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Abstract
The aim of this paper is to define the optimum shape of double-arch dams. This is studied here considering the shape of 
existing double-arch dams located in Spain. The analysis has been carried out in two consecutive stages. The first one refers 
to defining issues about Bayesian estimators to obtain the value for designing the optimum dam shape. In the second stage, 
the shape equations are iterated step-by-step. Data are taken from the inventory of Spanish existing dams. To obtain the non-
available data, the Gaussian distribution under the Bayesian theorem hypotheses has been employed. This theorem converts 
the prior distribution using unknown parameters into the posterior distribution which provides expected parameters, i.e. the 
Bayesian estimators. The main challenge of the analysis is to identify the parameters which define the optimum shape of an 
existing dam. For this, over 30 dams have been selected and over 700 data have been collected. One of the main practical 
implications of this research comprises a reduction of the concrete volume, which implies a reduction of the financial costs 
and the environmental impact.

Keywords  Shape optimization · Bayesian estimators · Double-arch dams · Spanish dams

1  Introduction

The main goal of this paper is to define an optimum shape 
for double-arch dams. This has been developed by consider-
ing and analysing the existing double-arch dams located in 
Spain. From the inventory of existing dams, one can notice 
a great range of data; however, some important ones are not 
available. To estimate the non-available data, the Bayesian 
theorem has been adopted here. In this analysis, 34 double-
arch dams have been identified, of which 11 were built over 
50 years ago.

The objective of optimizing double-arch dams through 
mathematical modelling is not only to make explicit the 
scheme of optimum design under certain conditions, but also 
to minimize the discrepancy between the simulated data and 
the collected data.

The shape design of double-arch dams is based on the 
experience of the designer and on the following techniques: 
modelling, analysis, testing the materials to avoid defects 
and accuracy analysis of the error corrections to avoid inad-
equate constructions. The decrease of uncertainties largely 
comprises a mix of experience, best practice, prudent esti-
mation of material properties and utilization of a conserva-
tive approach to modelling. Given that this is a field that 
mainly relies on the engineers’ experience and innovative 
methods carried out by researches, the gap between engi-
neering practice and engineering research should be reduced.

Double-arch dams are one of the most important chal-
lenges in designing and modelling. They are usually a topic 
of research—by using drones (Ridolfi et al. 2017; Buffi et al. 
2017a, b) and sensors (Zhu et al. 2016; Reinoso et al. 2017) 
as innovative methods—as they have several purposes for 
society, economic growth and urban economization, for 
example water supply, flood control, irrigation of local agri-
culture, navigation or hydropower generation.

Dam safety has gained increasingly more attention due 
to the considerable damage (high risk) that may occur 
when accidents and failures happen. Defining information 
regarding safety and economy in the design of arch dams 
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is an issue that has been studied for many years (Savage 
and Houk 1931).

Moreover, dams are multihazard-vulnerable structures 
(Yuen 2010; Yuen et al. 2006) affected by phenomena such 
as earthquakes (Baker and Gupta 2016), flooding and sta-
bility of terrain, to name a few examples. Some causes of 
failures are the foundation deterioration (aging phenom-
ena), water overtopping, debris that block the spillways, 
piping cracks, uplift pressures higher than design pres-
sures, high temperature during the construction (Zhang 
et al. 2015) or non-uniform temperature due to the solar 
radiation (Jin et al. 2010). Therefore, for all types of dams, 
monitoring to avoid cracks (Li et al. 2013) and geophysical 
inspections (Cardarelli et al. 2010, 2014) are of primary 
importance.

Engineers need to combine the traditional analysis with 
risk assessment approach to obtain a good understanding of 
the expected structure performance and its risk.

The geometric shape of double-arch dams is the main 
factor that influences their own stability. In addition, it 
affects the project cost. The cost of double-arch dams largely 
includes the concrete volume and the area and the founda-
tion excavation (Akbari et al. 2011; Fan et al. 2015).

In the literature, there are some interesting cases that 
optimize the arch dam shape, for example, using complex 
methods (Xiao-fei et al. 2009; Shouyi et al. 2009), genetic 
algorithms (Seyedpoor and Gholizadeh 2008) (for earth 
dams see Li et al. (2016)) and combining approaches relat-
ing other methods (Seyedpoor et al. 2011). There are also 
other optimization methods which are used to define the 
material parameters (Gu et al. 2015). For concrete gravity 
dams, the optimal shape including the interaction dam–water 
foundation has been studied in (Khatibinia and Khosravi 
2014; Khosravi and Heydari 2013) idealizing the dam as the 
triangular shape in the 2D analysis.

To design dams, there are some limitations imposed by 
topographic and geologic conditions. A lack of knowledge 
on shear strength parameters in the dam–foundation interface 
can be very dangerous for dam safety (Alrarejos-García et al. 
2015). Most dams are built on rocky foundation but some 
are built on foundation with very low deformation modulus, 
such as the Vajont Dam, situated in Italy, and the Mauvoisin 
Dam in Switzerland (Fan et al. 2015). The deformability of 
the foundation can considerably increase the stresses in the 
dam body. Obviously, an advanced geological survey must 
be conducted before construction to avoid such problems.

The geometry of cantilevers and arches defines the dam 
shape and, consequently, the distribution and magnitude of 
the stresses. In the dam shape optimization analysis, several 
kinds of stresses should be considered as constraints. In par-
ticular, the constraints could be defined in terms of allowable 
tensile and compressive stresses in the cantilevers and in the 
upstream–downstream face of dam blocks.

The Bayesian theorem is employed to convert the prior 
distribution of uncertainty parameters into the posterior 
distribution by using the gathered data. The Bayesian sta-
tistical framework is of great interest in the civil engineer-
ing research field, especially for structural models based on 
numerous data and parameters that are difficult to obtain 
otherwise (Beck and Katafygiotis 1998; Conte et al. 2015).

For example, the option to use the Bayesian theorem to 
calculate the unknown parameters to define the geometry of 
double-arch dams results from an analysis of Bartoli et al.’s 
work (2017). Here, the Bayesian theorem has been used to 
obtain the parameters as the elastic modulus and the struc-
tural period, which are usually uncertain parameters.

The first part of the paper presents materials and methods 
to show the data. The second part presents the geometrical 
model and their design constraints and optimization crite-
ria. Then, the Bayesian estimators are defined, and finally 
the analysis and results are shown. The mathematical pro-
gramme Wolfram Mathematica (2017) is used here, which 
overcomes the flaws of complex integrations and has a great 
work capacity and high efficiency.

2 � Materials and Methods

This section shows the general methodology to define the 
shape optimization of double-arch dams by using appropri-
ate equations. To define the variables of the problem, the 
Bayesian method has been used; its general methodology 
has also been shown.

The shape optimization process requires careful avail-
ability of existing dam’s data, body shape modification, 
adequate structural design, evaluation of the constraints and 
feedback analysis in relation to the standard design criteria. 
Finding the optimal shapes of double-arch dams means opti-
mizing the cost, too.

The Bayesian method is a stochastic method that can be 
interpreted as a series of logical multi-values for plausible 
reasoning under incomplete information. A probability dis-
tribution gives a measure of how plausible each variable is. 
The evaluation of uncertainties plays an important role in the 
analysis of the constructed facility. The type of uncertainty 
or aleatory variable cannot be eliminated but it can be esti-
mated and, therefore, reduced.

Figure 1 shows the architecture of the planned methodol-
ogy for optimization of double-arch dams. The procedure of 
the flowchart is explained as follows (the equations and the 
variables are explained in detail in the successive sections): 
firstly, the inventory data of double-arch dams in Spain and 
other data from the literature are collected. Then, the equa-
tions of the horizontal section shape (up- and downstream 
face) of double-arch dams are written by using a programme 
Wolfram Mathematica (2017). The equation about the radii 
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of curvature and the equation of the central vertical section 
are included in the first ones. After that, the Gaussian distri-
bution (a priori and a posteriori) is defined under the hypoth-
esis of the Bayesian theorem and the Bayesian estimators 
are calculated. Finally, the verification of values consistent 
with the adopted constraints takes place, and consequently, 
the volume and area of the optimum shape of the dam are 
defined.

Table 1 shows the inventory of the data of double-arch 
dams that have been analysed in this work. The selection 
criteria are: (1) height of the double-arch dam > 35.0 m and 
(2) sufficiently available information to carry out the analy-
sis. Some values of the crest base dams are not available. 
Data to build the inventory are available online (SEPREM 
2017; SNCZI 2017). An intersection of data available on the 
websites has been made to reach more complete information.

Data about the location (province and city) and purpose 
(use of reservoir) help to collocate the optimum dam in a 
more detailed context. However, it is important to highlight 
that the results refer to an ideal dam; therefore, a specific 
context is difficult to identify.

Figures 2 and 3 show dams that are based on the ground 
basic acceleration ab and k value (coefficient of contribu-
tion), which considers the influence of the different types 
of earthquakes expected in the seismic hazard of each 
point. Some values of the ab/g and k are not available in the 

Spanish code (NCSE-02 2002); therefore, they have been 
estimated. The mean value of the dams’ height, in Table 1, 
is used to carry out the mathematical analysis. This deter-
ministic value (95.55 m) is compatible—in accordance with 
the inventory (Table 1) and literature (USACE 1994)—with 
different factors (i.e. crest length and central angle of dam, 
which are explained later).

In Fig. 2, it is possible to note that the higher value occurs 
for the Beznar Dam (186.4 cm/s2) and the Quentar Dam 
(196.2 cm/s2) which are in Granada province in the Anda-
lusian region (southern Spain). In fact, in this region the 
seismic intensity is relevant (IGN-UPM 2013). Considering 
all data, the mean acceleration is 56.9 cm/s2. The k value 
considers the different earthquakes’ type, for example distant 
and strong earthquakes or near and weak ones. It is possible 
to note, in Fig. 3, that these values are rarely considered, i.e. 
k = 1.0; as it is very difficult to standardize the seismic activ-
ity, it is always necessary to do a specific study “in situ”.

3 � Geometrical Model Theory

The shape of dams relates to the local building materials and 
construction techniques. The double-arch dams with vari-
ous thickness measures are usually chosen. The geometrical 
model must be analysed in two perspectives: in a vertical and 

Fig. 1   Flowchart of the study methodology
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Table 1   Inventory of double-arch dams in Spain

Dam name Province City Height (m) Crest base 
(m)

Crest length 
(m)

Volume 
(103 m)

Reservoir 
capacity 
(h m3)

Year of 
construc-
tion

Use of 
reservoir

Albarellos Orense Leiro y 
Boboras

90.00 3.00 285.00 217.00 90.70 1971 H

Alloz Navarra Yerri, Gue-
salaz

66.80 1.50 74.40 18.47 65.31 1930 H/I

Almendra Salamanca Almendra y 
Villar del 
Buey

202.00 10.00 567.23 2.186 2648.64 1970 H

Angeles, Los Segovia Vegas de 
Matute

37.25 ? 110.00 5.70 1.76 1969 R

Atazar, El Madrid Patones y 
Atazar

134.00 8.00 484.00 1100.00 425.00 1972 W

Baells, La Barcelona Berga 102.35 ? 302.38 400.00 109.43 1976 W/H
Barca, La Asturias Tineo y 

Belmonte
74.00 4.00 178.00 113.00 31.10 1966 H

Baserca Huesca Montanuy, 
Vilaller

86.00 8.00 330.00 230.00 21.86 1983 H/F

Belesar Lugo Chantada 129.00 5.50 500.00 735.00 654.10 1963 H
Beznar Granada Pinar, El 134.00 7.50 408.00 485.00 53.60 1986 W/H
Canelles Huesca Estopiñan del 

Castillo, Os 
de Balaguer

151.00 6.00 210.00 332.994 678.00 1960 H

Castro de las 
Cogotas

Avila Cardeñosa/
Avila

67.00 ? 299.20 117.30 58.70 1994 W/H

Cohilla, La Cantabria Tudanca 116.00 2.00 288.00 181.00 11.80 1950 H
Eiras Pontevedra Fornelos de 

Montes
51.00 2.00 191.00 46.70 22.17 1977 W

Eume La Coruña Capela, A, 
Monfero

103.00 3.20 284.00 225.00 123.00 1960 H

Guara Huesca Casbas de 
Huesca

63.00 4.50 85.00 13.746 3.65 1995 W/I

Guijo de 
Granadilla

Caceres Guijo de 
Granadilla

51.50 5.00 210.00 95.41 13.00 1982 H

Jose Toran Sevilla Lora del Rio 77.00 8.50 362.00 206.15 101.24 1992 W/I
Lanuza Huesca Sallent de 

Gallego
79.60 3.00 176.33 65.08 25.00 1978 H

Llauset Huesca Montanuy 89.00 7.10 300.00 220.00 16.78 1983 H
Llosa del 

Cavall, La
Lleida Naves 122.00 8.00 326.00 350.00 79.40 1999 W/F

Matalavilla Leon Paramo del 
Sil

115.00 2.50 240.00 170.00 60.74 1967 H

Montejaque Malaga Montejaque 83.75 3.00 84.00 30.00 36.00 1924 H
Pedrezuela 

(Vellon, El)
Madrid Pedrezuela 52.50 ? 218.00 95.00 41.23 1967 W

Ponton Alto Segovia Palazuelos 
de Eresma, 
San Ilde-
fonso

49.00 ? 248.00 92.69 7.41 1993 W

Portas, Las Orense Vilariño de 
Conso

141.00 9.00 476.70 641.00 535.70 1974 H

Quentar Granada Quentar 133.00 3.50 200.00 227.00 13.60 1975 W/I
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H hydroelectric generation, I irrigation, W water storage, R recreation, F flood control

Table 1   (continued)

Dam name Province City Height (m) Crest base 
(m)

Crest length 
(m)

Volume 
(103 m)

Reservoir 
capacity 
(h m3)

Year of 
construc-
tion

Use of 
reservoir

Quiebrajano Jaen Valdepeñas 
de Jaen, 
Campillo 
Arena

71.50 5.50 212.00 119.92 31.60 1976 W

Riaño Leon Cremenes 100.50 4.20 337.40 270.00 664.00 1988 H/I
Santa Eulalia Orense Veiga, La, 

Bollo
73.00 5.00 212.00 72.40 11.00 1966 H

Soria Las Palmas San Barto-
lome de 
Tirajana

132.00 ? 148.45 211.68 32.30 1972 W/H

Susqueda Gerona Susqueda 135.00 5.00 510.00 662.00 233.00 1968 W/H
Tajera, La Guadalajara Sotillo, El 39.00 4.50 220.11 67.00 9.94 1973 I/F
Valdecañas Caceres Belvis de 

Monroy y 
Cañas de 
Tajo

98.00 2.50 290.00 270.00 1446.00 1964 H/I

Fig. 2   Seismic accelerations 
ab/g for each studied dam

Fig. 3   Coefficient k for each 
studied dam
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in a horizontal section. For the vertical section, it is possi-
ble to consider the central section because this is in general 
greater than the other sections, whereas the horizontal sec-
tion should be considered as a parabolic curve. The dam site 
can be considered symmetrical at a large scale.

However, it is important to know that the dams can have 
different curvature centres (or planes of centres) and there-
fore different laws for the upstream (US) and downstream 
(DS) faces at z-axis. For example, one plane of centres is 
used to describe arches in a symmetrical site, whereas two 
planes of centres or more are used to describe arches in non-
symmetrical sites USACE (1994).

Dams are formed by cantilevers and arches. The behav-
iour of cantilevers is idealized as a beam, and the crown can-
tilever is the highest beam of the dam. The studied structure 
is double-curved; it is symmetrical in plant with respect with 
the main section and placed on a base (foundation) which 
extends all around the perimeter of the abutments. The US 
and DS faces increase the thickness of the cantilevers pro-
gressively, collaborating with the dam stability during the 
construction.

The external loads, acting on the dam body and abut-
ments, increase as the dam’s depth increases and problems 
such as high slope stability arise.

The main parameters that describe the geometric shape 
are the US curve yUS(x, z), the DS curve yDS(x, z), thickness 
of cantilevers t(z), the outside rUS(z) and inside rDS(z) radius 
of the horizontal arch ring and the function that defines the 
vertical section y(z). Figure 4 shows the vertical and hori-
zontal section of a double-arch dam.

The geometrical model of a double-curvature arch dam 
is based on Kaveh and Ghaffarian’s work (2014). A poly-
nomial of second order is considered to define the shape of 

the central vertical section for the curve of the US face. The 
function is defined by:

where s is the slope at crest, h is the height of the dam and 
β = z/h.

The equations that define the shape of the horizontal sec-
tion at the US and DS faces of the dam are:

where rUS and rDS are the radii of curvature of the US and 
DS curves, respectively. In Eq. (3), the thickness of the cen-
tral vertical section is expressed as:

where the Lagrange interpolation function associated with 
the ith (i = 1, 2, …, n + 1) level can be defined (with k ≠ i to 
avoid the denominator being zero) as:

where zi denotes the z-axis of the ith level in the central ver-
tical section, and n is the segments of the dam which have 
been chosen as 2 in this analysis; i.e. the dam is divided into 

(1)y(z) = −sz +
sz2

2�h

(2)yUS(x, z) =
1

2rUS(z)
x2 + y(z) =

1

2rUS(z)
x2 − sz +

sz2

2�h

(3)

yDS(x, z) =
1

2rDS(z)
x2 + y(z) + t(z) =

1

2rDS(z)
x2 − sz +

sz2

2�h
+ t(z)

(4)t(z) =

n+1∑

i=1

Li(z)ti

(5)Li(z) =

∏n+1

k=1
(z − zk)

∏n+1

k=1
(zi − zk)

Fig. 4   Vertical (left) and horizontal (right) section of a double-arch 
dam (AutoCAD 2010). Where: h = height; s = slope; rUSi = radii of 
curvature of the US at the ith level; rDSi = radii of curvature of the 

DS; ti = thickness; and φi = central angle. The orientation of the axis 
is: y-axis (US-DS), x-axis (left side-right side) and z-axis (top–bot-
tom)
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two vertical and horizontal segments. The radii of curvature 
are defined by:

with rUSi and rDSi as the values of rUS and rDS at the ith level, 
respectively.

3.1 � Design Constraints

To model the dam shape, constraints g(·)(X) must be consid-
ered. Constraints refer to the behaviour, geometry, stabil-
ity and stresses of dams. The design constraints have been 
taken in Saber Mahani et al.’s work (2015). Some design 
layout and general design considerations have been added 
in accordance with the technical manual USACE (1994).

The constraints related to the dam behaviour are defined 
as follows (for j = 1, 2, …, nj):

where frj, fr
L
j
 and frU

j
 are the natural frequency and the lower 

and upper bounds on jth natural frequency, respectively; nj 
is the number of natural frequencies. The natural frequency 
of dams is influenced by reservoir, sediments and founda-
tion interaction. Usually, for the whole system (dam–reser-
voir–foundation–sediment), the natural frequency is lower 
than the natural frequency for a single dam. The range of the 
fundamental structural period can be considered, for a single 
dam, 0.25–0.35 s (2.86 Hz ≤ fr1 ≤ 4.0 Hz). For the whole 
system, it is possible to consider fr1 ≥ 3.33 Hz.

In this analysis, the rock mass is not considered, only the 
stiffness (stiffness → ∞) is included; in this case, the natural 
frequencies (dam + foundation) are very close to those of 
the dam alone. Moreover, the natural frequencies strongly 
depend on the materials’ mechanical properties (e.g. elastic 
modulus), which can influence the dynamic response.

The geometric constraints refer to the design of the curva-
ture radii, slope and thickness of the central vertical section. 
The constraint about the curvature radii prevents the inter-
section of the DS and US faces; this constraint is defined as:

where rDSi and rUSi are the curvature radii of the DS and 
US faces of the dam in ith position in z-axis direction. 

(6)rUS(z) =

n+1∑

i=1

Li(z)rUSi

(7)rDS(z) =

n+1∑

i=1

Li(z)rDSi

(8)

frL
j
≤ frj ≤ frU

j
⇒ gL

bj
(X) = 1 −

frj

frL
j

≤ 0; gU
bj
(X) =

frj

frU
j

− 1 ≤ 0

(9)rDSi ≤ rUSi ⇒ ggci(X) =
rDSi

rUSi
− 1 ≤ 0

The central lines of the curvature’s radii change accord-
ing to the height. The radius of the dam axis rai defined by 
rai = rUSi − (ti/2) can be estimated as 0.6 of the straight-line 
distance at the top measured between the abutments (la). In 
order to construct it easily, the constraint of the curve slope 
in the central section at crest level is defined as:

where sU is the allowable maximum value of the slope. It is 
also possible to consider one slope at the foundation level 
having two types of slopes. However, in this analysis, only 
one slope has been considered. Besides the slope, β-value 
must be considered: ggβ (X) = (β/βU − 1) ≤ 0. In this analy-
sis, the values sU and βU have been defined as 0.36 and 1.0, 
respectively. Other geometric constraints refer to the thick-
ness defined as:

where tL and tU are the lower and upper values of the thick-
ness of the central vertical section, respectively. To achieve 
the acceptable shape of double-arch dams, at different levels, 
this must be verified: 

The stability constraints of abutments depend on: (1) the sta-
bility safety coefficient of the dam’s abutment masses slid-
ing, (2) the thrust angle constraint of the arch abutments and 
(3) the central angle constraint of the arch rings. When the 
rock mass condition of the dam abutments is relatively good, 
the central angle of the arch rings should have large inter-
vals, and the optimal central angle can be selected according 
to stress constraints. The constraints that govern the stability 
of the structure may be expressed as: 

where φL and φU are the central angle of the dam for DS and 
US levels in ith level, respectively, and φi is the central angle 
of the arch dam. The central angle, defined by Eq. (13), also 
equilibrates the sliding between the blocks that form the 
dam. Equations (9)–(13) are valid for i = 1, 2, …, n + 1.

The largest practicable central angle should be used 
considering that the foundation topography may be inac-
curately mapped and that the arch abutments may be 
extended to deeper excavation than originally planned. 
Due to limitations imposed by the topographic conditions 
and foundation requirements, for most layouts, φi varies 
between 90° and 130°.

(10)s ≤ sU ⇒ ggs(X) =
s

sU
− 1 ≤ 0

(11)

tL ≤ ti ≤ tU ⇒ gL
gt
(X) = 1 −

ti

tL
≤ 0; gU

gt
(X) =

ti

tU
− 1 ≤ 0

(12)ti ≤ ti+1 ⇒ ggt(X) =
ti

ti+1
− 1 ≤ 0

(13)

�L ≤ �i ≤ �U
⇒ gL

si
(X) = 1 −

�i

�L
≤ 0; gU

si
(X) =

�i

�U
− 1 ≤ 0
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Finally, in order to ensure the dams safety during the 
construction and service, the maximum stress in the dam 
body has to be limited. The constraints about the stresses 
are defined by:

for t = 0, 1, …, nt and m = 1, 2, …, nm; nm is the number 
of dam elements and nt is the earthquake duration; �t

C
 and 

�t
T
 are the principle compression and tension stresses in 

time t, respectively; fc and ft are the compressive and ten-
sile strength for concrete, respectively; kd is the incremental 
coefficients related to the effect of the dynamicity of loads.

Table 2 shows the summary of the constraints.
It is important to emphasize that the geometry, stability, 

behaviour and stress state are closely related to each other 
for these following reasons: (1) the central angle of the top 
arch is a controlling value which influences the curvature 
of the whole dam: tensile stresses will develop in arches of 
insufficient curvature. The geometry of the cantilevers and 
arches controls the dam shape and, as a consequence, the 
distribution and magnitude of the stresses; (2) the stresses 
near the rock surface depend on the central angle which is 
related to the angle between the arch thrust and the rock 
contour line. This angle must be greater than 30° to avoid 
high concentration of shear stresses near the rock surface; 
(3) the dam geometry should be consistent with the stress 
state of the dam and simple to facilitate construction; 
and (4) the stresses in the dam body are generated from 
the combinations of the following loads (for dynamic and 
static analysis) that influence the system behaviour: dead-
weight of dam + US water level + DS water level + verti-
cal hydraulic force + silt pressure + temperature + uplift 
pressure + ice + post-tension + floating debris + applied 
force + horizontal force.

3.2 � Optimization Criteria

Considering the different types of constraints illustrated in 
the previous section, it is possible to define the design vari-
ables of the mathematical problem, that is: X = {s, β, t1, t2, t3, 
rUS1, rUS2, rUS3, rDS1, rDS2, rDS3}T ∈ R11x1. The mathematical 

(14)
�t

C
≤ kdfc ≤ gCm(X, t) =

�t

C

kdfc
− 1 ≤ 0;

�t

T
≤ kdft ⇒ gTm(X, t) =

�t

T

kdft
− 1 ≤ 0

problem is to find the components of the vector XT and to 
optimize the volume and the area of the double-arch dams 
subjected to: g(·)(X) ≤ 0, where XL ≤ X ≤ XU, where g(·)(X) is a 
number of inequality constraints; XL and XU denote the lower 
and upper bounds of the design variable vector, respectively. 
The volume v(x, z) and the area a(x, z) of the double-arch 
dams can be determined by integrating dam surfaces: 

with a(x, z) = aUS(x, z) + aDS(x, z), the sum of areas of the 
up- and downstream faces, where aUS(x, z) and aDS(x, z) are 
the area of up- and downstream faces, respectively, and |·|, 
in Eq. (15), denotes the absolute value (nonnegative value). 
The region of integration called “area”, in Eqs. (15) and 
(16), is produced by projecting the dam on xz plane. The 
objective function that should be optimized is the sum of 
the v(x, z) and a(x, z).

4 � Bayesian Estimators

The ability of the Bayesian technique is that it can be used to 
develop models whose data are insufficient due to the model 
complexity. Several variables must be used as samples, and 
the probability density function (PDF) must be defined.

It is always convenient to work using the Gaussian (or 
normal) distribution because it is easy to develop because 
it is only necessary to know its mean value and variance 
(or standard deviation) and its behaviour is well known. A 
Gaussian distribution is employed to consider the measure-
ment errors when estimating variables.

Another ability is that when the mean value is unknown, 
it is possible to use a normal prior distribution: a distribu-
tion with a mean value supposed a priori. A normal distri-
bution of this type is called prior distribution of Bayesian 

(15)v(x, z) = ∬
area

||yDS(x, z)− yUS(x, z)
||dxdz

(16)

a(x, z) = ∬
area

√

1 +

(
dyUS

dx

)2

+

(
dyUS

dz

)2

dxdz

+∬
area

√

1 +

(
dyDS

dx

)2

+

(
dyDS

dz

)2

dxdz

Table 2   Summary of the 
constraints

Constraint Definition Equation

Behaviour It considers the vibration frequency of the dam Equation (8)
Geometric It accounts the radii of curvature, slope and thickness of the dam Equations (9)–

(12)
Stability It is defined by the central angle of the dam Equation (13)
Stress It depends on the compression and tension stresses of the dam Equation (14)
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estimators (Ross 2008). To use the prior distribution, it is 
necessary to obtain some information about the random vari-
ables and to know their interval (maximum and minimum 
limit). Thus, a candidate value is estimated which can be the 
expected value.

As it was previously mentioned, to obtain the shape opti-
mization of dams, it is necessary to define the design vari-
ables and their range, i.e. the lower and upper bounds. The 
Bayesian estimators have been used to define the variables 
X =

{
s, �, t1, t2, t3, rUS1, rUS2, rUS3, rDS1, rDS2, rDS3

}T
∈ R11x1.

In this paper, a sample of 770 values have been taken, for 
example 70 values for each variable. Data have been col-
lected from the literature (Kaveh and Ghaffarian 2014; Saber 
Mahani et al. 2015; Seyedpoor et al. 2010; Gholizadeh and 
Seyedpoor 2011; Hamidian and Seyedpoor 2010; Zacchei 
and Molina 2018). A large amount of data will be over-
whelmed from results of the chosen initial PDF (a priori), 
and one can proceed using the predictive PDF (a posteriori) 
for the optimal model distribution.

The conditional density of the unknown parameter θ 
given the values {x1, x2, …, xn}, where n is the number of 
the sample, is expressed by: 

where the PDF a priori is defined by:

Using the Bayesian theory, the expected value (more prob-
able) a posteriori and the variance a posteriori are defined, 
respectively, by: 

(17)f (�|x1, x2,… , xn) =
f (x1, x2,… , xn|�)p(�)

f (x1, x2,… , xn)

(18)p(�) =
1

√
2��

e

�
−

(�−�)2

2�2

�

.

(19)

E(𝜃|x1, x2,… , xn) = 𝜇p =
n∕𝜎2

0

n∕𝜎2
0
+ 1∕𝜎2

x̄ +
1∕𝜎2

n∕𝜎2
0
+ 1∕𝜎2

𝜇

where �2
0
 and x̄ are the known variance and the sample mean, 

respectively.
The calculated PDF in this work concerns all the vari-

ables of the vector XT; therefore, Eq. (17) becomes: f(θ|s, 
…, n), f(θ|β, …, n), f(θ|t1, …, n), f(θ|t2, …, n), f(θ|t3, …, n), 
f(θ|rUS1, …, n), f(θ|rUS2, …, n), f(θ|rUS3, …, n), f(θ|rDS1, …, 
n), f(θ|rDS2, …, n) and f(θ|rDS3, …, n).

The concept of this study is the following: by changing 
the parameters {x1, x2, …, xn}, related to the shape of an 
existing dam, it is possible to estimate an optimal shape. In 
this sense, it is necessary to define the Bayesian estimator 
E(θ|x1, x2, …, xn) of each parameter given a sample mean x̄.

Table 3 shows the lower and upper bounds of design vari-
ables which have been used in the analysis.

The values in Table 3 come from 770 values that have 
been collected. These data have been used to calculate the 
sample mean x̄ , the variance �2

0
 and the lower and upper 

bound that is the minimum and maximum value for each 
variable, respectively.

5 � Calculations and Results

The analysis is carried out in three consecutive parts. For 
the first part, Eqs. (1)–(7) are iterated step-by-step by using 
the programming language Wolfram Mathematica (2017). 
The equations were written in the software and then imple-
mented. The second part comprises the definition of the 
Bayesian distribution. In the third part, the dam’s model 
optimization by computing the area and the volume defined 
in Eqs. (15) and (16) is carried out.

(20)Var(�|x1, x2,… , xn) = �2
p
=

1

n∕�2
0
+ 1∕�2

Table 3   Data collection for 
design variables

*This value is a dimensional

Design 
variables

Lower bound (m) Upper bound (m) Sample mean, x̄ (m) Known variance �2

0
 (m)

t1 3.10 11.899 6.3829 ± 4.2946
t2 8.00 16.47 12.970 ± 4.0529
t3 12.00 35.00 28.6914 ± 35.8487
rUS1 100.00 151.126 114.882 ± 151.6418
rUS2 61.104 95.32 86.7811 ± 55.0925
rUS3 20.377 42.02 37.0193 ± 28.2575
rDS1 50.299 125.07 101.6330 ± 192.5373
rDS2 40.005 90.16 78.7524 ± 108.7965
rDS3 20.084 40.6737 33.6036 ± 19.2765
s* 0.0477 0.36 0.2598 ± 0.0048
β* 0.50 1.00 0.7864 ± 0.0271
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About the constraints, only some of them are strictly 
considered: the constraints that refer to Eqs. (9)–(13). The 
choice about using only these constraints is due to the fact 
that the focus of this paper is to define the dam optimum 
shape considering only its geometry and stability.

Figures 5, 6, 7 and 8 show the Gaussian distribution under 
the Bayesian hypothesis. The figures show the Bayesian esti-
mators (vertical dashed line), PDF a priori without and with 
the positive variance and PDF a posteriori.

The sharpened shape of the PDF a posteriori depends 
of the number of samples that are used; i.e. the lesser the 

samples, the lower the curve is. A sharpened shape indicates 
that the standard deviation is low; therefore, the data tend 
to be close to the mean and so the estimation has a good 
calibration. In this analysis, 34 samples {xn|n = 34} for each 
variable have been used.

Table 4 shows the results of the Bayesian stochastic 
analysis. It is possible to see an existing dam’s change of 
volumes to obtain the optimum dam: prior distribution for 
existing dams θ ~ N (μ, σ2) → posterior distribution for 
optimized dams � ∼ N

(
�p, �

2
p

)
 . The last three columns of 

Fig. 5   Gaussian distribution by 
using the Bayesian method of s 
(a) and β (b)

Fig. 6   Gaussian distribution by 
using the Bayesian method of t1 
(a), t2 (b) and t3 (c)
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Table 4 show the interval that contains μp for a probability 
of 90, 95 and 99%.

The variance describes the uncertainty in the predic-
tions of the optimal model. These values are much more 
plausible than any other values. The underlined values are 
used to design the dam.

From the posterior distribution values, the radius of the 
dam axis at top level is ra1 = 111.7 m and la = 186.2 m. 
The variance of the prior distribution has been used ten 
times more than the known variance. This is because the 
uncertainty of the prior distribution is obviously high. 
To respect the stability constraints, a 110° central angle 
of dam is considered to estimate the crest lengths to run 
the analysis. The lengths of the dam calculated with 
respect to the dam axis lc1, lc2, lc3 are 215 m, 155 m, 45 m, 
respectively.

Figure 9 shows the mean section of the optimum shape 
of the dam for each level. The distance between the US and 
DS surfaces represents the thickness.

Table 5 shows the optimum volume and area for the three 
sections for the dam.

The available achievements and practical engineering 
applications show that optimization design can reduce the 
concrete volume. Concerning the dam with similar char-
acteristic—for example, the Albarellos Dam—the concrete 

volume is reduced around 22% and this reduction provides 
advantages in terms of economic and social benefit. In this 
sense, the slenderness coefficient introduced by Fanelli 
and Lombardi (1992) and cited more recently by Hariri-
Ardebili et al. (2016) as area2/(volume × height) = 301522/
(170052.40 × 95.55) = 55.95 indicates that the optimized 
arch dam is very slender and this is also due to the fact that 
the structure is a double-arch dam and not a gravity arch 
dam.

It is important to mention that the intention of the authors 
is not to provide these calculated variables to derive conclu-
sions about a full shape optimization analysis.

6 � Conclusions

The shape design is a key problem in the modelling of 
double-arch dams, and it is usually established based 
on engineering experience. Also, there are some limita-
tions imposed by topographic conditions and foundation 
requirements. For instance, the largest central practica-
ble angle should be used considering that the foundation 
topography may be inaccurately mapped and that the arch 
abutments may need to be extended to deeper excavation 
than originally planned.

Fig. 7   Gaussian distribution by 
using the Bayesian method of 
rUS1 (a), rUS2 (b) and rUS3 (c)
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Due to the development of innovative constructive tech-
nologies, the dam shape becomes higher, thinner and flatter. 
If the dam becomes flatter, the stability, related to sliding of 
the dam–abutment interface, increases to the advantage of 
the structural safety.

The difficulties at evaluating many design variables, 
mathematical functions and constraint conditions have been 
solved in this paper by the step-by-step integration and by 
using Bayesian estimators.

Fig. 8   Gaussian distribution by 
using the Bayesian method of 
rDS1 (a), rDS2 (b) and rDS3 (c)

Table 4   Results of the Bayesian stochastic analysis

*This value is a dimensional. All values respect the design constraints defined in previous section for both prior and posterior distribution, for 
example rUS1 ≥ rDS1, rUS2 ≥ rDS2, rUS3 ≥ rDS3, 3.10 ≤ t1 ≤ 11.9, 8.0 ≤ t2 ≤ 16.5, 12.0 ≤ t3 ≤ 35.0, t3 ≥ t2 ≥ t1, s ≤ 0.36, β ≤ 1.0

Design 
variables

Existing dams prior distribution: 
θ ~ N (μ, σ2)

Optimized dams posterior distribu-

tion: � ∼ N

(
�p, �

2
p

) Interval of μp with a probability of:

Mean value (m) Variance (m) Mean value (m) Variance (m) 90% 95% 99%

t1 7.4995 ± 42.95 6.3862 ± 0.1259 (5.80, 6.97) (5.69, 7.08) (5.47, 7.30)
t2 12.235 ± 40.53 12.9678 ± 0.1189 (12.40, 13.53) (12.29, 13.64) (12.08, 13.86)
t3 23.50 ± 358.49 28.6762 ± 1.0513 (26.99, 30.36) (26.67, 30.68) (26.03, 31.32)
rUS1 125.563 ± 1516.42 114.9133 ± 4.4470 (111.44, 118.38) (110.78, 119.05) (109.47, 120.35)
rUS2 78.2120 ± 550.93 86.7560 ± 1.6156 (84.66, 88.85) (84.26, 89.25) (83.48, 90.03)
rUS3 31.1985 ± 282.58 37.0022 ± 0.8287 (35.50, 38.49) (35.22, 38.79) (34.65, 39.35)
rDS1 87.6845 ± 1925.37 101.5921 ± 5.6463 (97.68, 105.50) (96.93, 106.25) (95.46, 107.72)
rDS2 65.0825 ± 1087.97 78.7123 ± 3.1905 (75.77, 81.65) (75.21, 82.21) (74.10, 83.32)
rDS3 30.3789 ± 192.77 33.5941 ± 0.5653 (32.36, 34.83) (32.12, 35.07) (31.65, 35.53)
s* 0.2039 ± 0.05 0.2596 ± 0.0001 (0.24, 0.28) (0.24, 0.28) (0.23, 0.29)
β* 0.75 ± 0.27 0.7863 ± 0.0008 (0.74, 0.83) (0.73, 0.84) (0.71, 0.86)
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The main conclusions drawn from this research are 
described as follows: (1) it is necessary to develop a more 
complete inventory of dams in Spain. In this sense, the com-
petent authority must be solicited; (2) the shape optimization 
process requires careful data availability of existing dams; 
and (3) the cost of arch dams is mainly dependent on the 
volume of the dam body, and if the volume decreases, con-
sequently the deadweight and stresses decrease. Moreover, a 
lower volume serves to better preserve the environment; (4) 
Bayesian theorem is well suited to a problem that comprises 
many variables. With many available data and a relatively 
small number of prediction-error parameters, the probability 

of a good result can be well calibrated. When parameters 
are unknown, it is possible to use a normal distribution that 
can represent the hypothesis a priori about the mean of the 
distribution.

From 770 collected values, 66 values are defined 
(Table 3 + first two columns of Table 4) to obtain 11 Bayes-
ian estimators (third column of Table 4). The obtained 
optimum dam has a concrete volume reduction of 1.28 
respecting the dam with similar characteristic, and 1.39 in 
relation to the mean volume calculated from all the selected 
dams. Moreover, the slender double-arch dam (ideal dam) is 
defined, respecting the geometric and stability constraints.

The results of this research are coherent; however, it 
should be mentioned that many other choices and factors 
should be considered to design an optimum dam. Those fac-
tors, among others, can be characteristics of foundation, type 
of soil, a structure body performance evaluation, adequate 
simulation analysis and geo-mechanical model tests, or feed-
back analysis of monitoring data. Finally, it is also necessary 
to evaluate the stability of dam’s body and its foundation, 
once the optimization is developed. These aforementioned 
aspects have not been included in this paper, and they are 
under research.
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