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Abstract
This article employs Gaussian process regression (GPR), minimax probability machine regression (MPMR) and extreme

learning machine (ELM) for prediction of uplift capacity (–) of suction caisson. This study uses GPR, MPMR and ELM as

regression techniques. L/d (L is the embedded length of the caisson and d is the diameter of caisson), undrained shear

strength of soil at the depth of the caisson tip (Su), D/L (D is the depth of the load application point from the soil surface),

inclined angle (h) and load rate parameter (Tk) have been adopted as inputs of GPR, MPMR and ELM models. The output

of GPR, MPMR and ELM is P. The results of GPR, MPMR and ELM have been compared with the artificial neural

network (ANN) model. The developed models have also been used to determine the effect of each input on P. This study

shows that the developed GPR, MPMR and ELM are robust models for prediction of P of suction caisson.

Keywords Suction caisson � Minimax probability machine regression � Extreme learning machine � Gaussian process

regression � Uplift capacity � Artificial neural network

1 Introduction

The uplift capacity (P) of suction caissons is an important

parameter for designing offshore structures. So, the deter-

mination of P of suction caisson is an important task in

ocean engineering. The value of P depends on different

parameters such as passive suction under caisson-sealed

cap, self-weight of caisson, frictional resistance along the

soil–caisson interface, submerged weight of soil plug

inside the caisson and uplift soil (reverse end bearing)

bearing pressure (Albert et al. 1987; Rauch 2004).

Researchers use different methods for determination of P

of suction caisson (Goodman et al. 1961; Hogervorst 1980;

Tjelta et al. 1986; Larsen 1989; Steensen-Bach 1992;

Dyvik et al. 1993; Clukey and Morrison 1993; Whittle and

Kavvadas 1994; Clukey et al. 1995a, b; Cauble 1996; Datta

and Kumar 1996; Singh et al. 1996; Rao et al. 1997a, b; El-

Gharbawy and Olson 2000; Zdravkovic et al. 2001; Cao

et al. 2001, 2002a, b; Luke 2002; Cho et al. 2002). Clukey

et al. (1995) determined the response of suction in nor-

mally consolidated clays for cyclic TLP loading conditions.

Cauble (1996) conducted experiment for determination of

behavior of suction caisson in clay. Cao et al. (2001) dis-

cussed results of centrifuge test of suction caisson in clay.

Luke (2002) described experimental results of suction

caisson for determination of axial pullout. El-Gharbawy

and Olson (2000) used finite element method (FEM) for

verifying the experimental results. The available methods
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have their own limitations (Rahman et al. 2001). Artificial

neural network (ANN) has been successfully used for

prediction of P of suction caissons (Rahman et al. 2001).

However, ANN has several drawbacks such as low con-

vergence speed, low generalization capability, ‘‘black-box

approach’’ and overtraining problem (Park and Rilett 1999;

Kecman 2001).

This article examines the capability of Gaussian process

regression (GPR), minimax probability machine regression

(MPMR) and extreme learning machine (ELM) for deter-

mination of P of suction caisson. This study adopts the

database collected from the work of Rahman et al. (2001).

The database contains information about L/d (L is the

embedded length of the caisson and d is the diameter of

caisson), undrained shear strength of soil at the depth of the

caisson tip (Su), D/L (D is the depth of the load application

point from the soil surface), inclined angle (h), load rate

parameter (Tk) and P. Table 1 shows the statistical

parameters of the dataset. GPR is developed based on

Bayesian concept. The parameters of GPR are assumed

random variable. Researchers have successfully applied

GPR for solving different problems in engineering

(Kongkaew and Pichitlamken 2012; Chen et al.

2013, 2014; Cheng et al. 2015; Alborzpour et al. 2016).

MPMR is a probabilistic model. It is constructed by

Lanckriet et al. (2002a, b). The different applications of

MPMR are available in the researches (Zhou et al. 2013;

Shen et al. 2013; Yang and Ju 2014; Huang et al. 2015;

Yang and Sun 2016). ELM is the modified version of

single-hidden-layer feed-forward neural network (SLFN)

(Huang et al. 2006, 2011). It gives excellent generalization

performance (Huang et al. 2006). Many applications of

ELM are available in the researches (Lu and Sho 2012; Xie

et al. 2013; Bazi et al. 2014; Singh et al. 2015; Zhang et al.

2016). The developed GPR, MPMR and ELM have been

compared with the ANN model.

1.1 Details of GPR

Let us consider the following datasets (D).

D ¼ xi; yið Þf gNi¼1; ð1Þ

where x is called input, y is called output and N is the

number of datasets.

This article uses L/d, D/L, su and h as input variables.

The output of GPR is P.

So, x ¼ L=d;D=L; su; h½ � and y ¼ P½ �.
GPR uses the following equation for prediction of y.

yi ¼ f xið Þ þ ei; ð2Þ

where f is latent real-valued function and e is the obser-

vation error.

For a new input (xN?1), the expression of yN?1 is given

as follows:

y
yNþ1

� �
�N 0;KNþ1ð Þ; ð3Þ

where KN?1 is covariance matrix and its expression is

given as follows:

KNþ1 ¼ K½ � k xNþ1ð Þ½ �
k xNþ1ð ÞT
� �

k1 xNþ1ð Þ½ �

� �
; ð4Þ

where k (xN?1) is vector of covariances between training

inputs and the test input and k1 (xN?1) denotes autoco-

variance of the test input.

The distribution of yN?1 is Gaussian (Williams 1998),

and its mean l xNþ1ð Þð Þ and variance r2 xNþ1ð Þð Þ are given

as follows:

l xNþ1ð Þ ¼ k xNþ1ð ÞTK�1y; ð5Þ

r2 xNþ1ð Þ ¼ k1 xNþ1ð Þ � k xNþ1ð ÞTK�1k xNþ1ð Þ: ð6Þ

For developing the above GPR, the datasets have been

divided into the following two groups:Training dataset:

This is used to construct the GPR model. This study adopts

51 datasets out of 62 as training dataset (see Table 2).

Testing dataset: This is used to verify the developed

GPR. The remaining 11 datasets have been used as testing

dataset (see Table 3).

The datasets are scaled between 0 and 1. Radial basis

function (exp
� xi�xð Þ xi�xð ÞT

2r2

h i
, where r is the width of radial

basis function) has been used as a covariance function. The

program of GPR has been constructed by using MATLAB.

1.2 Details of MPMR

In MPMR, the relation between input (x) and output (y) is

given as follows:

y ¼
XN
i¼1

biK xi; xð Þ þ b; ð7Þ

Table 1 Statistical parameters of the dataset

Variable Mean SD Skewness Kurtosis

L/d 1.5931 0.7708 1.0632 5.5408

Su (kPa) 11.7452 10.0012 1.3205 3.8528

Tk 0.0022 0.0086 4.1446 18.3516

h 72.5161 34.5376 - 1.5436 3.4406

D/L 0.0584 0.1696 2.8230 9.4169

P (kPa) 90.0645 81.6659 1.6958 6.1362
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where N is the number of datasets, K(xi,x) is kernel func-

tion and bi and b are output from the MPMR.

This article uses L/d, D/L, Su and h as input variables.

The output of MPMR is P.

So, x ¼ L=d;D=L; su; h½ � and y ¼ P½ �.
The following two classes are created from the available

training datasets.

ui ¼ yi þ t; xi1; xi2; . . .; xidð Þ; ð8Þ
vi ¼ yi � t; xi1; xi2; . . .; xidð Þ: ð9Þ

The classification boundary between the two classes is

defined as regression surface.

MPMR uses the same training datasets, testing datasets

and normalization technique as used by the GPR model.

Radial basis function has been used as a kernel function.

MPMR has been constructed by using MATLAB.

1.3 Details of ELM

Let us consider the following N training samples.

xi; yið Þf gNi¼1; ð10Þ

where x is called input and y is called output.

This article uses L/d, D/L, su and h as input variables.

The output of MPMR is P.

So, x ¼ L=d;D=L; su; h½ � and y ¼ P½ �.
Single-hidden-layer feed-forward network (SLFN) uses

the following equation for prediction of y.

Table 2 Training datasets

L/d Su (kPa) Tk h D/L pmeasured (kPa)

0.23 31 0.000010 0 0.05 128.3

0.23 24 0.000010 0 0 72

0.4 6.8 0.000010 90 0 75

0.43 4.2 0.000010 80 0 48.7

0.68 24 0.000010 0 0 21.3

0.7 13.7 0.000010 90 0 135

0.75 6 0.004000 90 0 26

0.75 6 0.000400 90 0 31

0.75 2.5 0.040000 90 0 10.1

0.75 2.5 0.004000 90 0 13.2

0.75 2.5 0.000400 90 0 15.7

1 2.4 0.000100 90 0 15.2

1 3.6 0.000100 90 0 26.4

1 5.8 0.000100 90 0 35.6

1.32 38 0.000010 0 0.1 149

1.32 38 0.000010 0 0.1 145.5

1.32 14.3 0.000010 90 0 144.6

1.32 14.3 0.000010 90 0 176.3

1.32 14.3 0.000010 90 0 149.9

1.4 9 0.000010 0 0 37

1.4 9 0.000010 0 0.5 70.5

1.4 5.5 0.000010 10 0.56 71.8

1.5 6 0.040000 90 0 23

1.5 6 0.004000 90 0 26.6

1.5 6 0.000400 90 0 32.2

1.5 1.8 0.000100 90 0 12.9

1.5 2.4 0.000100 90 0 18.7

1.5 3.6 0.000100 90 0 28.8

1.84 15.8 0.000010 90 0 160.5

1.84 11 0.000010 90 0 105.8

1.84 11 0.000010 90 0 86.4

1.84 11 0.000010 90 0 88.2

1.84 11 0.000010 90 0 92.6

2 9 0.000010 90 0 90.1

2 7 0.000010 90 0 80.2

2 7.5 0.000010 90 0 70.5

2 8.5 0.000010 90 0 75.3

2 8.3 0.000010 90 0 71.7

2 6 0.000010 90 0 62.7

2 6 0.000010 90 0 66.3

2 25 0.000010 90 0 244.1

2 20.5 0.000010 90 0 209.4

2 22.5 0.000010 90 0 214.9

2 24 0.000010 90 0 245.3

2.31 23.9 0.000010 15 0.69 387.2

2 22.5 0.000010 90 0 204.9

2 10.5 0.000010 90 0 90.4

2 7.8 0.000010 90 0 64.5

Table 2 (continued)

L/d Su (kPa) Tk h D/L pmeasured (kPa)

2 1.8 0.000100 90 0 15.6

4 5.2 0.000010 75 0.47 54.9

4 5.2 0.000010 90 0 48.8

Table 3 Testing datasets

L/d Su (kPa) Tk h D/L pmeasured (kPa)

0.75 6 0.040000 90 0 21.5

1 1.8 0.000100 90 0 11.1

1.32 38 0.000010 0 0 134.9

1.32 38 0.000010 0 0 133.1

1.5 5.8 0.000100 90 0 38.1

1.84 15.8 0.000010 90 0 154.3

2.31 21.6 0.000010 11 0.68 370.4

2 2.4 0.000100 90 0 21.9

2 3.6 0.000100 90 0 33.6

2 5.8 0.000100 90 0 46.4

4 5.2 0.000010 75 0.47 48.1
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XL
i¼1

biG ai; xj; bi
� 	

¼ yj; j ¼ 1; . . .;N; ð11Þ

where L is the number of hidden nodes, bi is weight and

G (ai,xj,bi) is activation function.

Equation (11) is written in the following form.

Hb ¼ T ; ð12Þ

where H ¼
G a1; x1; b1ð Þ � � � G aL; x1; bLð Þ

..

.
� � � ..

.

G a1; xN ; b1ð Þ � � � G aL; xN ; bLð Þ

2
64

3
75
N�L

,

b ¼
bT

1

..

.

bT
L

2
64

3
75
L�m

and T ¼
tTi
..
.

tTN

2
64

3
75.

The value of b is determined from the following

expression:

b ¼ H�1T ; ð13Þ

where H-1 is the Moore–Penrose generalized inverse

(Serre 2002).

ELM uses the same training datasets, testing datasets

and normalization technique as used by the GPR and

MPMR models. The program of ELM has been constructed

by using MATLAB.

2 Results and Discussion

The performance of GPR depends on the proper choice of e
and r. The design values of e and r have been determined

by a trial-and-error approach. The developed GPR gives

best performance at e = 0.003 and r = 0.5. Figure 1 shows

the plot between actual and predicted P for training and

testing datasets. The performance of GPR has been asses-

sed in terms of coefficient of correlation (R) value. For a

good model, the value of R should be close to one. As

shown in Fig. 1, the value of R is close to one for training

as well as testing datasets.

The success of MPMR depends on the proper choice of t

and r. The trial-and-error approach has been used to

determine the design values of t and r. The developed

MPMR gives best performance at t = 0.007 and r = 0.8.

Figure 2 depicts the performance of training and testing

datasets. Fig. 2 shows that the value of R is close to one for

training as well as testing datasets. Therefore, the devel-

oped MPMR shows its ability for prediction of P.

For developing ELM, radial basis function has been

adopted as activation function. There are ten hidden nodes

in the ELM. The performance of ELM is depicted in Fig. 3.

As shown in Fig. 3, the value of R is close to one. So, the

developed ELM predicts P reasonable well.

The developed GPR, MPMR and ELM have been

compared with the ANN and FEM models. Comparison

has been made for testing datasets (Rahman et al. 2001).

Figure 4 illustrates the bar chart of R values of the different

models. The developed models are also assessed in terms

of root mean square error (RMSE) (Kisi et al. 2013), mean

absolute percentage error (MAPE), root mean square error-

to-observation’s standard deviation ratio (RSR) (Moriasi

et al. 2007), normalized mean bias error (NMBE) (Srini-

vasulu and Jain 2006), weighted mean absolute percentage

error (WMAPE), Nash–Sutcliffe coefficient (NS) (Nash

and Sutcliffe 1970), variance account factor (VAF), max-

imum determination coefficient value (R2), performance

index (PI) and adjusted determination coefficient (adj. R2)

(Ceryan 2014; Chandwani et al. 2015). Table 4 shows the

value of the above parameters of the developed models.

The value of NS should be close to one for a perfect model.

For a good model, the value of VAF should be close to 100.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1
Actual Normalzied P

Pr
ed

ic
te

d 
N

or
m

al
iz

ed
 P

Training Performance(R=0.988)
Testing Performance(R=0.967)
Actual=Predicted 

Fig. 1 Performance of the GPR model

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1
Actual Noprmalized P

Pr
ed

ic
te

d 
N

or
m

al
iz

ed
 P

Training Performance(R=0.997)
Testing Performance(R=0.997)

Actual=Predicted 

Fig. 2 Performance of the MPMR

S654 Iran J Sci Technol Trans Civ Eng (2019) 43 (Suppl 1):S651–S657

123



The performance of GPR, MPMR, ELM and ANN models

is almost same. The developed MPMR has control over

future prediction. However, the developed GPR, ELM and

ANN have no control over future prediction. In GPR, it is

assumed that the datasets should follow Gaussian distri-

bution. The developed MPMR, ELM and ANN do not

assume any data distribution. The developed GPR, ELM

and MPMR use two tuning parameters. However, the ANN

model uses many tuning parameters. The major limitation

of the developed model is that design parameter is deter-

mined by the trial-and-error approach. This study adopts

sensitivity (S) analysis to determine the effect of each input

on P. The concept has been taken from the work of Liong

et al (2000). Figure 5 shows that Tk has maximum impact

on P.

3 Conclusion

This article examines the capability of GPR, ELM and

MPMR for prediction of P of suction caisson. The detailed

methodologies of GPR, ELM and MPMR are described in

this article. The developed GPR, ELM and MPMR give

excellent performance. The performance of GPR, ELM and

MPMR is comparable with the ANN model. User can

employ the developed models as quick tools for prediction

of P. The developed ELM is fast compared with the other

developed models. It can be concluded that the developed
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Fig. 3 Performance of the ELM
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Fig. 4 Bar chart of R values of the different models

Table 4 Comparison of

parameters of the developed

models

Parameters GPR MPMR ELM

Training Testing Training Testing Training Testing

RMSE 0.0294 0.0772 0.0145 0.3526 0.0126 0.0331

MAPE (%) 19.0514 40.7546 3.3109 11.9755 2.8879 13.7065

RSR 0.1498 0.2967 0.0740 1.2722 0.0640 0.1271

NMBE (%) 0.2420 - 14.6471 0.0039 77.9239 - 0.1367 - 6.9406

WMAPE 0.0984 0.0812 0.0355 0.2418 0.0298 0.1063

NS 0.9776 0.9911 0.9945 0.9120 0.9959 0.9838

VAF 97.7574 99.4539 99.4528 92.9902 99.5909 98.7875

R2 0.9761 0.9351 0.9545 0.9940 0.9960 0.9900

Adjusted R2 0.9735 0.8702 0.9495 0.9880 0.9956 0.9801

PI 1.9216 1.7875 1.9295 1.5653 1.9789 1.9349
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Fig. 5 Effect of inputs on P
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GPR, ELM and MPMR are excellent models for prediction

of P of suction caisson.
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