyst 
but are determined by the network during the training pro-
cess, starting with randomly assigned initial weights. There 
are a number of algorithms that can be used to adjust the 
interconnecting weights to achieve minimal overall training 
error in multi-layer networks (Bishop 1995). The generalized 
delta rule, or back-propagation (Rumelhart et al. 1985), is 
one of the most commonly used methods. This method uses 
an iterative process to minimize an error function over the 
network output and a set of target outputs, taken from the 
training data-set. The training data consist of a pair of data 
vectors. The training data vector is the pattern to be learned, 
and the desired output vector is the set of output values that 

should be produced by the network. The goal of training is 
to minimize the overall error difference between the desired 
and the actual outputs of the network.

The process of training begins with the entry of the train-
ing data to the network. These data flow forward through 
the network to the output units. At this stage, the network 
error, which is the difference between the desired and actual 
network output, is computed. This error is then fed backward 
through the network toward the input layer with the weights 
connecting the units being changed in relation to the mag-
nitude of the error. This process is repeated until the error 
rate is minimized or reaches an acceptable level, or until a 
specified number of iterations has been accomplished.

Fig. 5   Schematic sectional view of experimental setup

Fig. 6   A typical view of model 
without diaphragm slab
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The statistical measures used by Tiwari et al. (2018) 
[i.e., coefficient of correlation (CC), root-mean-square error 
(RMSE) and Nash–Sutcliffe model efficiency coefficient 
(NSE)] were employed to measure the performance of the 
AI-based and conventional models.

3 � Published Relations in the Literature

Removal efficiency of tunnel desilter is dependent on a num-
ber of relevant factors that contribute to sediment removal 
process. A very few tunnel desilter prediction removal effi-
ciency formulae are available in the literature, but those 
too are based on conventional regression methods. These 
models either overestimate the tunnel desilter removal effi-
ciency, resulting in an uneconomical tunnel desilter design, 
or underestimate the tunnel desilter removal efficiency which 
may lead to costly desilter device due to nonfunctional or 
failures. Under the current practice of tunnel desilter design, 
one refers to one of the existing models for a specific pur-
pose or on the basis of thumb rules based on existing struc-
tures. Thus, in the study, existing conventional models are 
evaluated and their performance is compared by using test 
data-set. This way, the relative performance of existing 

CC =
n
∑n

i=1
xiyi−

�
∑n

i=1
xi
��
∑n

i=1
yi
�

�

n
�
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�2
�

n
�
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conventional models is evaluated using the observed data-
sets. The performance of these conventional regression mod-
els is further compared to that of the more complex artificial 
intelligence-based models which include ANN and ANFIS.

For the traditional models and equations developed by 
prior authors, the present study would assess the perfor-
mance of four popular conventional relations and these 
conventional predictive equations are arranged in Table 1.

4 � Experimental Program

The experimental tests were carried out in a prismatic 
channel of width, 0.45  m; depth, 1.2  m; and length, 
16.50 m, of hydraulic laboratory of Civil Engineering 
Department, National Institute of Technology, Kuruk-
shetra (India), and are schematically depicted in Fig. 5. 
A re-circulating arrangement of water supply was estab-
lished by pumping water using a submersible pump with 
maximum discharge capacity of 15 l/s from a sump to an 
overhead tank from where water flows under gravity to 
test channel through baffle wall which was used to dampen 
the turbulence in the flow of water. At a suitable distance 
of 7 m from the inlet of test channel, the model of the 
tunnel desilter which spans the full width of the channel 
was placed such that sediment does not remain in turbu-
lence which may cause the sediment load to remain in 
suspension and prevent it being ejected out to the desired 
extent; at the same point of time, it should not be located 
far downstream from the inlet of the main channel; oth-
erwise, the sediment would tend to settle down earlier. 
Nine different models made up of steel sheet were pre-
pared by varying numbers of main and subtunnels from 
three to five; and a view of typical model used in the test is 
shown in Fig. 6. A sediment-feeding device was employed Fig. 7   A view of sediment feeder device

Table 2   Scheme of experimental matrix

Sr. no. Variables Unit Symbol Ranges

1 Mean velocity of 
approach

m/s v 0.08–0.18

2 Uniform size of sedi-
ment

mm S 0.15, 0.30, 0.425

3 Mean concentration ppm C 48.41–548.70
4 Diaphragm height m H1 0.07
5 Depth of water m D 0.29–0.30
6 Width of channel m W′ 0.45
7 Angle of deviation of 

flow
degree θ 80°

8 Number of main tunnels – Nm 3–5
9 Number of subtunnels – Ns 3–5
10 Froude number – Fr 0.047–0.105
11 Extraction ratio – R 15.38–30.25
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for feeding the sediment into the flow of inlet channel. 
It consists of a funnel-like hopper for retaining sediment 
material and a fork plate beneath the slit of the hopper in 
order to guide the silt material toward the inlet channel. 
The sediment particles fell from the hopper through a slit 
onto the guide plate, while the electric motor with damper 
shakes the sediment guide plate. The rate of required sedi-
ment feeding to the canal could be regulated by changing 
the slope of the moveable plate, vibration speed of motor 
and calibration of opening between the slit provided at 

bottom of the hopper and the sediment guide plate. The 
sediment-feeding rate is found to be fairly steady unlike 
Athar et al. (2003) who employed sediment-feeding device 
consisted of a hollow circular cylinder of 2.5 cm diameter, 
with a split along its length. The cylinder could be held on 
bed of the test channel and worked through a cable system 
operated from the top of the channel. The cable system 
would open out the cylinder along its length; thereby, the 
sediment contained in the cylinder would be emptied onto 
the bed of the canal. This initiates a fair amount of the 

Table 3   The characteristics of 
training and testing data-set

Variables Minimum Maximum Mean SD Kurtosis Skewness

Training data-set
 R 15.3800 30.2500 21.5199 2.9573 0.0004 0.3371
 S 0.1500 0.4250 0.2943 0.1108 − 1.4451 − 0.1529
 C 48.4100 548.7000 183.0490 111.2867 0.4543 1.0756
 η 12.5000 81.6600 41.8644 15.7560 − 0.5686 0.1693

Testing data-set
 R 16.3500 30.2500 21.6788 2.7860 0.9167 0.6907
 S 0.1500 0.4250 0.2916 0.1138 − 1.5392 − 0.1094
 C 51.4400 274.3500 141.9501 55.8397 − 0.4886 0.4026
 η 15.0000 87.5000 42.9525 14.4028 0.0585 0.4640

Fig. 8   Sugeno-type approach of ANFIS
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sediment to be carried near the bed as bed load, also sud-
denly, a fair amount of silt material will be poured into the 
model at an unsteady rate, and consequently, the sediment-
feeding rate and its concentration at the inlet channel do 
not remain constant.

The view of the new sediment feeder is shown in Fig. 7. 
From lower portion of the tunnel desilter, sediment laden 
water was allowed to eject through an escape channel. The 
collected sediments were dried and weighed to find the 
efficiency of the tunnel desilter. To ensure quality, cred-
ibility and reliability, some of the experiments have been 
repeated thrice. A total of 252 observation sets were col-
lected from experimentation. The details and the range of 
experimental matrix are summarized in Table 2.

4.1 � Data‑set

The work discussed in the paper gives the development of 
models using different methods for estimation of tunnel 
desilter efficiency by the use of data collected by conduct-
ing the experiment in laboratory as discussed above. In the 
study, two different types of model structures have been 
used in the development which includes ANN and ANFIS. 
Conventional existing regression-based models are assessed 
for the purpose of comparison with the two artificial intel-
ligence-based ANN and ANFIS models. So, the main moti-
vation of the work is to advance the modeling methods by 
examining more robust and efficient methods that can result 
in more efficient, effective, accurate and precise models for 
tunnel desilter removal efficiency. In this regard, the present 

study examines the utility of two AI-based models (ANFIS 
and ANN) for tunnel desilter removal efficiency estimation 
and compares their performances to the conventional exist-
ing regression-based models.

The data-set consisting of 252 observations was used and 
obtained from the laboratory experiments. Out of 252 obser-
vations arbitrarily selected, 172 observations were used for 
training, whereas the remaining 80 were used for testing 
the models. Input data-set consists of sediment size (S) in 
mm, sediment concentration (C) in ppm, extraction ratio (R) 
in percent, whereas tunnel desilter removal efficiency (η) 
in percent was considered as output. The characteristics of 
training and testing data-set are depicted in Table 3.

5 � Application of ANFIS and ANN

In the study, ANFIS was employed to model the relationship 
between inputs and output. The model was executed using 
MATLAB-based fuzzy logic, and a Sugeno-type approach 
is shown in Fig. 8 (Sugeno and Takagi 1985). There are no 
hard fast rules for producing an ANFIS model (Cui et al. 
2010). Four membership functions, i.e., triangular mem-
bership function (trimf), trapezoidal membership function 
(trapmf), generalized bell-shaped membership function 
(gbellmf) and Gaussian membership function (gaussmf), 
were used for input in ANFIS model. The ‘trapmf’ mem-
bership functions were found to be the best for each input.

A hybrid learning procedure was employed to train the 
ANFIS model, and in the ANFIS training method, forward 

Fig. 9   Structures of the model 
for tunnel desilter using training 
data-set
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pass and a backward pass are composed by each epoch. In 
the forward pass, a training set of input patterns or an input 
vector is presented to the ANFIS, neuron output is planned 
on the layer-by-layer basis, and rule resulting variables are 
recognized. As soon as the resultant variables are recog-
nized, an authentic network output vector y1 is determined 
and the error vector (e) is computed as (e = y1 − y2) as y2 is 
actual output. This process finishes at desired epochs, Jang 
(1993). Figure 9 illustrates the structure of the ANFIS model 
for tunnel desilter using training data-set, and Fig. 10 is the 
rule viewer of the model. The final triangular-based MFs of 
ANFIS model are shown in Fig. 11.

Specifications of the developed ANFIS model are as 
follows:

Number of nodes: 58 nodes, 18 linear parameters, 24 non-
linear parameters, 172 training data pairs and 18 fuzzy rules.

Large number of trials was performed to find optimal 
values of user-defined parameters of ANN. CC, RMSE 
and NSE were used to find optimum parameters. Table 4 

provides value of user-defined parameter working well with 
ANN for the data-set.

6 � Results and Discussion

Performance evaluation parameters CC, RMSE and NSE 
values obtained using test data-set were employed to com-
pare the performance of AI-based models which include 
triangular, trapezoidal, generalized bell-shaped and Gauss-
ian MFs-based ANFIS, ANN models and four conventional 
models which include Atkinson (1994a), Singh (2016), Curi 
et al. (1979) and Paul et al. (1991). Table 5 shows the value 
of performance evaluation parameters of different models 
for training and testing data-set.

Figures 12 and 13 show the plot of the observed and esti-
mated removal efficiency of tunnel desilter using triangular, 
trapezoidal, generalized bell-shaped and Gaussian MFs-
based ANFIS and ANN on training and testing data-set, 

Fig. 10   Rule viewer for tunnel desilter using triangular MFs
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respectively. From Fig. 13, it is clear that estimated val-
ues of all the models were very close to perfect agreement 
line, but triangular MFs-based ANFIS has been found to be 
closer, and this fact has been further reinforced when it was 
compared in terms of statistical measures where triangular 
MFs-based ANFIS also achieved the highest value of CC, 
NSE (0.8681, 0.7431) and lowest value of RMSE (7.2542) 
which is shown in Table 5. Figures 14 and 15 depict the 

graph between the observed and estimated value of tun-
nel desilter removal efficiency using existing conventional 
models proposed by previous researchers on training and 
testing data-sets, respectively. All aforesaid empirical mod-
els except Singh (2016) were performing extremely poor, 
values of result were far away from perfect agreement line, 
and the Singh (2016) model itself was also not performing 
comparatively well in comparison with AI-based models. 
This was attributed to the fact that these conventional models 
did not have the capacity to consider the aspects that were 
responsible for complex nonlinear phenomenon which took 
place during sediment removal in the tunnel desilter.

Figures  16, 17 and 18 present comparative graph 
between observed value and estimated value of removal 

Fig. 11   Final triangular mem-
bership functions with three 
input variables

Table 4   User-defined parameters used with ANN

ANN structure Number of iterations Learning rate Momentum

3-7-1 2200 0.2 0.1
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Table 5   Detail of performance 
indices of models using training 
and testing data-set

Bold values correspond to optimum values of model performance parameters

Models  Training data-set Testing data-set

CC RMSE NSE CC RMSE NSE

ANFIS_trimf 0.8623 6.3610 0.7435 0.8681 7.2542 0.7431
ANFIS_trapmf 0.8060 9.2985 0.6497 0.8067 8.7101 0.6296
ANFIS_gbellmf 0.8327 8.7002 0.6933 0.8476 7.8626 0.6982
ANFIS_gaussmf 0.8465 8.3640 0.7166 0.8568 7.6077 0.7175
ANN 0.8957 7.0761 0.7971 0.8639 7.4627 0.7281
Atikson (1994) 0.6051 16.6187 − 0.1190 0.6729 14.2308 0.0114
Singh (2016) 0.8152 9.1793 0.6586 0.7929 8.8770 0.6153
Curi et al. (1979) − 0.2513 31.2900 − 1.1001 − 0.2234 22.1117 − 1.3868
Paul et al. (1991) 0.4714 31.8004 − 3.3132 0.5132 30.0659 − 3.4129
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Fig. 13   Observed and estimated values of trapping efficiency using 
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Fig. 14   Observed and estimated values of removal efficiency using 
conventional empirical models with training data-set
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Fig. 15   Observed and estimated values of removal efficiency using 
conventional empirical models with testing data-set
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efficiency of tunnel desilter using two best AI-based mod-
els (triangular MFs-based ANFIS and ANN) and one 
best conventional model (Singh 2016), the variation of 
estimated values of removal efficiency using triangular 
MFs-based ANFIS, ANN and Singh (2016) in comparison 
with observed removal efficiency values and variation of 
relative error values of removal efficiency using triangular 
MFs-based ANFIS, ANN and Singh (2016) in comparison 
with observed removal efficiency values, respectively, on 
the test data. From Fig. 16 and Table 5, it is clear that 
triangular MFs-based ANFIS outperformed all aforesaid 
discussed models, which was followed by ANN in AI-
based regression models. However, the model given by 
Singh (2016) performed poorly in comparison with any 

AI-based model and this fact was further substantiated in 
Fig. 17 where values of the result estimated by triangular 
MFs-based ANFIS were much closer to the observed value 
than any other aforesaid model which was again corrobo-
rated in Fig. 18 which shows the residual error given by 
triangular MFs-based ANFIS was the least.

The characteristics of observed and estimated values 
obtained by AI-based approaches and conventional pre-
dictive equations are presented in Table 6. Single-factor 
ANOVA results shown in Table 7 suggest that there was no 
significant difference between observed and estimated val-
ues of removal efficiency of tunnel desilter using AI-based 
models.

6.1 � Sensitivity Analysis of Effective Parameters

To determine the relative significance of each input param-
eter to the model of the tunnel desilter removal efficiency 
using ANFIS and ANN approaches, sensitivity analysis was 
conducted using test data-set. Various input combinations as 
shown in Tables 8 and 9 were considered by removing one 
input parameter at a time in each case, and its influence on 
the tunnel desilter removal efficiency was evaluated in terms 
of CC, NSE and RMSE as primary criteria. Results from 
Tables 8 and 9 suggest that size (S) of the sediment was the 
most significant parameter followed by the concentration (C) 
for modeling the tunnel desilter removal efficiency.

7 � Conclusion

The sincere attempt was made to analyze the tunnel desilter 
sediment removal efficiency from a completely new perspec-
tive in this work, and it was concluded that
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(I)	 The triangular MFs-based ANFIS model had the high-
est value of CC = 0.868, NSE = 0.7431 and lowest value 
of RMSE = 7.2542 in comparison with other discussed 
models which indicates that this model outperforms 
other aforesaid AI-based as well as conventional mod-
els in the estimation of the tunnel desilter removal effi-
ciency.

(II)	 The ANN model was also achieving comparable, satis-
factory and desirable results as its statistical parameters 

of CC = 0.8639, NSE = 7.4627 and RMSE = 0.7281 
which is nearest to triangular MFs-based ANFIS, and 
it might be used in modeling the tunnel desilter removal 
efficiency.

(III)	Results of the work showed that estimating tunnel 
desilter removal efficiency with conventional mod-
els leads to apparently incredible errors as statistical 
parameters of CC and NSE are quite low and RMSE is 

Fig. 18   Variation of rela-
tive error values of removal 
efficiency using triangular 
MFS-based ANFIS and ANN 
in comparison with observed 
trapping efficiency values using 
test data
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Table 6   The characteristics of 
observed and estimated values 
obtained by AI-based modeling 
approaches and conventional 
empirical models

Observed and modeling values Minimum Maximum Mean Sample variance Kurtosis Skewness

Training data-set
 Observed 12.5000 81.6600 41.8644 248.2513 − 0.5686 0.1693
 ANFIS_trimf 13.0308 77.5531 41.8644 184.5841 − 0.9398 − 0.0381
 ANFIS_trapmf 17.1907 75.1063 41.8644 161.2842 − 1.0939 − 0.2033
 ANFIS_gbellmf 15.7242 78.1401 41.8644 172.1152 − 0.9614 − 0.1066
 ANFIS_gaussian mf 14.8392 78.4777 41.8644 177.8862 − 0.9442 − 0.0773
 ANN 19.4250 76.8580 42.9490 190.0901 − 0.8741 0.1256
 Atikson (1994) 39.9800 60.4400 52.2898 38.4521 − 0.3789 − 0.9430
 Singh (2016) 16.7457 76.7333 40.8752 183.5394 − 0.5007 0.4041
 Curi et al. (1979) 18.2565 34.9180 26.7363 14.7842 − 0.6813 0.1933
 Paul et al. (1991) 65.9752 73.2282 69.6771 4.1945 − 1.0781 − 0.3825

Testing data-set
 Observed 15.0000 87.5000 42.9525 14.4028 0.0585 0.4640
 ANFIS_trimf 19.3916 75.5210 44.3677 12.1090 − 0.7444 − 0.1613
 ANFIS_trapmf 18.6048 75.1063 45.0283 11.5309 − 0.7656 − 0.4117
 ANFIS_gbellmf 21.9558 76.8715 44.8936 11.5962 − 0.7112 − 0.2337
 ANFIS_gaussmf 21.2215 76.2903 44.7172 11.8055 − 0.7040 − 0.2071
 ANN 21.1000 77.9910 44.4349 13.6887 − 0.4260 0.2178
 Atikson (1994) 39.3800 60.1500 51.8953 6.4385 − 0.6148 − 0.8747
 Singh (2016) 21.9135 74.0109 42.9591 13.0853 − 0.4487 0.4066
 Curi et al. (1979) 19.4242 34.9180 27.2964 3.8400 − 0.6811 0.0718
 Paul et al. (1991) 65.9752 72.8190 69.8835 2.0869 − 0.9829 -0.5155
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high in comparison with AI-based models except Singh 
(2016).

(IV)	Single-factor ANOVA results suggest that there was 
insignificant difference between observed and esti-
mated values of ANFIS and ANN models.

(V)	 Findings of the sensitivity analysis showed that the size 
of the sediment was the most significant parameter fol-
lowed by its concentration for the estimation of removal 
efficiency.
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