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Abstract
Structures consisting of frames can be considered as shear structures under certain assumptions. The frame can be idealized 
as an equivalent shear beam in this case. In this study, the dynamic characteristics of non-uniform frames were investigated. 
For this purpose, the method of differential transform was used to solve the governing differential equation of the equivalent 
shear beam. This shear beam represented the structure of which shear stiffness varies along the height. In this study, the 
contribution of the axial deformation was taken into account with the help of equivalent shear stiffness. The least squares 
method was used in order to determine the parameter that defines the change of the shear stiffness. Thus, the dynamic 
characteristics were determined more realistically. Tables were prepared for use for the determination of the dynamic char-
acteristics of frame structures with non-uniform shear stiffness. Response spectrum analysis can be easily conducted using 
these tables. The suitability of the approach was investigated through examples at the end part of the study. The suggested 
method could be used safely during the preliminary design stage. It is particularly easy to understand the structural behavior 
due to the usage of fewer parameters.
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1  Introduction

Frame bearing systems are widely used in low-rise struc-
tures. An approach used in the analysis of structures under 
static and dynamic loads is the modeling of the structure 
as an equivalent cantilever beam. There are various models 
used for this, such as a shear beam, bending beam, Cson-
ka’s beam, and sandwich beam. The literature contains 
important studies in this regard. The Following are some 
of the most significant of these studies: Heidebrecht and 
Stafford Smith (1973), Zalka (2001a), Potzta and Kollár 
(2003), Rahgozar et al. (2004), Kaviani et al. (2008) and 
Hoenderkamp (2001).

Frame-type structures, of which axial deformations may 
be neglected, are considered as shear structures under some 
assumptions. In this case, the structure may be considered 

as an equivalent shear beam. A set of studies have taken 
place in the literature on modeling and analyzing frames as 
continuous shear beams.

Baikov and Sigalov (1981) investigated the free vibration 
analysis of uniform frames of which axial deformations can 
be neglected. They based their solution on the shear beam’s 
differential equation.

Ertutar (1987) achieved the static analysis of frames of 
which structural properties change along the height of the 
structure, using the shear beam’s differential equation. In the 
study, the case of an exponential change in the shear stiffness 
along the height of the structure was investigated.

Li (2000) proposed a method for the free vibration analy-
sis of shear beams of which mass and shear stiffness change 
along the length. In the presented method, the governing 
equation of the shear beam in case of free vibration was 
used. The solution of the differential equation was achieved 
with the help of Bessel equations. In the study, the changes 
in the mass and shear stiffness along the length of the beam 
were investigated for six different cases in the forms of expo-
nential and polynomial.
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Gulkan and Akkar (2002) suggested a practical equation 
to obtain drift spectrums. Dynamic behavior of the shear 
beam was taken as a basis to obtain the equation.

Rafezy et al. (2007) used the dynamic stiffness method 
to find the angular frequencies of asymmetrical structures 
of which bearing system consisting of frames and structural 
properties change along the height.

Kuang and Ng (2009) suggested an analytical method to 
determine the angular frequencies of asymmetrical frames of 
which structural properties do not change along the height. 
The structure in the study was modeled as an equivalent 
shear beam with St. Venant torsion.

Bozdogan and Ozturk (2010) suggested the Transfer 
Matrix Method for the dynamic analysis of asymmetrical 
structures that consist of frames. In the method, the analysis 
was achieved by the solution of a 6 × 6 matrix. The struc-
ture was modeled as an equivalent shear torsion beam. The 
method presented in the study could be used for the solution 
of structures of which the structural properties change along 
the height.

Zhang et al. (2013) investigated the shear beam-column 
systems to which axial load and elastically mass was applied.

Rodriguez and Miranda (2014) investigated the dynamic 
characteristics of cantilever shear beams with the uniform 
mass distribution of which lateral stiffness decreases along 
the length parabolically. Legendre polynomials were used in 
the study to solve the governing equation of the cantilever 
beam.

Tekeli et al. (2015) suggested a method to determine the 
ratios of displacement and inter-story drift ratio of uniform 
frames for the cases of loads that are distributed triangu-
larly, uniformly, and point load applied on any level on the 
height of the structure. The frame system was modeled as 
an equivalent shear beam in the study.

Saffari and Mohammadnejad (2015) applied the weak 
form integral equations to the solution of non-prismatic 
shear, Timoshenko and Euler–Bernoulli beams and there-
fore got the period, modes and internal forces of high rise 
structures.

Hassan and Hadima (2015) applied Recursive Differen-
tiation Method for static, dynamic and stability analysis of 
non-uniform beams resting on the elastic foundations.

Piccardo et al. (2015) developed an equivalent shear-St. 
Venant beam model for aeroelastic analysis of tower-type 
structures.

In this study, a practical method for the Response spec-
trum analysis of frame-type structures of which the shear 
stiffness changes along the height, was proposed. For this 
purpose, the dynamic parameters obtained by the solu-
tion of Differential Transform Method and the tables were 
prepared. With the proposed method, Response spectrum 
analysis can practically be done with the help of these tables. 
Differently, from the literature, the method does not require 
any software-code for the solution. In addition, the effect of 
axial deformations, which are particularly important in high 
and narrow structures, was taken into account in the study. 
Using the least squares method, a formula was developed to 
determine the change of the shear stiffness along the height 
of the structure.

The assumptions in the study are as the following:

a.	 The material is linearly elastic,
b.	 Geometric non-linear effects are ignored, therefore the 

first order theory is assumed,
c.	 Mass of the structure is uniform along the height of the 

structure,
d.	 Axial deformations of the beams and local bending 

deformation of columns are neglected,
e.	 Torsion effects are neglected.

2 � Physical and Mathematical Model 
of Presented Method

The multi-span planar frame can be represented as an equiv-
alent shear beam as seen in Fig. 1, if axial deformations and 
local bending deformation are neglected.

Fig. 1   Modelling the frame 
system as an equivalent shear 
beam
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Shear stiffness at the bottom of the equivalent shear beam 
is GA(O), while it is GA(H) at the top. H presents the height 
of the structure.

Different equations have been developed in the literature 
to determine the shear stiffness (Hosseini and Imagh-e-Naiini 
1999; Caterino et al. 2013).

In this study, the following equations are used to determine 
the shear stiffness.

The equivalent shear stiffness of GA is calculated using the 
following equation for the first storey (Taranath 2010):

For the other storeys, it is calculated by the following equa-
tion with the assumption that the bending moment is equal to 
zero at the midpoints of the columns and beams (Baikov and 
Sigalov 1981):

here s and r are total rigidity values of the columns and 
beams respectively, and they are calculated with the equa-
tions below:

here E is the modulus of elasticity, Ici is the moment of iner-
tia of the ith column, e is the number of columns in the 
related storey, h is the height of the storey, Ibi is the moment 
of inertia of the ith beam, g is the number of beams in the 
related storey, and li is the length of the ith beam.

Especially in high-rise structures, the importance of axial 
deformations is increasing. Zalka (2001a) suggested an effec-
tive shear stiffness equation by taking account of axial defor-
mations. The formula proposed by Zalka was only considering 
the first mode. In this study, the formula was developed by 
taking into account of four modes. For ith mode, the effective 
shear stiffness can be calculated as
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where Di is the global bending stiffness of ith story and can 
be calculated as below (Zalka 2001a, b; Potzta and Kollár 
2003):

where Aji is the area of the jth column in the ith story 
and dj is the distance of jth column from the centroid of 
cross-section.

The change in the equivalent shear stiffness of the equiv-
alent shear beam presenting the structure is taken as it is 
described in the literature (Rodriguez and Miranda 2014):

In this study, we obtained the following equation using the 
least squares method to determine the δ coefficient.

Using K0i instead of GAef(0) from here on:

The differential equation of the equivalent shear beam in the 
case of free vibration is written as the following (Rodriguez 
and Miranda 2014, 2016):

here 
−
m shows the mass distributed along the height of the 

structure.
The partial differential Eq. (8) can be separated into its vari-

ables based on time and position like the following:

If the Eq. (13) is placed into the Eq. (12), the ordinary dif-
ferential Eqs. (14) and (15) are obtained:

(7)

f 2
axi

=
biDi
−
mH4

(b1 = 0.313, b2 = 12.311,

b3 = 96.117, b4 = 369.822)

(8)Di =

m
∑

j=1

EAjidj
2

(9)GAefi(z) = GAefi(0)

[

1 − (1 − �i)
z2

H2

]

(10)

�i = 1 −

H2

n
∑

j=1

�

[GAefi(0)]
2 ∗ z2

j
− GAefi(0) ∗ GAef(zj)z

2

j

�

n
∑

j=1

�

[GAefi(0)]
2 ∗ z4

j

�

i = 1, 2, 3, 4

(11)K0i = GAefi(0)

(12)
�

�z

[

GAefi(z)
�u

�z

]

−
−
m

�2u

�t2
= 0

(13)u(z, t) = y(z)q(t)

(14)d
2q

dt2
+ �2

i
q = 0

(15)
d

dz

[

GAefi(z)
dy

dz

]

+ �2

i

−
my = 0



40	 Iranian Journal of Science and Technology, Transactions of Civil Engineering (2020) 44:37–47

1 3

here ωi represents the angular frequency.
If GAefi(z) in the Eq. (9) is placed into the Eq. (15), the 

Eq. (16) is obtained:

Displacement at the bottom and the shear force at the 
top of the equivalent shear beam are zero. In this case, 
the boundary conditions are defined with the Eqs. (17) 
and (18).

The transformation in Eq.  (19) is used to make the 
given equations dimensionless.

Applying the transformation (19), into the Eq. (16) 
results in the Eq. (20).

If both sides of the Eq. (20) are divided by K0, the dif-
ferential Eq. (21) is obtained:

A shortened version of the Eq. (21) may be shown as 
the Eq. (22).

Here, the value of a is defined as the following for 
shortened representation of the equation.

Similarly, if the transformation (19) is placed into the 
Eqs. (17) and (18), Eq. (24) and (25) are obtained.

The only solution of the Eq. (22) is the series solution.
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3 � A Solution of the Equation 
with Differential Transform Method

Differential Transform Method is a practical method used 
in the solution of differential equations (Kaya and Ozdemir 
Ozgumus 2010; Attarnejad et al. 2010). The differential 
transformation method has advantages such as simple 
applicability, computational efficiency, and high accuracy 
(Ahmad et al. 2015).

The differential transformation of function y can be 
defined as the following (Rajasekaran 2009):

From the equations given above, the differential transform 
equation can be shown practically by using the following 
arithmetic equation:

here yβ shows the derivative as the following:

Applying the transformation Eq.  (29) in the Eq.  (22) 
results in Eq. (31).

Applying differential transformation into the bound-
ary conditions in Eqs. (24) and (25), results in Eqs. (32) 
and (33):

Taking Y[1] as unknown, showing the other coefficients 
in relation to Y[1] with the help of (31), and placing these 
into the Eq. (33) result in the following:
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In order to obtain a non-zero solution in the Eq. (34), 
a values are obtained from the solution of the Eq. (35).

Using the a values and the Eq. (23), the ω values are 
found with the help of the Eq. (36) as the following:

In dynamic analysis, there is some difference between 
the results of the distributed model and the lumped mass 
model. In order to overcome this discrepancy, Zalka 
(2001a, b) proposed a coefficient of correction for the 
wall-frame systems. We developed this coefficient for 
frame-type structures.

In this case, the Eq. (36) is written as follows:

The coefficients of correction are calculated for the first 
four modes using the model shown in Fig. 2 and SAP2000 
(2018) and are given in Table 1.

In the table n is the story number.
For the first four modes, a values are computed for dif-

ferent δ values and presented in Table 2.
It can be seen from Table 2 that when δ = 0.01 situation 

is compared with δ = 1 which is the uniform shear stiffness 
case, the first natural vibration period value increases by 
1.108 times. This increase is 1.345 for the second mode, 
1.408 for the third mode and 1.435 for the fourth mode.

This change is graphically shown in Fig. 3.
If the ai values found for each mode are written into the 

Eq. (31), the Y[k] values are obtained.

(34)z(ai)Y[1] = 0

(35)z(ai) = 0

(36)�i = ai

√
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−
mH2

(37)�i = airfi

√
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−
mH2

After finding the Y[k] values, y mode shapes for the ith 
mode are found using the Eq. (27).

4 � Obtaining the Dynamic Characteristics

The parameters required for the spectral analysis can be 
found by the modal analysis. Using the y mode shapes, the 
effective mass is found using the following equation (Chopra 
2016):

The effective mass ratio is found using the ratio of the 
effective mass found with the Eq. (38) to the total mass of 
the structure. Table 3 shows the effective mass ratios for 
different values of δ. It is seen from Table 2, the variation 
in shear stiffness has little effect on effective mass ratios.

Bottom shear force for the ith mode is calculated using 
the following equation:

here Spa(Ti) shows the spectral acceleration for the ith mode.
Spectral acceleration ordinates corresponding to the peri-

ods are found from the acceleration spectrum obtained from 
the earthquake data or design spectrum.
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Fig. 2   Continuum and lumped mass models

Table 1   rfi values for the first four modes

n Mode 1 Mode 2 Mode 3 Mode 4

1 0.637 – – –
2 0.787 0.687 – –
3 0.850 0.794 0.688 –
4 0.884 0.849 0.780 0.684
5 0.906 0.882 0.834 0.765
6 0.921 0.903 0.868 0.817
7 0.932 0.918 0.891 0.852
8 0.940 0.929 0.908 0.877
9 0.946 0.938 0.921 0.895
10 0.952 0.944 0.930 0.910
11 0.956 0.950 0.938 0.921
12 0.959 0.954 0.944 0.929
13 0.962 0.958 0.949 0.937
14 0.965 0.961 0.954 0.943
15 0.967 0.964 0.957 0.948
16 0.969 0.966 0.961 0.952
17 0.971 0.969 0.963 0.955
18 0.973 0.970 0.966 0.959
19 0.974 0.972 0.968 0.962
20 0.975 0.974 0.970 0.964
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The displacement of the top point of the non-uniform frame 
is calculated using the following equation for the ith mode:

(40)dmaxi = dfi ∗
Spa(Ti)

�2

i

here dfi is the top point displacement coefficient and it is 
calculated using the following equation:

dfi values for different δ values are calculated for the first 
four modes and given in Table 4.

The maximum value of the inter-story drift ratio occurs at 
the base of the structure due to the assumption of the shear 
beam and is calculated using the following equation:

Table 5 shows the λi values for different δ values calcu-
lated for the first four modes.

The values given in Table 5 show the inter-story drift 
ratio coefficients for the first four modes, at the position 
where the inter-story drift ratio is maximum for the first 
mode. In the high rise frames the maximum value of the 

(41)dfi =
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mj ∗ yji
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mj ∗ y2

ji

∗ yni

(42)Idri = �i ∗
Spa(Ti)

H ∗ �2

i

Table 2   ai values for the first 
four modes for different δ values

δ 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.01

Mode 1 1.571 1.560 1.549 1.538 1.525 1.512 1.497 1.481 1.463 1.442 1.429 1.418
Mode 2 4.712 4.637 4.558 4.473 4.382 4.283 4.174 4.051 3.909 3.732 3.620 3.503
Mode 3 7.854 7.723 7.583 7.434 7.272 7.096 6.900 6.676 6.411 6.070 5.840 5.577
Mode 4 10.996 10.809 10.611 10.399 10.169 9.917 9.637 9.315 8.931 8.430 8.082 7.662

Fig. 3   The change of natural period depending on δ values

Table 3   The effective mass 
ratios for the first three modes 
for δ 

δ 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.01

Mode 1 0.81 0.81 0.81 0.80 0.80 0.79 0.79 0.78 0.78 0.77 0.76 0.75
Mode 2 0.09 0.09 0.09 0.09 0.09 0.10 0.10 0.10 0.10 0.10 0.10 0.10
Mode 3 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.06
Mode 4 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Table 4   dfi values for different δ values for the first four modes

δ 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.01

Mode 1 1.27 1.28 1.29 1.29 1.30 1.31 1.33 1.34 1.37 1.40 1.43 1.47
Mode 2 − 0.41 − 0.43 − 0.44 − 0.45 − 0.47 − 0.48 − 0.51 − 0.53 − 0.57 − 0.64 − 0.69 − 0.78
Mode 3 0.26 0.27 0.27 0.28 0.29 0.30 0.32 0.34 0.37 0.43 0.49 0.60
Mode 4 − 0.18 − 0.18 − 0.19 − 0.19 − 0.20 − 0.21 − 0.22 − 0.23 − 0.26 − 0.30 − 0.34 − 0.43

Table 5   The λi values for 
different δ values for the first 
four modes

δ 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.01

Mode 1 2.00 1.96 1.93 1.89 1.85 1.81 1.76 1.71 1.65 1.59 1.55 1.51
Mode 2 1.97 1.93 1.90 1.86 1.81 1.76 1.71 1.64 1.57 1.46 1.39 1.30
Mode 3 2.03 1.99 1.96 1.92 1.87 1.83 1.77 1.71 1.63 1.53 1.45 1.35
Mode 4 1.93 1.90 1.86 1.83 1.78 1.74 1.68 1.62 1.54 1.44 1.36 1.24
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inter-story drift ratio may occur in the middle stories, but 
considering the shear beam model it is assumed to occur at 
the base of the structure.

5 � Response Spectrum Analysis

Response spectrum analysis can be conducted by utilizing 
an elastic spectrum created for certain earthquake data or 
design spectrums in earthquake codes. Steps for the process 
of the Response spectrum analysis are given below:

•	 GA values are computed using the Eqs. (1) and (2).
•	 For the first four modes, the effective shear stiffness 

involving the contribution of the axial deformations are 
calculated using Eqs. (5), (6) and (7).

•	 The values of δ, which show the change in shear stiffness, 
are calculated using Eq. (10) for the first four modes.

•	 Angular frequencies and periods for the first four modes 
are found for δ values, using Table 2 and the Eq. (37).

•	 Spectral acceleration ordinates corresponding to the peri-
ods are found from the acceleration spectrum obtained 
from the earthquake data or design spectrum.

•	 Dynamic coefficients are found from Tables 3, 4 and 5 
for δ values for the first four modes.

•	 Base shear force for the ith mode is found by using the 
Eq. (39).

•	 The top point displacement for the ith mode is found by 
using the Eq. (40).

•	 The maximum inter-story drift value for the ith mode is 
found by using the Eq. (42).

•	 For each mode, the values (base shear force, top point 
displacement, maximum inter-story drift ratio) are found 
and combined by the rules of the method of the square 
root of the sum of the squares.

6 � Numerical Examples

In this section, in order to show the suitability of the method, 
four examples were solved using the proposed method and 
the results were compared with the literature and the finite 
element method.

6.1 � Example 1

In this example, the SAC 20 building of which the proper-
ties were used according to the literature (Rodriguez and 
Miranda 2014) was investigated. The δ value for the SAC 
20 was taken as 0.34 as given in the literature. The ratios of 
the second and the third periods of this building to its first 
period were found with the method presented in this study 
and the results were compared with the literature in Table 6.

Table 6 shows that the proposed method provides results 
that are in accordance with the literature.

6.2 � Example 2

The 9-story planar frame in Fig. 4 was investigated accord-
ing to the Turkish Earthquake Code 2007, thus the local 
site class was taken as Z4, the seismic zone was second 
and the building that was designed as a residence. Column 
dimensions of the frame were shown in Table 7. The modu-
lus of elasticity was E = 3 * 107 kN/m2, and all beams were 
in dimensions of 0.25 m/0.50 m. Story masses were taken 
as 15 t. Shear and global bending stiffness were given in 
Table 8. Calculated δ values were given in Table 9.

Response spectrum analysis of the frame was conducted 
using the presented method, and the results were compared 
with the results obtained by using the SAP2000 (2018) pack-
age software.

Table 6   Comparison of period ratios for Example 1

Rodriguez and Miranda 
(2014)

This study

The ratio of periods for δ = 0.34
T2/T1 0.35 0.36
T3/T1 0.22 0.22

4 m 4 m 4 m

4 m

8*3=24 m

Fig. 4   9-storey planar frame
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The values of the periods for the first four modes were 
calculated using the method presented in this study, and 
compared with results of SAP2000 (2018) in Table 10.

Base shear force, top point displacement and maximum 
inter-story drift ratio were calculated and compared with 
SAP2000 (2018) results in Table 11.

As it was seen in Tables 10 and 11, the results obtained 
with the presented method were close to those of SAP2000 
(2018).

6.3 � Example 3

In this example, the Response spectrum analysis for the 
x-direction of a 12-story building in Fig. 5, was conducted 
by the presented method. Then the appropriateness of the 
method to the ETABS (2017) was investigated.

The height of the first story of the building was 4 m and 
the others were 3 m. The mass of the story was taken as 380 
tons for the first 11 stories and 280 tons for the last story. 
The modulus of elasticity was E = 3.2 * 107 kN/m2 and the 
column and beam dimensions were presented in Table 12.

The Response spectrum analysis was made according to 
the Turkish Earthquake Code 2007 and the building was 
built on the first seismic zone and on the Z2 soil class. The 
building importance factor was 1 and the structural behavior 
factor was 8.

The shear and global bending stiffness of the 12-story 
building were calculated and presented in Table 13.

The δ values calculated for the first four modes were 
given in Table 14.

The same example was solved using ETABS (2017) and 
the results were compared in Tables 15 and 16. As it can be 
seen from the tables, the results obtained were suited for the 
preliminary design stage. 

6.4 � Example 4

Moment-resisting steel frame in Fig. 6 was taken from the 
literature (Wong 2013) for the example. The periods were 
solved by the method presented in this study, and the results 
were compared. The column and beam dimensions of the 
six-story steel frame were given in Table 17.

The mass of each story was taken as 200. Shear stiffness 
and global bending stiffness values of the frame were calcu-
lated and given in Table 18.

The δ values were calculated and given in Table 19.
Natural periods were calculated by the presented method 

and compared with the results obtained by the literature and 
SAP2000 (2018) in Table 20

Table 7   Column sizes for 
Example 2

Storey nos. Column size

1–3 0.40 m/0.40 m
4–5 0.35 m/0.35 m
6–7 0.30 m/0.30 m
7–9 0.25 m/0.25 m

Table 8   Shear stiffness and global bending stiffness for Example 2

Story GA (kN) D (kNm2)

1 105,051.213 384 * 106

2–3 138,959.2531 384 * 106

4–5 107,937.9252 294 * 106

6–7 73,932.092 216 * 106

8–9 42,613.627 150 * 106

Table 9   The δ values for 
Example 2

Mode nos. δ

1 0.4374
2 0.4437
3 0.4450
4 0.4453

Table 10   Comparison of the periods of the first four modes (Example 
2)

Mode SAP2000 
(2018) (a)

This study (b) Error (%) (b − a)/b

First 4 periods (s)
1 0.850 0.856 0.71
2 0.330 0.303 − 8.18
3 0.190 0.186 − 2.11
4 0.130 0.138 6.11

Table 11   Base shear force, top 
point displacement and inter-
story drift ratio comparison 
(Example 2)

SAP2000 (2018) (a) This study (b) Error (%) (b − a)/b

Base shear force 100.38 kN 99.03 kN − 1.34
Top point displacement 0.0234 m 0.0198 m − 2.56
Maximum inter-storey drift ratio 0.011 0.011 –
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7 � Conclusion

In this study, a method was proposed for the dynamic 
analysis of frames of which shear stiffness changes non-
uniformly along the height of the structure. The frame was 
modeled as an equivalent shear beam and the dynamic 
characteristics of the equivalent shear beam were deter-
mined with the Differential Transform Method. Therefore, 
a practical and fast method was proposed for the Response 
spectrum analysis by using tables. At the end of the study, 
four numerical examples were solved and the suitability of 
the method was analyzed. The results from the examples 

Fig. 5   The plan of 12 storey 
building

6 m 6 m4 m 4 m

4 m

4 m

4 m

4 m

X

Y

Table 12   Column and beam sizes for Example 3

Storey nos. Column size Beam size

1–4 0.45 m/0.90 m 0.40 m/0.80 m
5–8 0.40 m/0.80 m 0.35 m/0.70 m
9–12 0.35 m/0.70 m 0.30 m/0.60 m

Table 13   Shear and global bending stiffness values (Example 3)

Story GA (kN) D (kNm2)

1 5,339,468.685 1.50,336 * 1010

2–4 6,099,726.868 1.50,336 * 1010

5–8 3,648,808.494 1.18,784 * 1010

9–12 2,019,943.799 0.90,944 * 1010

Table 14   The δ values for 
Example 3

Mode nos. δ

1 0.2459
2 0.2338
3 0.2313
4 0.2307

Table 15   Comparison of the periods of the first four modes (Example 
3)

Mode ETABS (a) This study (b) Error (%) (b − a)/b

First 4 periods (s)
1 0.887 0.820 − 7.55
2 0.326 0.296 − 9.20
3 0.191 0.181 − 5.24
4 0.130 0.132 1.54
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confirmed that the suggested method provides adequately 
suitable results fast and practically, thus it can be used 
safely in the stage of preliminary design. Moreover, the 
presented method provides a better understanding of struc-
tural behavior with a few parameters.
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