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Abstract
A new version of quartic B-spline direct time integration method for dynamic analysis of structures is presented. This

procedure is derived based on uniform quartic B-spline piecewise polynomial approximations and collocation method,

named Alpha Quartic B-spline time integration method. In this way, at first, the method is implemented to solve the

governing differential equation of motion of single-degree-of-freedom systems, and later, the proposed method is gen-

eralized for multi-degree-of-freedom systems. Stability and accuracy analysis of the proposed algorithm have been

investigated completely. In the proposed algorithm by using two collocation parameters a1 and a2, unconditional stability is
achieved, but a local instability is created. The best values of these two parameters have been determined not only to

maintain the stability, but also to ensure the desired accuracy. For accuracy analysis, dissipation and dispersion errors have

been investigated for different cases of a’s. Finally, for the proposed method, a simple step-by-step algorithm was

presented. The effectiveness and robustness of the proposed algorithm in solving linear dynamic problems are demon-

strated in the numerical examples.

Keywords Quartic B-spline � Direct time integration � Dynamic analysis � Stability � Dissipation � Dispersion

1 Introduction

Direct time integration algorithms are widely used in the

computational analysis of structural dynamics and transient

wave propagation problems. Generally, there are two basic

categories of step-by-step integration methods. A time

integration method is implicit if the solution procedure

requires the factorization of an ‘effective stiffness’ matrix

and is explicit otherwise (Dokainish and Subbaraj 1989;

Subbaraj and Dokainish 1989). Both explicit and implicit

methods have their own advantages and disadvantages.

Stability and accuracy are the most important charac-

teristics of a time integration method. Depending on the

stability characteristic, integration algorithms are classified

as either unconditionally or conditionally stable, where

unconditional stability implies that the numerical solution

of a free vibration problem with any arbitrary initial con-

ditions does not grow without bound for any integration

time step size (Bathe 1996). In accuracy evaluation of the

time integration methods, usually two quantities are

determined: dispersion and dissipation. Dissipation (am-

plitude decay) and dispersion (period elongation) are two

criteria used to evaluate the performance of an integration

algorithm (Hilber and Hughes 1978).

Various different time integration algorithms have been

proposed. The oldest and most powerful algorithms include

the Newmark family of integration algorithms (Newmark

1959) and Wilson method (Wilson 1968; Wilson et al.

1972). Today, also new efficient methods have been

developed. Recently, Bathe et al. proposed an efficient time

integration method for solving the problems in structural

dynamics and wave propagation. Desirable performance of

the Bathe method was demonstrated in the series of
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research papers (Bathe 2007; Bathe and Noh 2012; Noh

and Bathe 2013).

Application of cubic and quartic B-spline for the

numerical solution of dynamic systems has been pre-

sented by Rostami and Shojaee in a series of papers

(Rostami and Shojaee 2017, 2018; Rostami et al.

2012, 2013; Shojaee et al. 2011, 2015). Implementation of

cubic B-spline for the numerical solution of SDOF

dynamic systems was introduced in Shojaee et al. (2011).

Then in another work (Rostami et al. 2013), the proposed

method was generalized for MDOF systems. Implemen-

tation of quartic B-spline for the numerical solution of

dynamic systems, for the first time, has been done by

Rostami et al. (2012). The proposed method has appro-

priate convergence, accuracy and low time consumption.

The only shortcoming of this method was its conditional

stability. Recently, in a new study (Shojaee et al. 2015),

the proposed method was regenerated and developed to an

unconditionally stable state; hence, it was named modified

quartic B-spline method. Accuracy and stability analysis

was profoundly performed in that paper. Numerical

evaluations showed that the proposed method maintains

its stability even in the analysis of structures with high

frequencies. But some examples, in spite of having

stable responses, do not show high accuracy, especially in

the acceleration response of the couple systems. The

present paper introduces a new version of the previous

work and resolves this defect by the use of collocation

scheme. Furthermore, in the new formulation, we elimi-

nate the term derivation of acceleration, while we had to

calculate it in each time step in the previous procedure

(i.e., Rostami et al. 2012).

After our works in this field, Wen et al. (2017) pro-

posed an explicit method by utilizing quartic B-splines.

The Wen’s proposed scheme possesses high calculation

accuracy, but consumes more computation time compared

to Bathe scheme. Malakiyeh et al. (2018) proposed an

unconditionally stable method for linear analysis of

structures based on Bezier curves and Bernstein polyno-

mials. The important features of this method were low

dissipation in the lower modes and high dissipation in the

higher modes that leads to an increase in the accuracy of

solutions.

2 Brief Review of the B-Splines

2.1 Definition of B-Splines

There are many definitions for B-splines. A detailed

description of periodic B-spline functions can be found in

Piegl and Tiller (2012) and Rogers (2001). For a simple

definition, let X ¼ x0; x1; x2; . . .; xnf g be a partition of

½a; b� � R. For the ith B-spline function of degree d, the

basis function Bi;dðxÞ is defined by the Cox–de Boor

recursion formulas. Specifically

Bi;0ðxÞ ¼
1; xi � x� xiþ1

0; otherwise

�
ð1Þ

and

Bi;dðxÞ ¼
x� xi

xdþi � xi

� �
Bi;d�1ðxÞ

þ xdþiþ1 � x

xdþiþ1 � xiþ1

� �
Biþ1;d�1ðxÞ ð2Þ

In this formula, Bi;dðxÞ is a polynomial of degree d on

each interval xi � x� xiþ1 as Bi;dðxÞ and its derivatives of

order 1, 2, …, d - 1 are all continuous over the entire

domain. The values of xi are elements of knot vector X that

must be monotonically increasing series of real numbers,

i.e., xi � xiþ1. In the recursive formula, 0=0 ¼ 0 is adopted

(De Boor et al. 1978).

Furthermore, in the periodic type, each basis function is

a simple transfer of the other one and the range of nonzero

function values (support) spreads when the degree increa-

ses. Thus, the basis function provides support on the

interval xi � x� xiþdþ1. Figure 1 shows the B-spline func-

tions. As depicted in Fig. 1, for a quartic B-spline used in

this study, the usable parameter range of Bi;4 is

xi � x� xiþ5.

The B-spline of degree d, Bi;dðxÞ, where i 2 Z possess

the properties such as nonnegativity, i.e., Bi;dðxÞ� 0 8 x
2 R, and partition of unity, i.e.,

P
Bi;dðtÞ ¼ 1 8 ½�a1; �a2�

2 R. However, for quartic periodic basis function we used

in study, on each interval xj � x� xk, the range in which

partition of unity properties is satisfied is

�a1 ¼ xjþ4 � x� xk�4 ¼ �a2. This means that in Fig. 1, with

six basis functions considered, the usable range is

�a1 ¼ xi�1 � x� xiþ1 ¼ �a2.

2.2 Quartic B-Spline Interpolation

In this study, the uniform quartic B-spline with equidis-

tantly distributed set of nodes X over the domain ½a; b�, and
the subinterval length is defined by h ¼ xiþ1 � xi
ði ¼ 0; 1; . . .; n� 1Þ. As discussed in Rostami et al. (2012),

to construct the quartic B-splines, it is required to form the

set of nodal points as x�4\ � � �\x0 ¼ a\ � � �\xn
¼ b\ � � �\xnþ4. For any node xj ðj ¼ � 4;� 3; . . .;nþ 4Þ,
we have xj ¼ xi þ ðj� iÞh, and thus, Bj;4ðxÞ is the shifted

instance of Bi;4ðxÞ, i.e., Bj;4ðxÞ ¼ Bi;4ðx� ðj� iÞhÞ.
Here, we apply Eq. (2) to get Bi;4ðxÞ, ði ¼ 0; 1; . . .; n�

1Þ which are defined as
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Bi;4ðxÞ

¼ 1

4!h4

ðx� xiÞ4 xi � x� xiþ1

ðx� xiÞ4 � 5ðx� xiþ1Þ4 xiþ1� x� xiþ2

ðx� xiÞ4 � 5ðx� xiþ1Þ4 þ 10ðx� xiþ2Þ4 xiþ2� x� xiþ3

ðxiþ5 � xÞ4 � 5ðxiþ4 � xÞ4 xiþ3� x� xiþ4

ðxiþ5 � xÞ4 xiþ4� x� xiþ5

8>>>>>><
>>>>>>:

ð3Þ

Indeed, for any subinterval Ii � ½xi; xiþ1�, to satisfy

partition of unity properties of the basis functions, the

usable piecewise quartic B-splines, as shown in Fig. 1, are

Bi�4;4; . . .;Bi;4.

As we use these basis functions in a time-dependent

problem, here the knot vector X consists of time instants.

Therefore, x in I represents t, i.e., time instants. Consid-

ering the fact that we will deal with them in the following

section, it is necessary to have six basis functions in each

time interval. Therefore, we consider each time interval

Ii � ½ti; tiþ1� twofold of the usual range to satisfy this issue.

So for any time subinterval Ii, the usable pricewise quartic

B-splines, as illustrated in Fig. 1, are Bi�5;4;Bi�3;4; . . .;Bi;4.

For ease, let si ¼ ðt � tiÞ=Dt (i.e., t ¼ ti þ siDt), based
upon the same assumption of Eq. (3), all usable uniform B-

splines within any subinterval, Ii(s 2 ½ti; tiþ1�, si 2 ½0; 1�),
as displayed in Fig. 2, can be rewritten as

B�4;4ðsiÞ;B�3;4ðsiÞ; . . .;B1;4ðsiÞ. Those B-splines are

coupled with their derivatives with respect to variable t.

Figures 3 and 4 show the quartic B-splines first and second

derivatives, respectively. For 0� s� 0:5, these B-splines

coupled with their nth derivatives with respect to variable

t can be given as

B
ðnÞ
�4ðsiÞ ¼

ð�Dt=2Þ�n

ð4� nÞ! ð1� 2siÞ4�n ð4Þ

B
ðnÞ
�3ðsiÞ ¼

ð�Dt=2Þ�n

ð4� nÞ! ð1� 2siÞ4�n � 5ð1� 2siÞ4�n
� �

ð5Þ

Fig. 1 Quartic B-splines

1/24

11/24

ti ( =0)

Bi-5,4

ti+1 ( =1)( =0.5)

Fig. 2 Quartic B-spline

1/ t

1/3 t

-1/3 t

-1/ t

ti ( =0) ti+1 ( =1)( =0.5)

0

Fig. 3 First derivative of quartic B-spline

B(2)
i-1,4

B(2)
i-3,4 B(2)

i-2,4

B(2)
i-4,4

2/ t2

0

-2/ t2

ti ( =0) ti+1 ( =1)( =0.5)

Fig. 4 Second derivative of quartic B-spline
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B
ðnÞ
�2ðsiÞ ¼

ð�Dt=2Þ�n

ð4� nÞ! ð3� 2siÞ4�n � 5ð2� 2siÞ4�n þ 10ð1� 2siÞ4�n
� �

ð6Þ

B
ðnÞ
�1ðsiÞ ¼

ðDt=2Þ�n

ð4� nÞ! ð1þ 2siÞ4�n � 5ð2siÞ4�n
� �

ð7Þ

B
ðnÞ
0 ðsiÞ ¼

ðDt=2Þ�n

ð4� nÞ! ð2siÞ
4�n ð8Þ

B
ðnÞ
1 ðsiÞ ¼ 0 ð9Þ

And for 0:5� s� 1 can be given as

B
ðnÞ
�4ðsiÞ ¼ 0 ð10Þ

B
ðnÞ
�3ðsiÞ ¼

ð�Dt=2Þ�n

ð4� nÞ! ð2� 2siÞ4�n ð11Þ

B
ðnÞ
�2ðsiÞ ¼

ð�Dt=2Þ�n

ð4� nÞ! ð3� 2siÞ4�n � 5ð2� 2siÞ4�n
� �

ð12Þ

B
ðnÞ
�1ðsiÞ ¼

ð�Dt=2Þ�n

ð4� nÞ! ð4� 2siÞ4�n � 5ð3� 2siÞ4�n
�

þ10ð2� 2siÞ4�n
�

ð13Þ

B
ðnÞ
0 ðsiÞ ¼

ðDt=2Þ�n

ð4� nÞ! ð2siÞ4�n � 5ð2si � 1Þ4�n
� �

ð14Þ

B
ðnÞ
1 ðsiÞ ¼

ðDt=2Þ�n

ð4� nÞ! ð2si � 1Þ4�n ð15Þ

The quartic B-spline interpolation function for any

interpolated interval Ii as shown in Fig. 2 is a linear

combination of the quartic B-spline as follows:

S
ðnÞ
i ðtÞ ¼

X1
j¼�4

CiþjB
ðnÞ
iþj;4ðtÞ ð16Þ

where Ciþj (control points) are unknown real coefficients

and B
ðnÞ
i;4 ðtÞ is the nth derivative of fourth-degree (quartic)

B-spline functions. This is three times differentiable and

compatible. A detailed description of periodic B-spline can

be found in Rogers (2001).

Having Eqs. (4–15) in hand, Eq. (16) can be extended to

a matrix form as

S
ðnÞ
i ðtÞ ¼ BðnÞðsiÞCi; t 2 ½ti; tiþ1� si 2 ½0; 1� ð17Þ

where

BðnÞðsiÞ ¼ B
ðnÞ
�4;4ðsiÞ B

ðnÞ
�3;4ðsiÞ � � � B

ðnÞ
1;4ðsiÞ

h i
ð18Þ

Ci ¼ Ci�4 Ci�3 � � � Ciþ1½ �T ð19Þ

In the next sections, the quartic B-spline is used to

construct a numerical solution of a second-order initial

value problem. Thus, the evaluation of B
ðnÞ
i;4

(i ¼ � 4;� 3; . . .; 1; n ¼ 0; 1; 2) at the discrete time instant

t ¼ ti and tiþ1 (i.e., si ¼ 0 and 1) is needed. These values

are listed in Table 1.

3 Implementation of Quartic B-Spline
on SDOF Systems

A linear differential equation of motion can be expressed as

uð2ÞðtÞ þ 2nx uð1ÞðtÞ þ x2uðtÞ ¼ f ðtÞ=m ð20Þ

where m, n and x are the mass, damping ratio and natural

frequency of the system. €uðtÞ, _uðtÞ and uðtÞ are the dis-

placement, velocity and acceleration, respectively. This

equation is subjected to the initial conditions: uðt0Þ ¼ u0
and _uðt0Þ ¼ v0. The applied force, f ðtÞ, is given by a set of

discrete values fi ¼ f ðtiÞ.
According to Eq. (17), the approximate solution of

Eq. (20), within any time interval Dt ¼ tiþ1 � ti, can be

expressed as

uðnÞðtÞ ¼ BðnÞðsiÞCi; t 2 ti; tiþ1½ � si 2 0; 1½ � ð21Þ

According to Eq. (21), all discrete unknown physical

variables uðnÞðtÞ can be degraded into the solving of Ci. In

fact, to determine Eq. (21), unknown coefficient vector Ci

needs to be solved. To avoid direct solution of Ci,

numerical displacement, velocity and acceleration at start

and end points of the time interval ½ti; tiþ1� will be deter-

mined to represent Ci. So, for n ¼ 0; 1; 2, when substi-

tuting t ¼ ti (i.e., si ¼ 0) and t ¼ tiþ1 (i.e., siþ1 ¼ 1), we

have

�ui ¼ JCi or Ci ¼ J�1�ui ð22Þ

where

Table 1 Values of Bi;4; B
ð1Þ
i;4 ; B

ð2Þ
i;4

t ¼ tiðsi ¼ 0Þ t ¼ tiþ1ðsi ¼ 1Þ

n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 0 n ¼ 1 n ¼ 2

B
ðnÞ
�4;4

1/24 � 1=ð3DtÞ 2=Dt2 0 0 0

B
ðnÞ
�3;4

11/24 � 1=Dt � 2=Dt2 0 0 0

B
ðnÞ
�2;4

11/24 1=Dt �2=Dt2 1/24 � 1=ð3DtÞ 2=Dt2

B
ðnÞ
�1;4

1/24 1=ð3DtÞ 2=Dt2 11/24 � 1=Dt � 2=Dt2

B
ðnÞ
0;4

0 0 0 11/24 1=Dt � 2=Dt2

B
ðnÞ
1;4

0 0 0 1/24 1=ð3DtÞ 2=Dt2
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J ¼ 1

24

1 11 11 1 0 0

� 8 � 24 24 8 0 0

48 � 48 � 48 48 0 0

0 0 1 11 11 1

0 0 � 8 � 24 24 8

0 0 48 � 48 � 48 48

2
6666664

3
7777775

ð23Þ

�ui ¼ ûTi û
T
iþ1

� �T ð24aÞ

ûi ¼ uðtiÞ Dt:uð1ÞðtiÞ Dt2:uð2ÞðtiÞ
h iT

ð24bÞ

ûiþ1 ¼ uðtiþ1Þ Dt:uð1Þðtiþ1Þ Dt2:uð2Þðtiþ1Þ
h iT

ð24cÞ

Substituting Eq. (22) into Eq. (21) yields:

uðnÞðtÞ ¼ BðnÞðsiÞJ�1�ui; n ¼ 0; 1; 2 ð25Þ

Substituting Eq. (25) into Eq. (20), the equation of

motion evaluated at time ti can be expressed as

Bð2ÞðsiÞ þ 2nxBð1ÞðsiÞ þ x2Bð0ÞðsiÞ
� �

J�1�ui

¼ f ðti þ siDtÞ=m;
t 2 ti; tiþ1½ � si 2 0; 1½ �

ð26Þ

In the above equation, we let

pðsiÞ ¼ Bð2ÞðsiÞ þ 2nxBð1ÞðsiÞ þ x2BðsiÞ
� �

J�1

¼ p1ðsiÞ p2ðsiÞ � � � p6ðsiÞ½ � ð27Þ

Inserting Eq. (27) in Eq. (26) and using Eqs. (24a, 24b,

24c) can extract the following residual equation:

RðsiÞ ¼ p1ðsiÞ p2ðsiÞ p3ðsiÞ½ �ûi
þ p4ðsiÞ p5ðsiÞ p6ðsiÞ½ �ûiþ1 � f ðti þ siDtÞ=m;

t 2 ti; tiþ1½ � si 2 0; 1½ �
ð28Þ

Based on the collocation method, the residual Eq. (28)

should satisfy RðsiÞ ¼ 0 at si ¼ 1 (i.e., t ¼ tiþ1), si ¼ a1
(i.e., t ¼ ti þ a1Dt) and si ¼ a2 (i.e., t ¼ ti þ a2Dt). So we

have

p1ð1Þ p2ð1Þ p3ð1Þ½ �ûi þ p4ð1Þ p5ð1Þ p6ð1Þ½ �ûiþ1

¼ f ðti þ DtÞ=m ð29Þ

p1ða1Þ p2ða1Þ p3ða1Þ½ �ûi þ p4ða1Þ p5ða1Þ p6ða1Þ½ �ûiþ1

¼ f ðti þ a1DtÞ=m ð30Þ

p1ða2Þ p2ða2Þ p3ða2Þ½ �ûi þ p4ða2Þ p5ða2Þ p6ða2Þ½ �ûiþ1

¼ f ðti þ a2DtÞ=m ð31Þ

Equations (29–31) can be written in a matrix form as

p1ð1Þ p2ð1Þ p3ð1Þ
p1ða1Þ p2ða1Þ p3ða1Þ
p1ða2Þ p2ða2Þ p3ða2Þ

2
4

3
5ûi

þ
p4ð1Þ p5ð1Þ p6ð1Þ
p4ða1Þ p5ða1Þ p6ða1Þ
p4ða2Þ p5ða2Þ p6ða2Þ

2
4

3
5ûiþ1

¼ 1

m

f ðti þ DtÞ
f ðti þ a1DtÞ
f ðti þ a2DtÞ

2
4

3
5 ð32Þ

With matrix calculation, Eq. (32) will be transformed

into a simple equation as

ûiþ1 ¼ Aûi þ f̂i ð33Þ

where

A ¼ �
p4ð1Þ p5ð1Þ p6ð1Þ
p4ða1Þ p5ða1Þ p6ða1Þ
p4ða2Þ p5ða2Þ p6ða2Þ

2
4

3
5
�1

�
p1ð1Þ p2ð1Þ p3ð1Þ
p1ða1Þ p2ða1Þ p3ða1Þ
p1ða2Þ p2ða2Þ p3ða2Þ

2
4

3
5

ð34Þ

f̂i ¼
p4ð1Þ p5ð1Þ p6ð1Þ
p4ða1Þ p5ða1Þ p6ða1Þ
p4ða2Þ p5ða2Þ p6ða2Þ

2
4

3
5
�1

� 1
m

f ðti þ DtÞ
f ðti þ a1DtÞ
f ðti þ a2DtÞ

2
4

3
5

ð35Þ

In the above equation, the collocation parameters a1 and
a2 have an important role in the stability and accuracy of

the proposed method. In order that these matrices be

invertible, a1 and a2 must satisfy the conditions

0\a1; a1\1 and a1 6¼ a2.

4 Implementation of Quartic B-Spline
on MDOF Systems

The equilibrium equations governing the linear dynamic

response of a system with multi-degrees of freedom are

written as

MUð2ÞðtÞ þ DUð1ÞðtÞ þ KUðtÞ ¼ FðtÞ ð36Þ

where M, D and K are the mass, damping and stiffness

matrices, respectively. F is the vector of externally applied

loads. U, Uð1Þ and Uð2Þ are the displacement, velocity and

acceleration vectors of the discrete nodes on the structure.

The initial conditions at t ¼ 0 are Uðt0Þ ¼ U0; U
ð1Þðt0Þ ¼

_U0 and Uð2Þðt0Þ ¼ €U0. So we have

UðnÞðtÞ ¼ u
ðnÞ
1 ðtÞ u

ðnÞ
2 ðtÞ � � � u

ðnÞ
k ðtÞ � � � u

ðnÞ
N ðtÞ

h iT
;

n ¼ 0; 1; 2

ð37Þ
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As it was discussed in the previous section for SDOF

systems, here Eq. (21) can be employed to represent the

approximate solution of Eq. (36). Hence, we have

uðnÞðtÞ ¼ BðnÞðsiÞCi;k ð38Þ

UðnÞðtÞ ¼ B̂ðnÞðsiÞĈi ð39Þ

where

B̂ðnÞðsiÞ ¼
BðnÞðsiÞ

. .
.

BðnÞðsiÞ

2
64

3
75
N	6N

ð40Þ

Ĉi ¼ CT
i;1 CT

i;2 � � � CT
i;N

h iT
1	6N

ð41Þ

Just here the unknown real coefficient Ci;ks has an extra

index k that introduces each degree of freedom, so that

k ¼ 1; 2; 3; . . .;N, where N is the number of all degrees of

freedom. So Ci;k is the unknown coefficients vector of size

6	 1, and B̂ðnÞðsiÞ are block diagonal matrices with ele-

ment BðnÞðsiÞ. Similar work was done in the previous

section, by setting t ¼ ti (i.e., si ¼ 0) and t ¼ tiþ1 (i.e.,

siþ1 ¼ 1) in Eq. (39), we obtain

�Ui ¼ �JĈi or Ĉi ¼ �J�1 �Ui ð42Þ

where

�Ui ¼ ÛT
i ÛT

iþ1

� �T ð43aÞ

Ûi ¼ UðtiÞ DtUð1ÞðtiÞ Dt2Uð2ÞðtiÞ
h iT

ð43bÞ

Ûiþ1 ¼ Uðtiþ1Þ DtUð1Þðtiþ1Þ Dt2Uð2Þðtiþ1Þ
h iT

ð43cÞ

�JðsiÞ ¼

B̂ð0Þ
Dt:B̂ð1Þð0Þ
Dt2:B̂ð2Þð0Þ

0
@

1
A

B̂ð1Þ
Dt:B̂ð1Þð1Þ
Dt2:B̂ð2Þð1Þ

0
@

1
A

2
6666664

3
7777775
6N	6N

ð44Þ

In fact, �J is a sparse and block matrix. It can be proved

that, by the use of J in Eq. (23), the calculation of �J can be

simplified as

J�1 ¼ J1 J2 J3 J4 J5 J6½ � ð45Þ

where Ji’s (j ¼ 1; 2; . . .; 6), are 1	 6 column vectors of

J�1. So

�J�1 ¼

J1 J2 � � � J6
J1 J2 � � � J6

. .
. . .

.
� � � . .

.

J1 J2 � � � J6

2
6664

3
7775
6N	6N

ð46Þ

Inserting Eq. (41) into Eq. (39), we will have

UðnÞðtÞ ¼ B̂ðnÞðsiÞ�J�1 �Ui ð47Þ

Substituting Eq. (47) into equilibrium equations, i.e.,

Eq. (36), gives the following residual equation:

RðsiÞ ¼ MB̂
ð2ÞðsiÞ þ DB̂ð1ÞðsiÞ þ KB̂ðsiÞ

� �
�J�1 �Ui � FðtÞ

ð48Þ

By setting

MB̂
ð2ÞðsiÞ þ DB̂ð1ÞðsiÞ þ KB̂ðsiÞ

� �
�J�1

¼ p1ðsiÞ p2ðsiÞ � � � p6ðsiÞ½ � ð49Þ

pkðsiÞðk ¼ 1; 2; . . .; 6Þ are all symmetric matrices of size

N 	 N. Equation (48) can be written as

RðsiÞ ¼ p1ðsiÞ p2ðsiÞ p6ðsiÞ½ �Ûi

þ p1ðsiÞ p2ðsiÞ p6ðsiÞ½ �Ûiþ1 � FðtÞ ð50Þ

As discussed and illustrated in the previous section, after

acting the collocation method on Eq. (48), it is possible to

extract the recurrence formula as

Ûiþ1 ¼ �A�1
1 A2Ûi þ A�1

1 f̂i ¼ AÛi þ F̂i ð51Þ

where

A1 ¼
p4ð1Þ p5ð1Þ p6ð1Þ
p4ða1Þ p5ða1Þ p6ða1Þ
p4ða2Þ p5ða2Þ p6ða2Þ

2
4

3
5;

A2 ¼
p1ð1Þ p2ð1Þ p3ð1Þ
p1ða1Þ p2ða1Þ p3ða1Þ
p1ða2Þ p2ða2Þ p3ða2Þ

2
4

3
5

ð52Þ

f̂ i ¼
Fðti þ DtÞ
Fðti þ a1DtÞ
Fðti þ a2DtÞ

2
4

3
5 ð53Þ

Although in linear problems the inversion of A1 is done

only once and can be efficiently solved by using some

general mathematical software, for a system with large

degrees of freedom direct inversion of A1 is not desirable.

To solve this shortcoming, a technique which has been

proposed in Wen et al. (2015) is used here to pass the direct

inversion of matrix A1. At first, a well-known theorem and

corollary is introduced (Lu and Shiou 2002).

Theorem Let a non-singular square matrix ~Q be parti-

tioned into 2 9 2 blocks as

~Q ¼ Q1 Q2

Q3 Q4

	 

ð54Þ

Consider Q4 non-singular; then, the matrix ~Q is invertible

if and only if the Schur complement Q1 � Q2Q
�1
4 Q3 is

invertible; meanwhile, we have
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~Q�1 ¼ Q�1
5 �Q�1

5 Q2Q
�1
4

�Q�1
4 Q3Q

�1
5 Q�1

4 þ Q�1
4 Q3Q

�1
5 Q2Q

�1
4

	 

ð55Þ

Q5 ¼ Q1 � Q2Q
�1
4 Q3 ð56Þ

Corollary Consider Q4 non-singular; then, Q5 is invertible

if matrix ~Q is invertible.

With the above theorem and corollary, the invertible

matrix A1 can be expressed as

A1 ¼
S1 S2
S3 S4

	 

; S4 ¼

p5ða1Þ p6ða1Þ
p5ða2Þ p6ða2Þ

	 

ð57Þ

According to the form considered for S4 as defined in

Eq. (57),

S1 ¼ p4ð1Þ; S2 ¼ p5ð1Þ p6ð1Þ½ �; S3 ¼
p4ða1Þ
p4ða2Þ

	 


ð58Þ

Then we have

A�1
1 ¼ S�1

5 � S�1
5 S2S

�1
4

� S�1
4 S3S

�1
5 S�1

4 þ S�1
4 S3S

�1
5 S2S

�1
4

	 

ð59Þ

S5 ¼ S1 � S2S
�1
4 S3 ð60Þ

S�1
4 can be directly solved by using Eq. (55). Thus, the

solving of A�1
1 can be degraded into the inversion of three

N 	 N matrices. The proposed matrix inverse scheme is

more efficient than conventional Gauss algorithm where

more time is needed for inversion of asymmetric matrices.

In order to write a computer code, the complete algo-

rithm used in this proposed method is given in Table 2.

5 Stability and Accuracy Analysis
of the Proposed Method

In a time integration procedure such as the proposed

method, independent parameters such as a1 and a2 not only
control the stability, but also determine the accuracy. By

investigating the properties of a numerical method such as

stability and accuracy, the most favorable values of these

parameters can be obtained so that high accuracy is

achieved, while unconditional stability is maintained.

5.1 Stability Analysis

In general, any global equation of motion can be degraded

into a set of uncoupled SDOF systems by the use of the

modal decomposition. Meanwhile, the integration of the

uncoupled equations is equivalent to the integration of the

original system. Therefore, to study the stability properties

of the proposed method, it suffices to only consider the

SDOF system (Bathe 1996).

Stability analysis of an integration algorithm applied to

linear elastic systems is generally carried out by the

amplification matrix approach. An amplification matrix is

formed for an integration algorithm, and the algorithm is

considered to be unconditionally stable if the spectral

radius of the amplification matrix does not exceed the value

of 1.0 for any value of xnDt, where xn is the highest

natural frequency of the structure and Dt is the time step

size used in the integration algorithm (Bathe 1996).

Otherwise, the integration algorithm is considered to be

conditionally stable. To this end, the equations of the

proposed algorithms for a SDOF system under free vibra-

tion as elucidated in Eq. (33) can be represented by the

following matrix recursive relationship:

uðtiþ1Þ
Dt:uð1Þðtiþ1Þ
Dt2:uð2Þðtiþ1Þ

8<
:

9=
; ¼ A½ �

uðtiÞ
Dt:uð1ÞðtiÞ
Dt2:uð2ÞðtiÞ

8<
:

9=
;þ f̂i ð61Þ

where A is the amplification matrix which transfers the

state at the time instant ti to the state at the time instant ti?1.

Because A contains too many terms, the complete

expression of A is not presented here. Actually, we can

easily derive the expression of A by virtue of some general

mathematical software.

It can be shown mathematically that the response pro-

duced by the recursive relation in Eq. (33) for any arbitrary

Table 2 Step-by-step algorithm for calculation of response of MDOF systems using the proposed method

A. Initial calculation

1. Form stiffness matrix K, mass matrix M and damping matrix D of the system. Then calculate J�1 and �J�1 using Eq. (23) and (46)

2. Initialize Uðt0Þ and Uð1Þðt0Þ as displacement and velocity vectors. Then, determine the initial acceleration vector Uð2Þðt0Þ using Eq. (36)

3. Select an appropriate time step Dt and desirable parameters, a1 and a2. Then determine Û0 using Eq. (43b)

4. Educe and compute constant matrices A employing Eq. (51) and the corresponding matrix calculation technique

B. For each time step

1. Specify the vector of applied forces F̂i to the system in each time instant using Eqs. (53) and (51)

2. Calculate Ûiþ1 using Eq. (51), and then, determine Uðtiþ1Þ, Uð1Þðtiþ1Þ and Uð2Þðtiþ1Þ using Eq. (43c)
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initial conditions and Dt will be bounded if the magnitudes

of all eigenvalues of the amplification matrix in A are less

than or equal to unity. In other words, the numerical

scheme is stable if the spectral radius of A, qðAÞ ¼ maxðkiÞ
where ki are the eigenvalues, is strictly less than unity.

qðAÞ is the spectral radius which is a function of time step

length, Dt.
Since the changes in damping ratio do not have much

impact on the variation in spectral radius, here, assume

n ¼ 0 in amplification matrix. So at this moment, qðAÞ is a
function in terms of parameter a1, a2 and xDt. To deter-

mine the stability of the proposed method, the effects of

parameters a1 and a2 on the spectral radius qðAÞ need to be

investigated.

Here the stability analysis is conducted through

numerical experimentation, and some representative

parameter combinations are discussed. Figures 5 and 6

depict the variation in spectral radius qðAÞ of amplification

matrix of the proposed method in terms of variation in

dimensionless time step Dt=T for different values of a1, a2.
As it is depicted in Figs. 5 and 6, for Dt\0:2T , the pro-

posed method is always stable. So the spectral radius

curves remain 1.0 for different parameter combinations.

Figures 5 and 6 demonstrate that the increase in a1, a2
converts conditional stability to unconditionally

stable case.

Figure 5 and 6 show that there is an instability gap in the

curves. As it is depicted in Fig. 6, range of

0:24T\Dt\0:5T is almost an instability interval. These

figures show increasing the values of a1 and a2, and

decrease the value of spectral radius qðAÞ in the limit

Dt=T ! 1. Notably, the minimum points of these curves

move downward and rightward as two algorithmic

parameters increase, and the abrupt turning points in the

figure indicate that the eigenvalues of amplification matrix

A alter between real values and complex conjugate values.

However, these small turnings have no substantial influ-

ence on algorithmic stability and high-frequency dissipa-

tion characteristics.

5.2 Accuracy Analysis

In order to show the accuracy of the proposed method, we

need to evaluate the dissipation and dispersion error of the

new scheme. So, we should evaluate the amplitude decay

(AD) and period elongation (PE) for a periodical dynamic

problem. As measures of the numerical dissipation and

dispersion, we consider the algorithmic damping ratio �n
and relative period error s ¼ ð�T � TÞ=T , respectively.

Note that both �n and �T are defined in terms of the principal

roots of characteristic equation derived from A� kIj j ¼ 0.

Thus, these measures of accuracy are defined only about

values X so that stability region is 0\X�Xcrit. Outside

this region accuracy is not an issue and we are concerned

only about stability. T ¼ 2p=x and �T ¼ 2p= �x are conve-

nient measures of frequency distortion (dispersion)

numerically introduced by the algorithm.

Figures 7 and 8 plot the curves of the relative error of

period and the error related to the numerical damping or, in

other words, the rate of amplitude decay versus the ratio of

dimensionless time step Dt=T for different values of as,
respectively. The curves in Fig. 8 show that algorithmic

damping of the proposed method for Dt ¼ 0:33T has a

peak value. Therefore, after that, the error decreases again.

Also, in Fig. 9, after Dt ¼ 0:24T suddenly a large error

accrues. It happened because of local instability between

Dt ¼ 0:24T and Dt ¼ 0:5T . In this figure, for better com-

parison, a negative factor is multiplied in s’s.

Fig. 5 Variation in spectral radius in terms of variation in Dt=T
(conditionally stable when Dt=T ! 1)

Fig. 6 Variation in spectral radius in terms of variation in Dt=T
(unconditionally stable when Dt=T ! 1)
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Figures 9 and 10 show relative period error (dispersion)

and algorithmic damping (dissipation) of the method

compared to Newmark, Wilson and Bathe methods. In this

figure, ‘Alpha QB-Spline’ is the abbreviation standing for

Alpha Quartic B-spline, i.e., proposed method. The

parameters a1 and a2 of the proposed method have been

considered in the minimum and maximum range of the

previous investigation for stability and accuracy.

In general, the data in Figs. 9 and 10 show that for the

integration methods, the magnitude of one or both error

measurements usually increases with the time step Dt.
Meanwhile, for the specified time step, the magnitude of

both error measurements is greater for short-period SDOF

systems than for long-period systems. As the graphs show,

for this range of Dt=T , the proposed method, i.e., MQB-

spline, shows a low rate of errors for both types of errors.

The magnitude of error for one or both kinds of errors for

the proposed method is less than Bathe, Wilson and many

cases of Newmark methods.

6 Numerical Evaluation

In this section, the validity of the proposed method is

confirmed with the examination of several results. Four

numerical examples are considered. The Bathe, Newmark

and Wilson methods are employed for numerical

simulation.
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6.1 A SDOF System

A SDOF system used for numerical simulation is defined

by the following equation:

uð2ÞðtÞ þ 1:2uð1ÞðtÞ þ 16p2uðtÞ ¼ sin 3t; uð0Þ ¼ 0;

uð1Þð0Þ ¼ 0
ð62Þ

There is an exact solution for this equation (Paz 2012).

To evaluate the accuracy of the proposed method, the

relative error of various methods is compared to exact

solution. The time increments Dt used in this numerical

study have been chosen as 0.1, 0.25 and 0.5 s in order to

examine the effect of time step variations on the accuracy

of the proposed method. Relative errors are defined by

ei ¼
u
ðiÞ
exact � u

ðiÞ
num

u
ðiÞ
exact

�����
�����100% ði ¼ 0; 1; 2Þ ð63Þ

in which u
ðiÞ
exact and u

ðiÞ
num are the exact solution and the

numerical result at any time instant, respectively. In solv-

ing this equation, the parameters a1 and a2 of the proposed
method have been considered in two cases, i.e.,

a1 ¼ 0:6; a2 ¼ 0:75ð Þ and a1 ¼ 0:9; a2 ¼ 0:95ð Þ.
For this example, an accuracy analysis has been per-

formed for 8, 20 and 40 s for time step equal to 0.1, 0.25

and 0.5 s, respectively. Figures 11, 12, 13, 14, 15, 16, 17,

18 and 19 show relative errors of displacement, velocity

and acceleration for analysis with any time step. Of course,

to present the figures much better, some results have been

removed from them. The total average errors of this

example (for all 80 time points) are also given in Table 3.

The amount of this error is calculated by dividing the sum

of errors which occur at each time instant by the number of

all instants. It is clear from the table that for this example

the proposed method gives a higher accuracy compared to

the trapezoidal method.

6.2 Three-Degree-of-Freedom Spring System

The objective of this section is to present the solution for a

simple linear system that has been evaluated by Bathe and

Noh (2012). The calculated solution shows the value of the

method. The solution of the three-degree-of-freedom

spring system is considered and shown in Fig. 20, for

which node 1 is subjected to the prescribed displacement

over time. The governing equation can be rewritten to

solve only the unknown displacements u2 and u3. For this

system, k1 ¼ 107, k2 ¼ 1, m1 ¼ 0, m2 ¼ 1, m3 ¼ 1 are

considered and the displacement is prescribed at node 1 to

be u1 ¼ sinxpt with xp ¼ 1:2.

The important point to note is that this simple problem

as a ‘model problem’ represents the stiff and flexible parts

of a much more complex structural system. In a mode

superposition solution, the response within these stiff parts

(a response that corresponds to very high artificial fre-

quencies) would naturally not be included. In fact, the

system shown in Fig. 20 is used as a ‘model system’ of

such complex structural systems of many thousands of

degrees of freedom and studying the behavior of the

numerical solution when obtained by the direct integration

method is desired. In this example, the spring system is

considered using zero initial conditions for the

0

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25

R
el

at
iv

e 
Pe

rio
d 

er
ro

r  
(

)

T/T

Alpha QB spline ( 1=0.6, 2=0.75)

Alpha QB spline ( 1=0.9, 2=0.95)

Newmark ( =11/20, =3/10)

Newmark ( =1/2, =1/2)

Newmark (trap. rul)

Wilson ( =1.4)

Bathe

Fig. 9 Relative period error (dispersion)

0.05

0

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25

A
lg

or
ith

m
ic

 d
am

pi
ng

 ra
tio

 (
)

T/T

Alpha QB spline ( 1=0.9, 2=0.95)

Alpha QB spline ( 1=0.6, 2=0.75)

Newmark ( =11/20, =3/10)

Newmark ( =1/2, =1/2)

Newmark (trap. rule)

Wilson ( =1.4)

Bathe

Newmark (trap. rule) = Newmark( =1/2, =1/2)

Fig. 10 Algorithmic damping (dissipation)

S624 Iran J Sci Technol Trans Civ Eng (2019) 43 (Suppl 1):S615–S636

123



1.E 04

1.E 03

1.E 02

1.E 01

1.E+00

1.E+01

1.E+02

0 1 2 3 4 5 6 7 8

Ve
lo

ci
ty

 re
la

�v
e 

er
ro

r (
%

)

�me (sec)

Bathe Newmark (trap. rul)

Alpha QB spline ( 1=0.6, 2=0.75) Alpha QB spline ( 1=0.9, 2=0.95)

Fig. 12 Velocity relative error

for various methods (Dt ¼ 0:1)

1.E 03

1.E 02

1.E 01

1.E+00

1.E+01

1.E+02

1.E+03

0 1 2 3 4 5 6 7 8

Ac
ce

le
ra

�o
n 

re
la

�v
e 

er
ro

r (
%

)

�me (sec)

Bathe Newmark (trap. rul)

Alpha QB spline ( 1=0.6, 2=0.75) Alpha QB spline ( 1=0.9, 2=0.95)

Fig. 13 Acceleration relative

error for various methods

(Dt ¼ 0:1)

1.E 04

1.E 03

1.E 02

1.E 01

1.E+00

1.E+01

1.E+02

0 1 2 3 4 5 6 7 8
Di

sp
la

ce
m

en
t r

el
a�

ve
 e

rr
or

 (%
)

�me (sec)

Bathe Newmark (trap. rul) Alpha QB spline ( 1=0.6, 2=0.75) Alpha QB spline ( 1=0.9, 2=0.95)

Fig. 11 Displacement relative

error for various methods

(Dt ¼ 0:1)

1.E 03

1.E 02

1.E 01

1.E+00

1.E+01

1.E+02

0 2 4 6 8 10 12 14 16 18 20

Di
sp

la
ce

m
en

t r
el

a�
ve

 e
rr

or
 (%

)

�me (sec)

Bathe Newmark (trap. rul) Alpha QB spline ( 1=0.6, 2=0.75) Alpha QB spline ( 1=0.9, 2=0.95)

Fig. 14 Displacement relative

error for various methods

(Dt ¼ 0:25)

Iran J Sci Technol Trans Civ Eng (2019) 43 (Suppl 1):S615–S636 S625

123



displacements and velocities at nodes 2 and 3 (as must

typically be done in a complex many degrees of freedom

structural analysis) and is solved for the response over 10 s.

Time-stepping algorithm for the solution of this system is

used. The time step used is Dt ¼ 0:2618; hence, Dt=T1 ¼
0:0417 and Dt=T2 ¼ 131:76, where T1 ¼ 6:283, T2 ¼

0:002 are the natural periods of the system with two

degrees of freedom.

Figures 21, 22, 23, 24, 25 and 26 show the calculated

solutions of node 2. Because for solutions of node 3, the

responses of all numerical methods are too close; here,

only node 2 is investigated. These figures also give the

response obtained in a mode superposition solution,
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referred to as ‘reference solution’ using only the lowest

frequency mode plus the static correction (Bathe and Noh

2012). For this example, only the case

a1 ¼ 0:9; a2 ¼ 0:95ð Þ has been selected because for

a1 ¼ 0:6; a2 ¼ 0:75ð Þ the solution is unstable.

The figures show that in all time-stepping schemes, the

proposed and the Bathe methods perform very well; par-

ticularly, the velocity and acceleration at node 2 are very

well predicted. But it should be noted that the Bathe

method is a two-step method where for each time step,

trapezoidal rule is used in the first half step and three-point
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Table 3 Error estimation analysis, for example 6.1

Bathe Wilson h ¼ 1:4ð Þ Newmark (trap. rule) Newmark

c ¼ 0:5
b ¼ 0:5

� � Newmark

c ¼ 0:55

b ¼ 0:3

 ! Alpha QB-Spline

a1 ¼ 0:6
a2 ¼ 0:75

� � Alpha QB-Spline

a1 ¼ 0:9
a2 ¼ 0:95

� �

Dt ¼ 0:1

Dis. err. 0.191 0.113 0.122 0.147 0.075 0.01 0.028

Vel. err. 0.529 0.847 1.142 1.654 0.936 0.023 0.154

Acc. err 4.596 1.249 3.008 2.089 1.806 0.235 0.573

Dt ¼ 0:25

Dis. err. 0.389 0.314 0.222 0.236 0.116 0.274 0.176

Vel. err. 1.136 0.879 1.478 1.462 0.852 0.722 0.243

Acc. err 5.518 0.518 2.376 2.454 0.820 2.595 1.321

Dt ¼ 0:5

Dis. err. 1.658 7.58 0.761 9.413 0.317 0.786 0.295

Vel. err. 1.422 3.774 1.395 56.217 0.615 2.051 1.191

Acc. err. 25.389 8.016 10.832 141.719 2.276 8.913 1.848
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backward difference method is used in the second half step

(see Bathe 2007; Bathe and Noh 2012). However, all other

methods under study in this paper are one step. In fact, the

trapezoidal rule displays large errors and instability in the

calculation of the acceleration at node 2; see Fig. 24. Some

methods were omitted in Figs. 25 and 26 in order to make

the comparison easier. In Fig. 26, the first step error in the

proposed method is less than that in the Bathe method.

Solving this example with the proposed method, unlike the

basic method which was the subject of Rostami et al.

(2012) and Shojaee et al. (2015), shows that the modified

quartic B-spline method always maintains its stability and

shows high accuracy.

Fig. 20 Model problem of three-degree-of freedom spring system
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Fig. 21 Displacement of node 2 for different methods
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Fig. 22 Velocity of node 2 for different methods
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Fig. 23 Velocity of node 2 for different methods
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Fig. 24 Acceleration of node 2 for different methods
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Fig. 25 Acceleration of node 2 for different methods
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6.3 A Nine-Story Shear Building Under Harmonic
Ground Acceleration

Figure 27 shows a nine-story shear building subjected to

sinusoidal base acceleration with frequency of 4p rad/s and

PGA = 0.3 g (Rostami et al. 2012). The columns are I-

shaped with sections of IPB240, IPB270 and IPB300 used

in first to third three stories, respectively. The least period

of this system is equal to 0.41 s. In this example, the

damping effects are negligible and Dt ¼ 0:1 s has been

selected as the time increment.

This example has been also analyzed by the other

methods which were used in the previous example. Dis-

placement–time, velocity–time and acceleration–time his-

tories of stories two and nine have been plotted in time
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Fig. 26 Acceleration of node 2 for different methods

Fig. 27 Nine-story shear

building subjected to harmonic

ground acceleration

10

8

6

4

2

0

2

4

6

8

0 0.5 1.5 2 2.5 3 3.51 4 4.5 5 5.5 6

Di
sp

la
ce

m
en

t

�me

Bathe Wilson ( =1.4) Newmark (trap. rul)
Newmark ( =1/2, =1/2) Newmark ( =11/20, =3/10) Alpha QB spline ( 1=0.6, 2=0.75)
Alpha QB spline ( 1=0.9, 2=0.95) Modal Reference

Fig. 28 Displacement–time history of story 1 in frame shown in Fig. 27
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interval between 0 and 6 s in Figs. 28, 29, 30, 31, 32 and

33. In these graphs, the reference method is the same as

mode superposition method in which the separated equa-

tions are being solved through the exact solution (response

of SDOF systems to harmonic loads), while in the modal,

these equations are being solved through the numerical

solution of Duhamel integration method. The graph shows

that the result of the proposed method is closer to the exact

solution than the other methods.
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Fig. 29 Displacement–time history of story 9 in frame shown in Fig. 27
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Fig. 30 Velocity–time history of story 1 in frame shown in Fig. 27
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Fig. 31 Velocity–time history of story 9 in frame shown in Fig. 27
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6.4 Double-Layer Spatial Structure Under Step
Loading

The configuration and dimensions of a structure shown in

Fig. 34 are a 3-D view of a space truss retrieved from

Rostami et al. (2012). The model is a double-layer spatial

structure with four supports in the edges of the bottom

layer. The total lengths of the lower layer and upper layer

are 1200 and 1500 cm in both directions, respectively. The

height of the structure is 106 cm. This truss is composed of

200 members and 61 nodes. The module of elasticity,

cross-sectional area and mass per length for all members

are the same as what is shown in the figure. This structure

is under four 3 ton concentrated impact loads, which sud-

denly strike on the nodes in the corners of central panel of

the upper layer. In the analysis, the damping matrix is
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Fig. 32 Acceleration–time history of story 1 in frame shown in Fig. 27
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Fig. 33 Acceleration–time history of story 9 in frame shown in Fig. 27

Fig. 34 Configuration and properties of double-layer spatial structure
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derived based on the mass matrix and the damping ratio of

all 171 modes of the structure so that the equivalent viscous

damping ratio is equal to 5% for all modes (Paz 2012).

The maximum and minimum period of this system is

0.336 and 0.011 s, respectively. In order to investigate the

accuracy of the proposed method with time consumption

analysis, five different values 0. 1, 0.05, 0.02, 0.01 and

0.005 s have been chosen as time step Dt.

This example is also analyzed by the methods which

were used in previous examples. An accuracy analysis with

computational time consumption has been performed by

the use of a computer (Core i7 CPU @ 2.2 GHz). In this

example, just trapezoidal rule from the Newmark method

has been selected. The complete analysis has been done,

and the results including the values of displacement,

velocity and acceleration of all joints have been calculated.
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Fig. 35 Vertical displacement–

time history of the node in the

middle of the top layer

(Dt ¼ 0:1)
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Fig. 36 Vertical velocity–time

history of the node in the middle

of the top layer (Dt ¼ 0:1)
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For example, the vertical displacement, velocity and

acceleration of the node which is in the middle of the lower

layer have been plotted as time history graphs. The ‘ref-

erence solution’ refers to mode superposition solution

where all modes have been considered wherein and the

separated equations are being solved through the Duhamel

integral (Paz 2012). Figures 35, 36, 37, 38, 39, 40, 41, 42

and 43 show the vertical response of intended joint for time

step 0.02, 0.05 and 0.1 s. The figures show that in all time-

stepping schemes, the proposed method performs well;

particularly, the acceleration is very well predicted. Indeed,

the trapezoidal rule displays large errors in the calculation

of the acceleration; see Figs. 37, 40 and 43. In this exam-

ple, for the time steps less than 0.02 s, collocation

parameter is chosen as a1 ¼ 0:6 and a2 ¼ 0:75 because
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Fig. 38 Vertical displacement–

time history of the node in the

middle of the top layer

(Dt ¼ 0:05)
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Fig. 39 Vertical velocity–time

history of the node in the middle

of the top layer (Dt ¼ 0:05)
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taking these parameters as a1 ¼ 0:9 and a2 ¼ 0:95 causes

instability.

These analyses have been performed for 5 s after the

impact loads being applied. The results of this analysis are

demonstrated in Table 4. The normal root mean square

error (NRMSE) method was used as error estimation cri-

terion to investigate accuracy. The NRMSE represents the

sample standard deviation of the differences between pre-

dicted values and observed values. These individual

differences are called residuals when the calculations are

performed over the data sample used for estimation, and

are called prediction errors when computed out-of-sample

(Hyndman and Koehler 2006).

Here the NRMSE is defined as follows:

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
t¼1 ðX̂t � XtÞ2=n

q
Xmax
t � Xmin

t

ð64Þ
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Fig. 41 Vertical displacement–

time history of the node in the

middle of the top layer

(Dt ¼ 0:02)
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history of the node in the middle

of the top layer (Dt ¼ 0:02)
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where X̂t and Xt are the reference and resulted solution

values (displacement, velocity or acceleration) at time t,

respectively. n is the number of time steps.

Table 4 shows the response computational error analy-

sis. This table shows NRMS error for various time steps. It

is clear from the table that the proposed method gives a

higher accuracy compared to the others. In this table, the

results of time consumption analysis are shown as well.

7 Concluding Remarks

A new version of quartic B-spline direct time integration

method for dynamic analysis of structures is presented.

This procedure is derived based on the uniform quartic B-

spline piecewise polynomial approximations and colloca-

tion method, named Alpha Quartic B-Spline method. By

using two collocation parameters a1 and a2 in the proposed

algorithm, unconditional stability was achieved, but a local

instability was created. A stability analysis showed that

unconditional stability is provided when a suitable value of

as is selected. The accuracy analysis indicated that the

scheme benefits from high accuracy with low amplitude

decay and period elongation. Thus, it leads to a lower

numerical amplitude dissipation and period dispersion

compared to Wilson and Newmark trapezoidal rule. The

effectiveness and robustness of the proposed algorithm in

solving linear dynamic problems were demonstrated in the

numerical examples. These evaluations showed that the

proposed method operates more effectively than the

trapezoidal rule and works as good as the Bathe method.

The new implicit scheme is simple, effective and practical

when the trapezoidal rule is not effective or even fails.
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