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Abstract
One of the objective functions used in damage detection problems is the one in which the difference of natural frequencies

and mode shapes for the actual and computed damage scenarios are compared simultaneously. Using this type of objective

function, one can locate the damage and quantify its severity in a single step. In this paper, a new version of these objective

functions is presented in order to decrease the burden of the calculations of the former methods. The presented method has

two phases, in the first phase, the natural frequencies are calculated, and in the second phase, the mode shapes are

evaluated. The second phase is performed only if the natural frequencies of the computed solution obtained from the first

phase are equal to the natural frequencies of the considered scenario. Hence, the number of evaluating modes is con-

siderably decreased. In order to demonstrate the efficiency of the new objective function, the accelerated water evaporation

optimization algorithm is utilized for damage detection of three different skeletal structures using different scenarios.

Additionally, the numbers of calculated fractions in each iteration of the single-phase and two-phase methods are com-

pared, to show the reduction in the volume of the operations.

Keywords Two-phase method � Damage detection � Skeletal structures � Accelerated water evaporation optimization,

metaheuristics

1 Introduction

Once the structural construction is completed, monitoring,

maintenance and repair start during the operative phase.

This process is very important for large-scale structures

such as bridges, industrial and offshore structures, and if it

is not done properly, the probability of suffering massive

financial and human losses becomes very high. The most

important phase of the process is appropriate monitoring

and assessment of the structural condition. Proper perfor-

mance in this phase provides sufficient time to adopt a

suitable strategy to repair the damaged elements. The

principal purpose of monitoring is the detection of the non-

expected structural behaviors. Any unusual and uncommon

changes in structural response that happen during the usage

of a structure are called damage. Hence, damage detection

is considered as the most important phase of the assessment

of structural condition.

Damage assessment includes identifying location and

severity of the damage. The problem is an inverse opti-

mization problem, and there are different methods for the

solution of this problem. Damage results in changes in

structural properties including stiffness and mass of the

structure (Perera et al. 2009). Therefore, dynamic modal

features, natural frequencies and mode shapes are changed.

The dynamic features are obtained by finite element for-

mulation for different states of damage. The dynamic

methods are divided into two categories: modal based and

signal based (Boonlong 2014; Fan and Qiao 2009;

Masoumi and Jamshidi 2015; Rucka 2011). The modal-

based methods can be implemented in two steps. The two-

step damage assessment methods locate the damage in the

first step and quantify its severity in the second step

(Seyedpoor 2012; Seyedpoor and Montazer 2016; Vo-Duy

et al. 2016; Xiang and Liang 2012), while the one-step

damage detection methods detect the damage and quantify

its severity, simultaneously.
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One of the common one-step damage assessment

methods is comparison of structural dynamic characteris-

tics between the actual and computed damage states. The

method can be performed using optimization algorithms

and formulation of an objective function based on modal

parameters. In this method, the objective function is often

based on the difference of natural frequencies and mode

shapes between the actual and computed damage states.

Different damage assessment methods have been presented

by many researchers (Doebling et al. 1996; Doebling et al.

1998; Farrar and Worden 2007; Salawu 1997; Sohn et al.

2003; Tributsch and Adam 2014, 2018).

As mentioned, in most of the studies on damage

detection literature, the objective function is formulated

based on structure’s dynamic features. Perera and Torres

(2006) proposed a genetic algorithm (GA) to detect the

damage of a beam structure using an objective function on

the same basis. Villalba and Laier (2012) solved damage

identification problem of several truss structures through

GA algorithm and a methodology based on natural fre-

quencies and mode shapes. To assess damage of truss

structures, Majumdar et al. (2012) presented a method

based on ant colony optimization (ACO) algorithm and

changes in natural frequencies. Zhu et al. (2017) applied

the bird mating optimizer for solving damage detection

problems of several structures. Additionally, to assess

damage in skeletal structures, an improved hybrid

stochastic/deterministic Pincus–Nelder–Mead optimization

algorithm was utilized by Nhamage et al. (2016). Kaveh

et al. (2016) studied four different truss structures to

demonstrate the ability of simplified dolphin echolocation

(SDE) algorithm to detect damages. They examined dif-

ferent damage scenarios in the presence of two different

levels of with/without noise. Also, they presented a sig-

nificant mutation based on the fact that most of the ele-

ments are often undamaged in the structure. According to

this mutation, there is a 30% probability that every element

is undamaged. Therefore, using this mutation increases the

opportunity of the algorithm to obtain the exact solution.

In most of the above-mentioned studies, the objective

function has been formulated based on natural frequencies

and mode shapes. Kaveh and Zolghadr (2015) investigated

two different objective functions using ECSS algorithm to

detect damage of the steel truss structures. In addition to

using an objective function based on natural frequencies

and mode shapes which aimed to find exact locations and

severity of damages, they examined another objective

function which was only based on natural frequencies; the

purpose of examining the objective function was to find

solutions whose frequencies are equal to frequencies of

actual damage state (experimental scenario). As an exam-

ple, the objective function finds multiple probable solutions

(global optimal solutions) for every experimental scenario

in symmetric structures.

One of the effective methods for solving many opti-

mization problems is the use of metaheuristic algorithms

(Kazemzadeh Azad 2018; Tejani et al. 2018a). Meta-

heuristic algorithms are widely used as effective tools for

structural optimization (Hasançebi and Azad 2015; Kaveh

2017a, b; Kazemzadeh Azad 2017). Many of these algo-

rithms, after being introduced and presented, are modified

by other researchers, and their improved versions are pre-

sented (Kaveh et al. 2017, 2018; Tejani et al. 2018a, b).

One of the metaheuristic algorithms that is presented

recently by Kaveh and Bakhshpoori (2016b) is the water

evaporation optimization (WEO) algorithm. Also, they

enhanced the convergence rate of the WEO and introduced

the accelerated water evaporation optimization (Kaveh and

Bakhshpoori 2016a). The WEO algorithm has been pro-

posed based on the evaporation of water molecules at the

nano-scale. The evaporation has been presented by Wang

et al. (2012) in order to simulate molecular dynamics on

the evaporation of nanoscale water aggregation on a solid

substrate with different surface wettabilities.

In this study, a new objective function is presented

based on the natural frequencies and mode shapes of the

structures. Several skeletal structures are tested to

demonstrate the effectiveness of the proposed objective

function. This objective function is a two-phase process. In

the first phase, the only difference of the natural frequen-

cies between experimental scenario and computed solution

is studied. If the difference becomes zero, computed

solution is detected as a probable solution. In the second

phase, the differences of the natural frequencies and mode

shapes between actual damage scenario and computed

solution are studied. This phase is performed if the com-

puted solution obtained from the first phase is detected as a

probable solution. The purpose of defining such an objec-

tive function is to reduce the burden of the calculations and

increase the rate of the convergence of the algorithm run-

ning in every iteration. In order to demonstrate the effi-

ciency of the proposed method, accelerated WEO

algorithm with mutation is employed.

The remainder of this paper is organized as follows:

Damage assessment approach is provided in Sect. 2. In

Sect. 3, the optimization algorithms are presented.

Numerical examples are examined in Sect. 4. Finally,

conclusions are provided in Sect. 5.

2 Method for Damage Assessment

In this section, the inverse problem of structural damage

detection using changes in dynamic parameters is descri-

bed. The process of the problem solving is shown in Fig. 1.
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2.1 Finite Element Model of a Structure

To model a structure for finite element method and to

calculate its natural frequencies and mode shapes, first,

stiffness and mass matrices of the elements are computed

using Eqs. (1) and (2). Then, the stiffness and mass

matrices of the structure for undamaged state are assem-

bled by Eqs. (3) and (4).

ke½ � ¼ L½ �T ke
0

h i
L½ � ð1Þ

me½ � ¼ L½ �T me0
h i

L½ � ð2Þ

K½ � ¼
Xne
i¼1

kei
� �

ð3Þ

M½ � ¼
Xne
i¼1

me
i

� �
ð4Þ

where [ki
e] and [mi

e] are the stiffness and mass matrices of

the ith element, respectively. Also, [K] and [M] are the

stiffness and mass matrices of the structure, respectively.

Here, ne is the number of structural elements.

Modal parameters are calculated using the following

eigenvalue equation:

K½ � � x2
j M½ �

� �
/j

� �
¼ 0 ð5Þ

Where xj and {/j} are the jth natural frequency and mode

shape of the structure.

2.2 Simulation of Structural Damage Using the b
Vector

In modeling the structure using finite element formulations,

reduction in structural properties such as elasticity modulus

and cross-sectional area are used to simulate damage. The

elasticity modulus of damaged element, Eid, is considered

as:

Eid ¼ 1� bið ÞEi ð6Þ

where bi and Ei are damage severity and elastic modulus of

the ith element, respectively; bi is between 0, for com-

pletely healthy element, and 1, for a completely damaged

element.

The b vector is a vector of dimension ne9 1, and the

numerical value of the ith array of this vector is the damage

severity corresponding to the ith structural element. Dif-

ferent damage scenarios can be defined using the b vector.

2.3 Estimating Natural Frequencies and Mode
Shapes of a Damage Scenario

In order to model the damage state, one damage scenario is

defined and shown by b vector. By applying b vector to

structural elasticity modulus, the stiffness matrix of struc-

ture corresponding to the damage scenario,[Kd], is equal to:

Kd½ � ¼
XNE
i¼1

1� bið Þ kei
� �

ð7Þ

Thus, natural frequencies and mode shapes of the

damage scenario are obtained by the following equation:

Kd½ � � x2
d;j M½ �

� �
/d;j

� �
¼ 0 ð8Þ

where {/d,j} and xd,j are the mode shape and natural fre-

quency of the jth mode corresponding to the damage sce-

nario, respectively.

Start

Define the finite element model of the structure

Simulate the structural damage using 
defining a β vector

Estimate the natural frequencies and mode 
shapes of the actual damage scenario

Formulate the objective function

Use the objective function in the 
accelerated WEO algorithm with mutation 

Report the best computed solution

End

Fig. 1 Damage assessment approach
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2.4 Formulation of the Method

As it was previously mentioned, the present method has

two phases:

Phase 1 In this phase, only the difference of natural

frequencies between experimental scenario and computed

damage solution is checked as follows:

F1 ¼
Xnm
j¼1

xAWEO
d;j � xreal

d;j

xreal
d;j

�����

�����

 !
ð9Þ

where xd,j
AWEO and xd,j

real are the natural frequency of the jth

mode corresponding to the damage solution computed by

the accelerated WEO algorithm and the experimental sce-

nario, respectively.

Phase 2 In this phase, only the difference of mode

shapes between actual and computed damage solution is

checked as follows:

F2 ¼
Xnm
j¼1

Xndof
i¼1

/AWEO
d;ij � /real

d;ij

/real
d;ij

�����

�����

 !
ð10Þ

where /d,ij
AWEO and /d,ij

real are the jth mode shape of the ith

degree of freedom corresponding to the computed and

actual the damage scenario, respectively; and ndof is the

number of structural degrees of freedom.

In most of the studies on damage assessment, differ-

ences of natural frequencies and mode shapes between

actual and computed damage states are simultaneously

formulated, i.e., their defined objective function, F, is

expressed as:

F ¼ F1 þ F2 ð11Þ

When the values of F1 and F2 become zero, the actual and

computed damage scenarios become identical. According

to the number of calculating fractions in F1 and F2, the

burden of calculations corresponding to F1 is much less

than F2. Therefore, instead of simultaneous use of F1 and

F2, first the F1 is checked. If the value is equal to zero, then

the F2 is checked. In this way, the total load of calculations

is greatly reduced. As the algorithm minimizes the F1,

when F1 is equal to zero and F2 is not, this scenario can be

excluded from search space and the algorithm should be

run again.

2.5 Application of the Objective Function
to the Algorithm

This process is illustrated in Fig. 2. The parameter i indi-

cates the number of total iterations, and j is the number of

consecutive iterations, where the F1 value is not equal to

zero corresponding to the best computed solution in each

iteration. Also, tmax is the maximum number of iterations in

which the algorithm has the opportunity to find one sce-

nario whose value of F1 is equal to zero.

The first and second phases of the objective function, as

shown in Fig. 2, include the following steps 1–4 and the

steps 6–7, 9–11, respectively.

Step 1 Different damage solutions are randomly gener-

ated and evaluated by F1. Then, the generated solution

with the less value of F1 is saved as the best solution.

Step 2 Different damage solutions of the ith iteration are

generated based on accelerated WEO algorithm formu-

lation, and their F1 values are obtained.

Step 3 The best solution in F1 value terms is updated.

Step 4 The F1 value of the best solution is checked. If

this value is equal to zero, then steps 8–9 are run;

otherwise, step 5 is executed.

Step 5 The value of j is checked. If it is less than tmax,

i and j are equated to i ? 1 and j ? 1, respectively, and

steps 2–4 are executed again. Otherwise, the algorithm’s

opportunity to find a solution with the value of F1 being

equal to zero is finished, and steps 6–7 are run.

Step 6 The values of F2 corresponding to the best

solution and every symmetric scenario (if the considered

structure is symmetric) are calculated.

Step 7 The best answer based on the values of F2 is

updated.

Step 8 The best computed solution is saved as the

probable solution.

Step 9 The value of F2 corresponding to the best solution

is checked. If this value is equal to zero, the best

computed solution is equal to the experimental scenario

and step 12 is executed.

Step 10 If the considered structure is symmetric, the

symmetric scenarios of the best computed solution are

obtained and saved as the probable damage solutions.

Step 11 The F2 value of every symmetric scenario is

obtained. If this value is equal to zero in one of the

scenarios, the scenario is equal to experimental scenario

and step 12 is run. Otherwise, the j value is one, i value is

increased to i ? 1, and steps after step 1 are performed

again.

Step 12 The process of finding actual damage scenario is

finished, and the best computed solution is saved as

solution found by this approach.

2.6 Reporting the Best Computed Solution

In the last step, the best computed damage solution shown

by b vector is reported.
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3 Optimization Algorithms

Water evaporation optimization (WEO) is a physics-based

metaheuristic algorithm, introduced by Kaveh and

Bakhshpoori (2016b). Also, accelerated water evaporation

optimization (Kaveh and Bakhshpoori 2016a) is a version

of WEO and has been developed to solve engineering and

multidisciplinary optimization problems.

3.1 Water Evaporation Optimization

WEO is proposed based on inspiration of evaporation of

water molecules on the surface of solid materials. Steps of

the WEO implementation are as follows:

Fig. 2 Application of the objective function to the algorithm
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3.1.1 Initializing Algorithm Parameters

In the first step, algorithm parameters such as number of

iteration (tmax), number of water molecules (nWM), mini-

mum and maximum values of monolayer evaporation

probability (MEPmin = 0.03 and MEPmax = 0.6), and min-

imum and maximum values of droplet evaporation proba-

bility (DEPmin= 0.6 and DEPmax = 1) are determined.

These evaporation probability parameters have been

defined based on molecular dynamics (MD) simulations

presented by Wang et al. (2012). Also, the positions of all

water molecules are randomly initialized in an n-dimen-

sional search space (WM(0)) as follows:

WM
ð0Þ
i;j ¼ Roundðxj;min þ randi;j :ðxj;max � xj;minÞÞ ð12Þ

in which, WMi,j
(0) are the initial values of the jth variable

corresponding to the ith water molecule; randi,j is a random

number in the range (0,1); xj,min and xj,max are the minimum

and maximum permissible values for the jth variable.

3.1.2 Generating Water Evaporation Matrix

WEO has two independent sequential phases including

monolayer and droplet evaporation phases, and molecules

are updated globally and locally, respectively, in these

phases. Variations of charge value (q) are q[ 0.4e and

q\ 0.4e in the monolayer and droplet evaporation phases,

respectively.

In the monolayer evaporation phase (t B tmax/2), the

objective function value of the individuals (Fiti
t) is scaled to

the range [- 3.5, - 0.5]. Then, the corresponding substrate

energy vector (Esub(i)) is generated as follows:

EsubðiÞt ¼
ðEmax � EminÞ � ðFitti �MinðFitÞÞ

ðMaxðFitÞ �Min(FitÞÞ þ Emin ð13Þ

in which, Emax and Emin are equal to - 0.5 and - 3.5,

respectively; Max and Min are the maximum and minimum

functions, respectively. Then, the monolayer evaporation

probability (MEP) is constructed as follows:

MEPtij ¼
1

0

	
if

if
randij\ expðEsubðiÞtÞ
randij � expðEsubðiÞtÞ

ð14Þ

where MEPij
t is the updating probability for the jth variable

of the ith water molecule at the tth iteration.

In the droplet evaporation phase (t[ tmax/2), the

objective function value of individuals (Fiti
t) is scaled to the

range [- 50�, - 20�] by using contact angle (h(i)t):

hðiÞt ¼ ðhmax � hminÞ � ðFitti �MinðFitÞÞ
ðMax(Fit)�Min(FitÞÞ þ hmin ð15Þ

Then, the droplet evaporation probability (DEP) is

constructed as follows:

DEPtij ¼
1

0

	
if

if

randij\JðhðtÞi Þ
randij � JðhðtÞi Þ

JðhÞ ¼ J0P0

2

3
þ cos3 h

3
� cos h


 ��2=3

ð1� cos hÞ; J0P0 ¼
1

24

ð16Þ

in which, MEPij
t is the updating probability for the jth

variable of the ith water molecule at the tth iteration; J is

evaporation flux, and maximum and minimum value of it is

1 and 0.6, respectively; J0 and P0 are constant values.

3.1.3 Generating Random Permutation-Based Step Size
Matrix

In this step, a random permutation-based step size matrix is

calculated as follows:

S ¼ rand � ðWMðtÞ permute1ðiÞðjÞ½ �
�WMðtÞ permute2ðiÞðjÞ½ �Þ ð17Þ

in which, permute1 and permute2 are different rows per-

mutation functions; i and j are the number of water mole-

cules and design variables of the problem, respectively;

WM is the evaporated set of water molecules.

3.1.4 Generation of the Evaporated Water Molecules
and Updating the Matrix of Water Molecules

After calculating step size matrix, the evaporated set of

water molecules (WM(t?1)) is generated according to the

matrix and evaporation probability matrix to the current set

of molecules (WM(t)):

WMðtþ1Þ ¼ Round WMðtÞ þ S� MEPðtÞ

DEPðtÞ

	
t� tmax=2
t[ tmax=2


 �

ð18Þ

The rounding function rounds the values of design

variables to the nearest discrete available value. In other

words, the function is used for discrete optimization

problems. The best water molecule is returned after eval-

uating the molecules based on the objective function.

3.1.5 Terminating Condition Check

Steps 2–4 are repeated until the termination condition,

number of iterations (t), is satisfied.

3.2 Accelerated Water Evaporation Optimization
(Accelerated WEO)

As it was previously mentioned, in WEO algorithm,

molecules are updated in two independent sequential pha-

ses including monolayer and droplet evaporation, while the
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process is performed by the simultaneous use of both

phases in accelerated WEO.

Steps of the accelerated WEO implementation are as

follows:

3.2.1 Initializing Algorithm Parameters

In this step, in addition to the details described in the WEO,

the worst water molecule (worst-WM) in objective func-

tion value terms is monitored.

3.2.2 Generating Water Evaporation Matrix

The distance vector between all water molecules and the

worst current one (dist) is first calculated by using:

disti ¼ worstWM�WMij j; i ¼ 1; 2; . . .; nWM ð19Þ

The molecules are sorted based on their distance values

in ascending order. Then, the DEP and MEP matrices are

generated for updating the first and second half of the

molecules, respectively, using Eqs. (3) and (5). It should be

noted that the droplet and evaporation probability matrices

and their corresponding details, substrate energy and con-

tact angle vectors, include nWM/2 rows. Then, mixed

evaporation matrix (MDEP) is assembled from MEP and

DEP matrices using the pseudocode shown in Fig. 3.

3.2.3 Generating Random Permutation-Based Step Size
Matrix

In this step, similar to the one described in WEO, a random

permutation-based step size matrix is calculated using

Eq. (17).

3.2.4 Generate Evaporated Water Molecules and Update
the Matrix of Water Molecules

The evaporated set of water molecules (WM(t?1)) is gen-

erated according to the step size matrix and mixed evap-

oration probability matrix (MDEP) to the current set of

molecules (WM(t)):

WMðtþ1Þ ¼ RoundðWMðtÞ þ S�MDEPðtÞÞ ð20Þ

Then, the best water molecule is returned after evalu-

ating the molecules based on the objective function.

3.2.5 Terminating Condition Check

Steps 2–4 are repeated until termination condition, number

of iteration of the algorithm (t), is satisfied.

4 Numerical Examples

In this section, three numerical examples consisting of a

two-span beam, a two-bay three-story frame and a 72-bar

spatial truss have been examined. To show the performance

of the proposed objective function, every numerical

for i=1:nWM
Dist(i)=norm(WM(i,:)-worst-WM);

end 
[a,b]=sort(Dist);

for i=1:nWM/2 
droplet-WM(i,:)=WM(b(i),:);

end 
Generate the corresponding θ vector and DEP matrix using Eqs. (15) and (16), respectively.

for i=1: nWM/2 
monolayer-WM(i,:)=WM(b(size(nWM/2+i),:);

end 
Generate the corresponding Esub vector and MEP matrix using Eqs. (13) and (14), respectively. 

for i=1:size(WM,1)
if i<= nWM/2 
MDEP(b(i),:)=DEP(i,:);

else 
MDEP (b(i),:)=MEP(i-size(WM,1)/2,:);

end 
end 

Fig. 3 Pseudocode for

constructing the MDEP matrix
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example has been studied using three different damage

scenarios and their results have been reported. A number of

modes and degrees of freedom (DOF) are considered as

input data that have an effect on the process of problem

solving. The more number of these used, the easier it is to

obtain a better solution; however, the number of calculated

fractions during every evaluation of the objective function

will be increased. Therefore, the number of modes and

DOF must be chosen carefully. The number of modes

considered for every structure has been mentioned in the

corresponding part of the example. Additionally, the

number of degrees of freedom in each example is the total

number of structural degrees of freedom. All of the sce-

narios have been run 30 times independently. Also, tmax

and the population sizes are considered as 1000 and 30,

respectively.

To evaluate the performance of this method with other

metaheuristic algorithms, CBO and ECBO algorithms are

used. It should be noted CBO and ECBO algorithms are

applied to only one scenario for each problem.

4.1 A Two-Span Beam

The first example is a two-span beam as shown in Fig. 4.

The material and section properties of the elements of the

beam are given in Table 1. This beam has 63 degrees of

freedom, and the ten first modes are considered for all of

the scenarios. This beam is symmetric; therefore, there is

one other scenario whose natural frequencies are equal to

the natural frequencies of the considered one. The damage

scenarios of this example are provided in Table 2.

In Table 3, the number of successful runs for every

scenario of this example is reported. Successful run is a run

in which the considered scenario is found. Table 4 presents

the results of the selected run for each scenario at the end

of two phases. For each scenario, two successful runs have

been chosen to report. Results are presented in two cases:

Case I a symmetric successful run in which the algorithm

has found one symmetric solution in the first phase and

considered scenario is found in the second phase. Case II a

successful run in which the algorithm has found considered

scenario in the first phase and this solution is not changed

in the second phase.

Figures 5 and 6 show the evolutionary processes of

damage severities of the damaged elements in the first

phase corresponding to two successful runs of Scenario 1

and their symmetric solutions. Figures 7 and 8 show the

variation of F1 with the number of iterations corresponding

to these successful runs.

4.1.1 Noise for the Two-Span Beam

In real dynamic tests, avoiding the noise is impossible.

Considering the noise causes a small deviation in the modal

data; therefore, the value of objective function F1 will not

Fig. 4 Schematic of the two-span beam

Table 1 Material and section properties of the two-span beam

Value

E, modulus of elasticity (N/m2) 2.07 9 1011

q, material density (kg/m3) 7780

L, element’s length (m) 0.5

A, cross-sectional area of the elements (m2) 0.0123

I, moment of inertia of the elements (m4) 2.219 9 10-4

Table 2 Damage scenarios of the two-span beam

Scenario Damaged element Damage severity (b)

1 3 0.40

2 3 0.50

8 0.30

3 2 0.40

8 0.60

11 0.50

Table 3 Number of successful runs for the two-span beam

Scenario Successful runs

ECBO CBO Accelerated WEO

1 * * 30

2 * * 29

3 4 1 6

*Not reviewed
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Table 4 Results of the two-span

beam
Scenario Case Result of the first phase Result of the second phase

Damaged element Damage severity (b) Damaged element Damage severity (b)

1 I 18 0.40 3 0.40

II 3 0.40 3 0.40

2 I 13,18 0.30, 0.50 3, 8 0.50, 0.30

II 3, 8 0.50, 0.30 3, 8 0.50, 0.30

3 I 10, 13, 19 0.50, 0.60, 0.40 2, 8, 11 0.40, 0.60, 0.50

II 2, 8, 11 0.40, 0.60, 0.50 2, 8, 11 0.40, 0.60, 0.50

Fig. 5 Evolutionary processes

of damage severities in the first

phase for the two-span beam

corresponding to Scenario 1

Fig. 6 Evolutionary processes

of damage severities in the first

phase for the two-span beam

corresponding to Scenario 1
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reach to zero anymore. Hence, calculation is continued

until the last iteration, and at the end, the second phase is

performed. In the second phase, the value of F2 for the

computed solution and the symmetric scenarios of the

computed solution are calculated. Then, the best answer is

considered as the solution found by this approach.

Producing small deviation in the experimental dynamic

parameters is measured as:

xnoise;j ¼ xreal
d;j � ð1þ random �1; 1ð Þ � Noisef Þ ð21Þ

unoise;ij ¼ /real
d;ij � ð1þ random �1; 1ð Þ � NoiseuÞ ð22Þ

where noise implies a noisy value; Noisef and Noiseu are

the deviations of the natural frequencies and mode shapes

which are 1 and 3%, respectively (Kaveh et al. 2016).

Table 5 shows the results of the scenarios by consider-

ing noise for this example. Figure 9 illustrates the results of

the two-span beam corresponding to Scenario 2. Figure 10

shows the evolutionary processes of damage severities of

the damaged elements in the first phase corresponding to

Scenario 2 and their symmetric solutions. Also, Fig. 11

shows the variation of F1 with the number of iterations.

4.2 A Two-Bay Three-Story Frame

The second example is the two-bay three-story frame,

shown in Fig. 12. As observed in Fig. 12, the beams and

columns of the frame are modeled using 3 and 2 identical

Fig. 7 Variation of the F1 with

the number of iterations for the

two-span beam using the

accelerated WEO (Scenario 1)

Fig. 8 Variation of the F1 with

the number of iterations for the

two-span beam using the

accelerated WEO (Scenario 1)

Table 5 Results of the two-span beam by considering noise

Scenario Damaged element(s) Damage severity

1 3 0.4

2 3, 8, 19 0.47, 0.31, 0.01

3 2, 8, 9, 11, 13 0.36, 0.62, 0.02, 0.49, 0.05

Bold values show those member for which additional damages are

detected which are not defined inthe scenarios. The percentages of the

detected damages are also provided in bold
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Fig. 9 Result of applying noise

to the two-span beam

corresponding to Scenario 2

Fig. 10 Evolutionary processes

of damage severities in the first

phase for the two-span beam

corresponding to Scenario 2 by

considering noise

Fig. 11 Variation of the F1 with

the number of iterations for the

two-span beam using the

accelerated WEO (Scenario 2

by considering noise)
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finite elements, respectively. The material section proper-

ties of the beams and columns are given in Table 6. This

frame has 99 degrees of freedom, and the fifteen first

modes are considered for all of the scenarios. The damage

scenarios of this example are shown in Table 7.

In Table 8, the number of successful runs for all the

scenarios of this example is reported. Table 9 presents the

results of the selected run for each scenario at the end of

two phases. For each scenario, one successful run has been

chosen to report.

Figure 13 shows the evolutionary processes of the

damage severities of the damaged elements in the first

phase corresponding to one of the successful runs of Sce-

nario 2. Additionally, Fig. 14 shows the variation of F1

Fig. 12 Schematic of the two-

bay three-story frame

Table 6 Material and section properties of the two-bay three-story

frame

Value

E, modulus of elasticity (N/m2) 2.07 9 1011

q, material density (kg/m3) 7780

Abeam, cross-sectional area of the beams (m2) 0.0123

Ibeam, moment of inertia of the beams (m4) 2.219 9 10-4

Acolumn, cross-sectional area of the columns (m2) 0.0288

Icolumn, moment of inertia of the columns (m4) 5.744 9 10-4

Table 7 Damage scenarios of the two-bay three-story frame

Scenario Damaged element Damage severity (b)

1 18 0.35

2 3 0.40

21 0.55

3 3 0.25

18 0.35

31 0.15

Table 8 Number of successful runs for the two-bay three-story frame

Scenario Successful runs for

ECBO CBO Accelerated WEO

1 * * 29

2 14 8 21

3 * * 7

*Not reviewed
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with the number of iterations corresponding to the suc-

cessful run for accelerated WEO, CBO and ECBO

algorithms.

4.3 A 72-Bar Spatial Truss

The third example, shown in Fig. 15, is a 72-bar spatial

truss. This truss is a benchmark in field of optimization and

damage detection and has been studied by many

researchers (Sedaghati 2005; Kaveh et al. 2016; Tejani

et al. 2016). The properties of this example are represented

in Table 10. Four non-structural masses of 2270.0 kg are

added to the four first nodes. This truss has 48 degrees of

freedom, and the sixteen first modes are considered for all

of the damage scenarios. This structure is symmetric, and

for every considered scenario, there may be three or seven

other scenarios whose natural frequencies are equal to the

natural frequencies of the considered one. The damage

scenarios of this example are shown in Table 11.

Table 9 Results of the two-bay

three-story frame
Scenario Result of the first phase Result of the second phase

Damaged element Damage severity (b) Damaged element Damage severity (b)

1 18 0.35 18 0.35

2 3, 21 0.40, 0.55 3, 21 0.40, 0.55

3 3, 18, 31 0.25, 0.35, 0.15 3, 18, 31 0.25, 0.35, 0.15

Fig. 13 Evolutionary processes

of damage severities in the first

phase for the two-span three-

story frame corresponding to

Scenario 2
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Fig. 14 Variation of the F1 with

the number of iterations for the

two-span three-story frame

using the accelerated WEO,

CBO and ECBO (Scenario 2)
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In Table 12, the number of successful runs for each

scenario of this example is reported. Table 13 presents the

results of the selected run for each scenario at the end of

two phases. In this example, for each scenario, two suc-

cessful runs have been chosen to report. Results are pre-

sented in two cases: Case I a symmetric successful run in

which the algorithm has found one symmetric solution in

the first phase and the considered scenario is found in the

second phase. Case II a successful run in which the algo-

rithm has found the considered scenario in the first phase

and this solution has not changed in the second phase.

Figures 16 and 17 show evolutionary processes of

damage severities of the damaged elements in the first

phase corresponding to successful runs of Scenario 3 and

their symmetric solutions. Also, Figs. 18 and 19 show the

variation of F1 with the number of iterations corresponding

to these successful runs.

According to population size of the algorithm and the

number of freedom degrees and modes considered in the

first example, 192,000 fractions must be calculated in each

iteration of algorithm if natural frequencies and mode

shapes are evaluated simultaneously. While utilizing the

two-phase method reduces this value to one of 300, 930

and 1560 fractions corresponding to the best scenario found

in that iteration in the first example. Also, these values are

reduced from 45,000 to one of 450 and 1935 for the second

example and from 23,520 to one of 480, 1248 and 6624 for

the third example.

5 Conclusions

In this paper, a two-phase method based on the structural

dynamic characteristics for damage detection of skeletal

structures is presented. The use of a two-phase approach

greatly decreases the number of comparisons between

modes for experimental and computed solutions. There-

fore, the rate of number of calculated fractions in each run

of the algorithm with this method is greatly reduced

compared to objective function in which the frequencies

and mode shapes are evaluated simultaneously. (The rate of

number of calculated fractions in each iteration for

Fig. 15 Schematic of the 72-bar spatial truss

Table 10 Properties of the 72-bar spatial truss

Value

E, modulus of elasticity (N/m2) 6.98 9 1010

q, material density (kg/m3) 2770

A, cross-sectional area of the elements (m2) 0.0025

Added mass to the nodes 1–4 (kg) 2770

Table 11 Damage scenarios of the 72-bar spatial truss

Scenario Damaged element Damage severity (b)

1 10 0.20

2 4 0.10

58 0.15

3 4 0.10

14 0.13

58 0.15

Table 12 Number of successful runs for the 72-bar spatial truss

Scenario Successful runs

Accelerated WEO CBO ECBO

1 30 30 30

2 26 * *

3 8 * *

*Not reviewed
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examples 1, 2 and 3 is reduced about 91, 95 and 75%,

respectively.) The effectiveness of the proposed approach

is evaluated by examining three different numerical

examples consisting of a two-span beam, a two-span three-

story frame and a 72-bar spatial truss using the accelerated

WEO algorithm with significant mutation, and their results

are reported. Comparison of the number of the calculated

fractions in each run of the algorithm for the single-phase

method and the two-phase approach, is presented. This

comparison shows that the use of the two-phase method

greatly decreases the burden of the calculation. Also, by

utilizing the presented objective function suitable results

are obtained. Investigating the effect of noise in the two-

span beam example showed that the proposed method is

capable of finding suitable results despite the existence of

deviation in the modal data.

The results show other metaheuristic algorithms such as

CBO and ECBO also act successfully, although these two

algorithms have less number of successful runs compared

to the accelerated WEO algorithm.

Finally, it is suggested that this approach should be used

for detecting the damage of symmetric large-scale struc-

tures, such as dome and tower trusses, and to compare the

results with the results of the traditional single objective

method in order to better evaluate the effectiveness of the

presented approach. For additional efficiency, it is also

advised to combine the presented approach with other

methods of damage detection.

Table 13 Results of the 72-bar

spatial truss
Scenario Case Result of the first phase Result of the second phase

Damaged element Damage severity (b) Damaged element Damage severity (b)

1 I 9 0.40 10 0.20

II 10 0.20 10 0.20

2 I 2, 56 0.10, 0.15 4, 58 0.10, 0.15

II 4, 58 0.10, 0.15 4, 58 0.10, 0.15

3 I 3, 13, 57 0.10, 0.13, 0.15 4, 14, 58 0.10, 0.13, 0.15

I 4, 13, 58 0.10, 0.13, 0.15 4, 14, 58 0.10, 0.13, 0.15

Fig. 16 Evolutionary processes

of damage severities in the first

phase for the 72-bar spatial truss

corresponding to Scenario 3
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Fig. 17 Evolutionary processes

of damage severities in the first

phase for the 72-bar spatial truss

corresponding to Scenario 3

Fig. 18 Variation of the F1 with

the number of iterations for the

72-bar spatial truss using the

accelerated WEO (Scenario 3)

Fig. 19 Variation of the F1 with

the number of iterations for the

72-bar spatial truss using the

accelerated WEO (Scenario 3)

S64 Iran J Sci Technol Trans Civ Eng (2019) 43 (Suppl 1):S49–S65

123



References

Boonlong K (2014) Vibration-based damage detection in beams by

cooperative coevolutionary genetic algorithm. Adv Mech Eng

6:624949

Doebling SW, Farrar CR, Prime MB, Shevitz DW (1996) Damage

identification and health monitoring of structural and mechanical

systems from changes in their vibration characteristics: a

literature review. Technical report LA-13070-MS, UC-900.

Los Alamos National Laboratory, LosAlamos, New Mexico

Doebling SW, Farrar CR, Prime MB (1998) A summary review of

vibration-based damage identification methods. Shock Vib Dig

30:91–105

Fan W, Qiao P (2009) A 2-D continuous wavelet transform of mode

shape data for damage detection of plate structures. Int J Solids

Struct 46:4379–4395

Farrar CR, Worden K (2007) An introduction to structural health

monitoring. Philos Trans R Soc A Math Phys Eng Sci

365:303–315. https://doi.org/10.1098/rsta.2006.1928
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