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Abstract
Modeling and simulation of water infiltration from the ground surface into unsaturated–saturated soil is very important in 
the study of the hydrological cycle process. Transient fluid flow through unsaturated–saturated soil is generally described by 
Richards’ equation. The equation is a nonlinear parabolic partial differential equation for which many numerical and limited 
analytical solutions exist. In this paper, exponential models for water content and hydraulic conductivity are selected so the 
nonlinear equation becomes linear and then separation of variables and Fourier series expansion techniques are used to derive 
analytical solutions to 2D water infiltration into unsaturated–semi-saturated soils with different distributions of water content 
on a part and/or parts of the top boundary. 2D water infiltrations are investigated in a rectangular soil domain, where high 
water content zone is considered as semi-saturated zone and residual water content zone is considered as unsaturated zone 
at initial time. A total of three cases are investigated in this paper. In case 1, a uniform distribution of water content on a part 
at the top boundary and no-flow boundaries at side edges are considered. Also, horizontal water table in unsaturated–semi-
saturated domain is assumed as initial condition. In case 2, an inclined water table initial condition and a uniform distribution 
of water content on a part at the top boundary are investigated. Finally, in case 3, an analytical solution for ramp distribu-
tions of water content on two parts at the top boundary and an inclined water table initial condition is obtained. To illustrate 
the use of the derived equations, water content values are obtained from a numerical solution and compared to those from 
analytical solutions for two cases, showing less than 2% errors. These analytical solutions may be used as a benchmark for 
verification and efficiency assessment of numerical approaches.

Keywords Analytical solution · Water infiltration · Unsaturated–semi-saturated soil · Two dimension · Richards’ equation · 
Inclined water table

1 Introduction

Simulation and estimation of water infiltration from the 
ground surface into unsaturated–saturated soil is an impor-
tant discussion for the study of the hydrological cycle pro-
cess. Also, recharge and discharge of the groundwater should 

be carried out from the unsaturated to saturated zone and/or 
inverse, and therefore, the investigation of the transport pro-
cess of water flow in soil is essential for the water resources 
management.

Transient fluid flow through unsaturated–saturated soil is 
generally described by Richards’ equation derived by com-
bining Darcy’s law and conservation of mass. The equation 
is a nonlinear parabolic partial differential equation (PDE) 
for which many numerical and limited analytical solutions 
exist.

However, the choice of exponential model for water 
content and hydraulic conductivity linearizes the nonlinear 
Richards’ equation, making it possible to obtain an analyti-
cal solution via classical approaches.

In the literature, many numerical methods have been 
suggested to investigate water flow infiltration through 
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unsaturated–saturated soils. These techniques include finite 
difference method (FDM), finite element method (FEM), 
finite volume method (FVM) and/or other numerical meth-
ods (Zhu et al. 2011, 2012; Mousavi Nezhad et al. 2011; 
Carr and Turner 2014; Aquino et al. 2007; Simunek 2006; 
Zambra et al. 2012).

Analytical solutions, on the other hand, are mainly offered 
for one-dimensional flow of water through the soil and for 
restrictive boundary and initial conditions. Exact analytical 
solutions are desirable because they give a better insight 
compared with a discrete numerical solution.

Chen and Tan (2005) simulated the progress of the soil 
water content distribution in the soil profile with a water 
table at the bottom of the soil profile during ponding irri-
gation. This simulation was presented by solving the two-
dimensional Richards’ equation which used exponential 
functions for the hydraulic conductivity and volumetric 
water content. Craig et al. (2010) presented a new set of 
formulae for calculating regionally averaged infiltration rates 
into heterogeneous soils. The solutions were based upon an 
upscaled approximation of the explicit Green–Ampt (GA) 
infiltration solution and required specification of the spatial 
distribution of saturated hydraulic conductivity and/or initial 
soil water deficit in the sub-basin. Tong et al. (2010) devel-
oped a one-dimensional, two-layer solute transport model to 
simulate chemical transport process in an initially unsatu-
rated soil with ponding water on the soil surface before sur-
face runoff starts. The developed mathematical model was 
tested against a laboratory experiment. Zhan et al. (2013) 
developed an analytical solution for simulating rainfall infil-
tration into an infinite unsaturated soil slope. The analytical 
solution was based on the general partial differential equa-
tion for water flow through unsaturated soils. Numerical 
simulations were conducted to verify the assumptions of 
the analytical solution and demonstrated that the proposed 
analytical solution was acceptable for the coarse soils with 
low air entry values. Zarif Sanayei et al. (2016) derived new 
analytical solutions to 2D vertical and horizontal infiltration 
and imbibition into unsaturated soils for non-symmetrical 
boundary and non-uniform initial conditions. In that paper, 
presented analytical solutions were such that both steady 
and unsteady solutions could be obtained from a single 
closed-form solution. Also, comparing analytical solutions 
with numerical solutions showed a maximum error of less 
than 2%.

Cui and Zhu (2018) developed a new analytical infiltra-
tion model to determine water flow dynamics around layer 
interfaces during infiltration process in layered soils. The 
model mainly involved the analytical solutions to quadratic 
equations to determine the flux rates around the interfaces. 
Also, comparison to the numerical solutions of the Richards 
equation indicated that the new model can well capture water 
dynamics in relation to the arrangement of soil layers. Li and 

Wei (2018) presented an approximate analytical solution for 
the coupled seepage and deformation problem of unsaturated 
soils. In that paper, these coupled governing equations were 
linearized and analytically solved for a specified saturation 
using the eigenfunction method. Also, comparison between 
the analytical solution and the previous theoretical solution 
indicated that the proposed solution yields excellent results.

A number of researchers investigated analytical solutions 
to the Richards’ equation by variational iteration method 
(VIM), Adomian decomposition method (ADM), traveling 
wave solution (TWS), separation of variables and other ana-
lytical methods (Wazwaz 2007; Nasseri et al. 2008; Zlotnik 
et al. 2007; Zarif Sanayei et al. 2017; Johari and Hooshmand 
2015; Wang et al. 2017; Su et al. 2017).

In this study, separation of variables and Fourier series 
expansion techniques are used to derive analytical solutions 
to 2D water infiltration into unsaturated–semi-saturated 
soils with different distributions of water content on a part 
and/or parts of the top boundary. 2D water infiltrations are 
investigated for a rectangular soil domain, where high water 
content zone is considered as semi-saturated zone and resid-
ual water content zone is considered as unsaturated zone at 
initial time. A total of three cases are investigated in this 
paper. In case 1, a uniform distribution of water content on 
a part at the top boundary and no-flow boundaries at side 
edges are considered. Also, horizontal water table in unsat-
urated–semi-saturated domain is assumed as initial condi-
tion. In case 2, an inclined water table initial condition and 
a uniform distribution of water content on a part at the top 
boundary are investigated. Finally, in case 3, an analytical 
solution for ramp distributions of water content on two parts 
at the top boundary and an inclined water table initial condi-
tion is obtained. Analytically, setting up and developing of 
these boundary and initial conditions for the cases are the 
main innovations of this research.

To illustrate the use of the derived equations, water con-
tent values from a numerical solution are compared to that 
from an analytical solution for two cases. These analytical 
solutions may be used as a benchmark for verification and 
efficiency assessment of numerical approaches. Also, these 
can be applied as the benchmark solutions which are vital 
for several analyses such as sensitivity analysis.

2  Governing Equation for Water Infiltration 
into Unsaturated–Semi‑Saturated Soils

Transient fluid flow through unsaturated–saturated soil is 
generally described by Richards’ equation.

This equation is obtained by the combination of continu-
ity and Darcy’s law as a momentum equation. This equation 
is expressed in different forms. The 2D θ-based form of the 
equation is (Richards 1931; Bear and Chang 2010):
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where �
(

L3

L3

)
 is the volumetric water content and 

D(�) = K(�)
�h

��
 is soil water diffusivity for an isotropic 

media; h(L) is the soil water pressure head (tension head in 
unsaturated zone), K

(
L

T

)
 is the hydraulic conductivity, t(T) 

is the time and Z(L) is the vertical space coordinate (upward 
positive). Water diffusivity, hydraulic conductivity and water 
content are functions of soil water pressure head. Various 
empirical relationships have been used to relate K and θ to 
h (Brooks and Corey 1964; Van Genuchten 1980; 
Haverkamp et al. 1990; Fredlund and Xing 1994). Basha 
(1999) described K and θ in terms of h by the exponential 
expression:

where θr is the residual water content, θs is the saturated 
water content, Ks 

(
L

T

)
 is the saturated hydraulic conductivity 

and �
(

1

L

)
 is the pore size distributions index. It is believed 

that the exponential model (Eqs. 2 and 3) for description of 
properties of unsaturated soils would pass physically reason-
able criteria (Tracy 2006, 2007).

Substituting (2) and (3) in D(θ) gives:

Substituting Eqs. (2), (3) and (4) in Eq. (1) provides a linear 
form of Richards’ equation.

(1)
��

�t
=

�

�x

(
Dx(�)

��

�x

)
+

�

�z

(

Dz(�)
��

�z
+ Kz(�)

)

(2)
� − �r

�s − �r
= S = exp (�h)

(3)K(�) = Ks

� − �r

�s − �r
= KsS = Ks exp (�h)

(4)D(�) = K(�)
�h

��
=

Ks

�
(
�s − �r

)

where D and f are:

Analytical solutions for Eq. (5) would express spatiotempo-
ral distribution of water content in the unsaturated–saturated 
soil sample under given boundary and initial conditions.

3  Solution Domain for 2D Water Infiltration 
into Unsaturated–Semi‑Saturated Soils

Richards’ equation in a vertical 2D plane (x, z) may be 
expressed as Eq. (5):

In order to obtain closed-form analytical solutions for this 
equation, many simplifications shall be employed. In the 
first step, vertical section of a homogeneous soil sample may 
be assumed, and then, the no-flow boundary condition is 
applied at the side edges and various distributions of water 
content are used at the top boundary. Also, different forms 
of the water table can be considered for initial condition in 
the 2D soil domain. In the current study, two forms of the 
water table are assumed for initial condition (Fig. 1), where 
high water content zone is considered as semi-saturated zone 
and residual water content zone is considered as unsaturated 
zone at initial time.

(5)��

�t
= D

�2�

�x2
+ D

�2�

�z2
+ f

��

�z

(6)D =
Ks
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(
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Ks(

�s−�r
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(7)��
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= D

�2�

�z2
+ f

��

�z
+ D

�2�

�x2

Fig. 1  The 2D soil domain for infiltration from top boundary a horizontal water table b steep water table
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4  Case 1: A Uniform Distribution of Water 
Content on a Part at the Top Boundary 
and a Horizontal Water Table Initial 
Condition

As a practical case, a uniform distribution of saturated water 
content is applied on a part at the top boundary and a hori-
zontal water table is used for initial condition, where high 
water content zone is considered as semi-saturated zone and 
residual water content zone is considered as unsaturated 
zone at initial time. Also, no-flow boundary conditions are 
applied at right and left boundaries. A schematic view of the 
problem statement is shown in Fig. 2.

In this case, boundary and initial conditions may be math-
ematically expressed as:

where θ0 is high water content (very close to θs) and U is 
the unit step function. The boundary condition (8-b) at the 
top boundary creates saturated water content for all points 
of a

4
≤ x <

3a

4
 and residual water content for all points of 

0 ≤ x <
a

4
 and 3a

4
≤ x < a . Also, the initial condition (8-d) 

(8-a)
��

�x
(0, z, t) = 0

��

�x
(a, z, t) = 0

(8-b)

�(x, b, t) = (�s − �r) ∗
[
U
(
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a

4

)
− U

(
x −

3a

4

)]
+ �r

(8-c)�(x, 0, t) = �0

(8-d)�(x, z, 0) = (�r − �0) ∗ U
[
z −

b

2

]
+ �0

creates high water content for all points of 0 ≤ z <
b

2
 and 

residual water content for all points of b
2
≤ z < b.

Analytically, setting up and developing these boundary 
and initial conditions for the cases are the main innovations 
of this research. Based on existing researches, these types 
of analytical boundary and initial conditions have not been 
presented for unsaturated–semi-saturated soils.

A single closed-form analytical solution is sought that 
encompasses both steady and unsteady solutions. Thus, the 
general form of such a solution may be expressed as a com-
bination of a steady (W) and an unsteady (V) term:

Obviously, non-homogenous boundary conditions are to sat-
isfy ψ(x, z), the steady solution, and homogenous boundary 
conditions are for φ(x, z, t), the unsteady solution. Substitut-
ing (9) in (7) and (8-a) to (8-d) and then utilizing separation 
of variables for ψ(x, z) and φ(x, z, t) yield:

where � =
n�

a
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 are constant coefficients. The constant 

coefficients are expressed as:
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Fig. 2  Schematic view of 2D infiltration problem in case 1
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Further details for derivation of Eq. (10) are presented in 
“Appendix”. As seen, Eq. (10) consists of five terms: a func-
tion of (x, z, t), a function of (z, t), a function of (x, z) and 
two functions of z only. All boundary and initial conditions 
of (8-a) to (8-d), as well as the PDE (Eq. 7), are satisfied by 
(10). The first two terms in Eq. (10) demonstrate unsteady 
behavior of the infiltrating water content front. However, 
the last three terms are not functions of time and reflect the 
steady behavior of the front. Obviously, as t → ∞, the first 
two terms vanish and the solution approaches to steady-state 
solution. In Eq. (10), summation convergence occurs very 
rapidly, partly because n and m (showing number of terms 
in the summation) lie in denominators of summations coeffi-
cients. Furthermore, due to the presence of a time-dependent 
exponential decay term in the first term of Eq. (10), many 
terms are needed for summation calculation at early times, 
while at longer times, often a handful of terms is sufficient 
to obtain a reasonable accuracy. In order to confirm sum-
mations convergence in Eq. (10), water content at different 
positions is calculated using summations truncation with 
different values of n and m (Table 1). The table is generated 
for the following parameters:

(11-f)

Dm = A1(A2 + A3 sin
(
m�

2

)
+ A4 cos

(
m�

2

)
+ A5 + A6 − A7

A1 =
2

f 2b2 + 4m2�2D2
,A2 = 4D2m�r�(−1)

m+1e
fb

2D ,A3 = 2Dbf e
fb

4D

(
�0 − �r

)

A4 = 4D2m�e
fb

4D

(
�r − �0

)
,A5 =

8m�D2�0

f 2b2 + 4m2�2D2

A6 =

8C∗∗
3
m�D2b

(
4Dbf + 4e

fb

2D (−1)mm2�2D2 + e
fb

2D (−1)mf 2b2 + 4e
fb

2D (−1)m+1Dbf
)

f 4b4 + 8f 2b2m2�2D2 + 16m4�4D4

A7 =

8m�D2�sC
∗∗
4

(
e

fb

2D − (−1)m
)
e

−fb

2D

f 2b2 + 4m2�2D2

To be consistent with the literature, θ0, θr, θs, α and Ks values 
studied by Huang and Wu (2012); and Montazeri Namin and 
Boroomand (2012) are selected. As given in Table 1, change 
in water content is negligible at n and m = 1 ~ 15 and higher. 
As a consequence, θ was calculated for n = m = 1 ~ 15 in 
Eq. (10). In order to indicate the use of the derived equa-
tions, water content values of an explicit scheme finite dif-
ference method (FDM) solution (to Eq. 7) are compared 
to those of the analytical solution (Eq. 10) for t = 20 min 
and various values of x and z (column 7 in Table 1). More 
details for the explicit FDM solution can be found in Bear 
and Chang (2010).

Eighth column in Table 1 shows relative error (RE) based 
on column 5 (incorporating > 250 summation terms) and 
column 7 (FDM for Δt = 5 s, Δz = 5 cm and Δx = 5 cm). 
Relative error (RE) is expressed as:

t = 20min, a = 100 cm, b = 100 cm,

�0 = 0.3, �r = 0.0286, �s = 0.3658,

� = 0.01
1

cm
, Ks = 10−3

cm

s

Table 1  Water content values 
for the analytical solution 
(with different summation 
truncations), FDM solution and 
the relative error for case 1 at 
t = 20 min

x (cm) z (cm) θAnalytical, 
m = n = 1 ∼ 5

θAnalytical, 
m = n = 1 ∼ 10

θAnalytical, 
m = n = 1 ∼ 15

θAnalytical, 
m = n = 1 ∼ 20

θFDM, Δt = 5 s, 
Δz = Δx = 5 cm

RE (%)

25 30 0.2435 0.2558 0.2572 0.2572 0.2604 1.24
40 50 0.1998 0.2001 0.2009 0.2009 0.2036 1.34
50 80 0.1978 0.1982 0.1992 0.1992 0.2021 1.45
60 90 0.2562 0.2568 0.2577 0.2577 0.2532 1.74
50 95 0.3103 0.3110 0.3119 0.3119 0.3164 1.44
70 40 0.2288 0.2292 0.2301 0.2301 0.2337 1.56
80 20 0.2758 0.2762 0.2773 0.2773 0.2726 1.69
90 85 0.1005 0.1008 0.1020 0.1020 0.1031 1.07
10 60 0.1601 0.1606 0.1617 0.1617 0.1634 1.05
30 70 0.1582 0.1589 0.1593 0.1593 0.1612 1.19
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As given in Table 1, errors are all less than 2% which may be 
deemed reasonable. It should be considered that it is possible 
to find a numerical method or software which leads to higher 
degree of accuracy. However, this developed analytical solu-
tion is benchmark solution for verification and efficiency 
assessment of numerical methods.

Based on Eq. (10), water content contours are shown 
in Fig. 3a–d for t = 5, 20, 60 min and steady state, respec-
tively. As shown in the figures, the infiltrating water content 
front begins from a part at the top boundary ( a

4
≤ x <

3a

4
 ) 

(12)Relative Error =

|||
�Analytical − �Numerical

|||
||
|
�Analytical

||
|

× 100%

Fig. 3  Water content contours based on Eq. (10) for: a t = 5 min, b t = 20 min, c t = 60 min and d steady state

Fig. 4  Schematic view of 2D infiltration problem in case 2
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and covers the entire unsaturated zone by time. The vertical 
advancement of the water content front into the drier parts 
of the sample is symmetric relative to x = a/2. Obviously, as 
t → ∞, the water content values increase at all regions and 
the water table moves toward the soil sample surface as it 
converts from horizontal to curve form. Evidently, water 
content contours are perpendicular to the right and left 
boundaries of the soil sample, confirming no-flow boundary 
condition in those boundaries. Also, as time elapses, water 
content contours approach a steady-state contour associated 
with the last three terms in Eq. (10) (Fig. 3d).

5  Case 2: A Uniform Distribution of Water 
Content on a Part at the Top Boundary 
and an Inclined Water Table Initial 
Condition

There is naturally an inclined water table due to gradient 
differences in many aquifers (Deng and Wang 2017; Ruhaak 
et al. 2008; Ameli et al. 2013; Saeedpanah and Golmoham-
adi Azar 2017; Schnellmann et al. 2010). Herein, a practical 
case is considered whereby ground surface ponding occurs 
on a part of the top boundary for the unsaturated–semi-
saturated aquifer with inclined water table at initial time. 
Also, the right and left boundaries are considered as no-flow 

boundaries. A schematic view of the problem statement is 
shown in Fig. 4.

Boundary and initial conditions for this case may be writ-
ten mathematically as:

The initial condition of (13-d) creates high water content for 
all points of the semi-saturated zone and residual water con-
tent for all points of the unsaturated zone in Fig. 4. Another 
innovation of this research is creation and expression of the 
initial condition analytically for the problem. Based on exist-
ing researches, this type of analytical initial condition has 
not been presented for the unsaturated–semi-saturated soils.

Following similar mathematical procedures as before 
(case 1 and “Appendix”), the answer for θ(x, z, t) would 
be identical to Eq. (10) but with different coefficients. The 
mathematical forms of C∗∗

1
,C∗∗

2
,C∗∗

3
 and C∗∗

4
 are identical to 

what were defined by Eqs. (11-a) to (11-d). However, coef-
ficients of Dmn and Dm are expressed as:
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3�3D2 + b2m�f 2) − 4a2D2b2�3n2�rm)

C5 = 32a2D3b3e
3fb

8D n2�2�0(sin(
3m�

4
) + 2 cos(

3m�

4
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C6 = 64a3D3b2e
3fb

8D f�2(�r − �0)mn

C7 = n�f 4a4b4 + 8n�3f 2a2b2D2(a2m2 + b2n2) + 16�5D4(nm4a4 + n5b4) − 32n3�5D4m2a2b2

C8 =
−C∗∗

1
(−1)m+1a2m�(e

2

√
ha2+n2�2b

a − 1)

b2�2n2 + a2b2h + m2�2a2
e
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√
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Table 2  Water content values 
for the analytical solution 
(with different summation 
truncations), FDM solution and 
the relative error for case 2 at 
t = 20 min

x (cm) z (cm) θAnalytical, 
m = n =1 ∼ 5

θAnalytical, 
m = n = 1 ∼ 10

θAnalytical, 
m = n =1 ∼ 15

θAnalytical, 
m = n =1 ∼ 20

θFDM, Δt = 5 s, 
Δz = Δx = 5 cm

Relative 
error (%)

25 30 0.2199 0.2212 0.2218 0.2218 0.2245 1.21
40 50 0.1752 0.1779 0.1783 0.1783 0.1814 1.73
50 80 0.1998 0.2003 0.2008 0.2009 0.1983 1.29
60 90 0.2621 0.2631 0.2645 0.2647 0.2694 1.77
50 95 0.3106 0.3111 0.3125 0.3128 0.3174 1.47
70 40 0.2452 0.2457 0.2461 0.2461 0.2503 1.70
80 20 0.2853 0.2859 0.2861 0.2862 0.2812 1.74
90 85 0.1281 0.1285 0.1291 0.1294 0.1311 1.31
10 60 0.1120 0.1123 0.1124 0.1124 0.1140 1.42
30 70 0.1341 0.1346 0.1348 0.1348 0.1366 1.33

Fig. 5  Water content contours for case 2 at: a t = 5 min, b t = 20 min, c t = 60 min and d steady state
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In order to confirm summations convergence in Eq. (10) with 
the new coefficients, water content at different positions is 
calculated using summations truncation with different n and 
m values (Table 2). The soil parameters used for the problem 
are identical to those used in case 1. As given in Table 2, 
change in water content is negligible at n and m = 1 ~ 15 and 
higher. As a consequence, θ is calculated for n = m = 1 ~ 15 

(14-b)

Dm =
2

ab

b

∫
0

a

∫
0

{(�r − �0) ∗ U
[
z −

(
b

2a
x +

b

4

)]
+ �0 − �(x, z)}e

f

2D
z sin

(
m�

b
z
)
dxdz

Dm = C13(sin
(
3m�

4

)
C9 + sin

(
m�

4

)
C10 + cos

(
3m�

4

)
C11 + cos

(
m�

4

)
C12) + C14 + C15 − C16 − C17

C9 = e
3fb

8D (�0 − �r)
(
4D3b2fm2�2(b + 2a) + 4D2b4f 2 + Db5f 3 + 16D4b2m2�2 + 2Db4af 3

)

C10 = e
fb

8D

(
�0 − �r

)(
4D2b4f 2 − 16D4b2m2�2

)

C11 = e
3fb

8D

(
�r − �0

)(
2D2b4m�f 2 − 16D3b3m�f + 16D4abm3�3 + 4D2b3am�f 2

+ 8D4b2m3�3
)

C12 = 16D3b3m�f e
fb

8D

(
�r − �0

)

C13 =
2

ab(f 4b4 + 8f 2b2m2�2D2 + 16m4�4D4)

C14 =
8m�D2�0

f 2b2 + 4m2�2D2

C15 =

8C∗∗
3
m�D2b

(
4Dbf + 4e

fb

2D (−1)mm2�2D2 + e
fb

2D (−1)mf 2b2 + 4e
fb

2D (−1)m+1Dbf
)

f 4b4 + 8f 2b2m2�2D2 + 16m4�4D4

C16 =

8m�D2�sC
∗∗
4

(
e

fb

2D − (−1)m
)
e

−fb

2D

f 2b2 + 4m2�2D2

C17 = 4D2b�ram�e
fb

2D (−1)m
(
4D2m2�2 + b2f 2

)

in Eq. (10). To verify the developed solution, water con-
tent values obtained by an explicit scheme finite difference 
method (FDM) solution (to Eq. 7) is compared to those of 
the analytical solution (Eq. 10) for t = 20 min (column 7 
in Table 2). Eighth column shows relative error (Eq. 12) 
calculated based on column 5 (incorporating > 250 summa-
tion terms) and column 7 (FDM for Δt = 5 s, Δz = 5 cm and 
Δx = 5 cm). As indicated, errors are all less than 2% which 
may be considered reasonable.

Based on Eqs. (10), (14-a) and (14-b), water content con-
tours are shown in Fig. 5a–d for t = 5, 20, 60 min and steady 
state, respectively. As shown in the figures, the infiltrating 
water content front begins from a part at the top boundary 
( a
4
≤ x <

3a

4
 ) and covers the entire unsaturated zone by time. 

Obviously, as t → ∞, the water content values increase at all 
regions and the water table moves toward the soil sample 
surface as it converts from inclined shape to horizontal and 

curve shapes. Evidently, water content contours are perpen-
dicular to the right and left boundaries of the soil sample, 
confirming no-flow boundary condition in those boundaries. 
Also, as time elapses, water content contours approach a 
steady-state contour (Fig. 5d) associated with the last three 
terms in Eq. (10) and the steady-state contour for this case 
approaches the steady-state contour for case 1 (Fig. 3d).

Fig. 6  Schematic view of 2D infiltration problem in case 3
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6  Case 3: Ramp Distributions of Water 
Content on Two Parts at the Top Boundary 
and a Steep Water Table Initial Condition

In some cases, ground surface ponding in one part may also 
have a non-uniform distribution (Batu 1983; Wallach et al. 
1991; Kim and Hong Kim 2018), which needs to be ana-
lyzed analytically. This case is similar to the previous case, 

except for the fact that two parts of the top boundary are 
subjected to a ramp distribution of water content increas-
ing linearly from θr to θs. A schematic view of the problem 
statement is shown in Fig. 6.

Boundary and initial conditions may be mathematically 
expressed as:

(15-a)
��

�x
(0, z, t) = 0

��

�x
(a, z, t) = 0

(15-b)

�(x, b, t) = (�s − �r)

∗

[
U
(
x −

a

6

)(
4

a
x −

2

3

)
− U

(
x −

5a

12

)(
4

a
x −

2

3

)
+ U

(
x −

7a

12

)(
4

a
x −

7

3

)

−U
(
x −

5a

6

)(
4

a
x −

7

3

)]
+ �r

Fig. 7  Water content contours for case 3 at: a t = 5 min, b t = 20 min, c t = 60 min and d steady state
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The boundary condition (15-b) at the top boundary creates 
linear distribution (ramp distribution) of water content from 
θr to θs for all points of a

6
≤ x <

5a

12
 and 7a

12
≤ x <

5a

6
 (corre-

sponding to Fig. 6).Creation and expression of the boundary 
condition analytically for the problem is another innovation 
of this research. This type of the analytical boundary con-
dition has not been presented in previous studies for non-
uniform distribution of ground surface ponding on the top 
boundary of the unsaturated–semi-saturated soils. Follow-
ing similar mathematical procedures as before (case 1 and 
“Appendix”), the answer for θ(x, z, t) would be identical to 
Eq. (10) but with different coefficients. The mathematical 
forms of C∗∗

2
,C∗∗

4
 , Dmn and Dm are identical to what were 

defined by Eqs. (11-a), (11-d), (14-a) and (14-b), respectively. 
The mathematical forms of C∗∗

1
 and C∗∗

3
 in this case are:

Similar to previous cases, θ in this case is calculated for 
n = m = 1–15. Based on Eqs. (10), (14-a), (14-b), (16-a) and 
(16-b), water content contours are shown in Fig. 7a–d for 
t = 5, 20, 60 min and steady state, respectively. Soil param-
eters used for the problem are identical to those used before. 

(15-c)�(x, 0, t) = �0
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(16-a)

C∗∗
1

=

2

a
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4
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2
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(
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4
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(
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)(
4
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7
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+ �r ) cos (�x)dx

=
2e

f

2D
b

n2�2 sinh (�b)

∗

(
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(
5n�

12

)
+ 4(�r − �s ) cos

(
n�

6

)
+ 4(�r − �s) cos

(
7n�

12

)

+ 4(�s − �r ) cos
(
5n�

6

)

+ n�(�s − �r ) sin
(
5n�

6

)
+ n�(�s − �r ) sin

(
5n�

12
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=
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∫
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∗

[
U
(
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6

)(
4
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2

3
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(
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)(
4
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(
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− U
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4
e

−f

D
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=
1
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1

4
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3

4
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−fb

D
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As shown in the figures, water content just below the top 
boundary corresponds to the top boundary condition of 
Eq. (15-b) shown in Fig. 7 very closely, with the maximum 
water content always remaining at x = 41.6 and 83.2 cm 
(corresponding to x = 5a

12
 and 5a

6
 ). Vertical advancements of 

the water content front into the drier parts of the sample 
are clearly portrayed in the figures. However, water content 
at the top boundary (other than the “recharging window”) 
remains at θr = 0.0286 during the front advancement. Water 
content contours would be perpendicular to the side bounda-
ries, confirming no-flow boundary conditions there. Also, 
as time elapses, water content contours approach a steady-
state contour (Fig. 7d) associated with the last three terms 
in Eq. (10) and the water table moves toward the soil sample 
surface as it converts from inclined form to horizontal and 
curve forms.

7  Conclusions

In this paper, exponential models for water content and 
hydraulic conductivity were selected for nonlinear Richards’ 
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equation to become linear and then separation of variables 
and Fourier series expansion techniques were used to derive 
analytical solutions to 2D water infiltration into unsatu-
rated–semi-saturated soils with different distributions of 
water content on a part and/or parts of the top boundary. 
2D water infiltrations were investigated in a rectangular soil 
domain, where high water content zone was considered as 
semi-saturated zone and residual water content zone was 
considered as unsaturated zone at initial time. A total of 
three cases were investigated in this paper. In case 1, a 
uniform distribution of water content on a part at the top 
boundary and no-flow boundaries at side edges were con-
sidered. Also, horizontal water table in unsaturated–semi-
saturated domain was assumed as initial condition. In case 
2, an inclined water table initial condition and a uniform 
distribution of water content on a part at the top boundary 
were investigated. Finally, in case 3, an analytical solution 
for ramp distributions of water content on two parts at the 
top boundary and an inclined water table initial condition 
was obtained.

Analytically, setting up and developing these boundary 
and initial conditions for the cases are the main innovations 
of this research. Based on existing researches, these types 
of analytical boundary and initial conditions have not been 
presented for unsaturated–semi-saturated soils.

All the boundary and initial conditions in each case, as 
well as governing equation, were satisfied by the presented 
analytical solutions. Vertical advancements of the water 
content front into the drier parts of the sample were clearly 
portrayed in the figures of each case. Analytical solutions 
for cases 1 and 2 were compared to numerical finite dif-
ference method solutions and shown to have less than 2% 
difference. It should be noted that it is possible to find a 
numerical method or software which leads to higher degree 
of accuracy. However, these developed analytical solutions 
are benchmark solution for verification and efficiency assess-
ment of numerical methods. Also, these can be applied as 
the benchmark solutions which are vital for several analyses 
such as sensitivity analysis.

Appendix

Further details for derivation of Eq. (10) are as follows:
Substituting (9) in (7) and (8-a)–(8-d) yields:

(17)D
�2�

�z2
+ f

��

�z
+ D

�2�

�x2
−

��

�t
= 0
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��

�x
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��
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(19)�(x, 0, t) = 0 �(x, b, t) = 0

Similarly, the PDE for ψ(x, z) may be written as:

Now, utilizing separation of variables for ψ(x, z):

And substituting (25) in (21), one would get:

where μ is an arbitrary constant. If μ = 0 and μ < 0, say 
μ = −β2 and β > 0, then with considering the boundary con-
ditions of (22), X(x) has two answers:
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where C∗∗
1

 is C∗
n
C∗
1
 and C∗∗

2
 is C∗

n
C∗
2
 . Now, ψ(x, z) may be 

written as a combination of (33) and (34):

Now, using (23), (24) and Fourier series properties, the con-
stant coefficients in (35) would be:

φ(x, z, t) may be expressed via separation of variables as:

Substituting (37) in (17) and applying some simplifications 
gives:

where μ is an arbitrary constant. If μ = 0 and μ < 0, say 
μ = −β2 and β > 0, then with considering the boundary con-
ditions of (18), X(x) has two answers:

where A∗ and D∗
n
 are constants. Substituting μ = 0 and 

μ = −β2 in (38) for X
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X
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where A∗
m

 and A∗
mn

 are constants. A similar procedure may 
be followed to obtain Z(z) and T(t) in (42):
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Substituting (35) and (49) in (9), θ(x, z, t) or Eq. (10) is 
obtained.
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