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Abstract
This article adopts four high-accuracy machine learning-based approaches for the prediction of discharge coefficient of a

Piano Key Weir (PK-weir) under subcritical condition located on the straight open-channel flume. These approaches

consist of least-square support vector machine (LS-SVM), extreme learning machine (ELM), Bayesian ELM (BELM), and

logistic regression (LR). For this purpose, 70 laboratory test results are used for determining discharge coefficient of PK-

weir for a wide range of discharge values. Root-mean-squared error (RMSE), Nash–Sutcliffe model efficiency coefficient

(NSE), the coefficient of correlation (R), threshold statistics (TS), and scatter index (SI) are used for comparing the

performance of the models. The simulation results indicate that an improvement in predictive accuracy could be achieved

by the ELM approach in comparison with LS-SVM and LR (RMSE of 0.016 and NSE of 0.986), while the BELM model’s

generalization capacity enhanced, with RMSE of 0.011 and NSE of 0.989 in validation dataset. The results show that

BELM is a simple and efficient algorithm which exhibits good performance; hence, it can be recommended for estimating

discharge coefficient.

Keywords BELM � Discharge coefficient � ELM � Piano key weir � LR � LS-SVM

1 Introduction

With rising demands for more reservoir water storage,

increasing magnitudes of probable maximum flood (PMF)

events, and the continuing need to improve dam safety, the

capacities of many existing spillways are currently inade-

quate and in need of upgrade or replacement. Typically,

reservoir spillways use weirs, gated or non-gated, as the

flow control structure (Anderson and Tullis 2013). Piano

key weir (abbreviated PK-weir) is a particular type of

labyrinth weir which has been developed in the recent

years as an alternative to the standard types. Figure 1

shows a longitudinal section and plan of a piano key weir

for subcritical flow. As shown in Fig. 1, the PK-weir has a

rectangular nonlinear weir crest layout (in platform), with

sloped floors in the inlet and outlet cycles referred to as

keys. In the innovative developed PKWs, the sloped floors

produce cantilevered apex overhangs, which help to

increase the overall crest length (L) relative to a rectangular

labyrinth weir with the same weir footprint (Laugier 2007;

Laugier et al. 2009; Leite Ribeiro et al. 2009). An accurate

estimation of the discharge coefficient (Cd) of weirs is a

significant factor in designing various hydraulic structures.

Some useful empirical discharge equations for these

weirs have been proposed. PKW may consist of various

cross sections depending on the flow requirements. There is

a unique relationship between the unit discharge (the flow

rate per unit width) and the upstream water depth measured

relative to the weir crest, which is exploited for the purpose

of flow measurement. As shown in Eq. (1), a common form

of the weir head–discharge relationship (Eq. 5), the dis-

charge capacity (Q) is proportional to L. The large value of

L attainable with the PKW geometry is a significant factor

in its high discharge capacity relative to linear weirs with

the same channel width:

Q ¼ 2

3
CdL

ffiffiffiffiffi

2g
p

H
3=2
T ð1Þ
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where Cd = dimensionless discharge coefficient;

g = gravitational constant; and HT= total head [piezometric

head (H) measured relative to the elevation of the weir

crest plus velocity head (V2=2 g)]. To describe the dis-

charge capacity of a PK-weir, its discharge coefficient (Cd)

is presented according to the common weir formulation

referred to as the total developed crest length (L) as shown

in Eq. (2)

Cd ¼
Q

LH
3
2

ffiffiffiffiffi

2g
p ð2Þ

Lempérière (Lempérière 2009) presented Eq. (3) as the

head–discharge relationship specific to the recommended

PK-weir design:

q ¼ 4:3h
ffiffiffiffiffiffi

Pm

p
ð3Þ

In Eq. (3), Pm= a representative weir height measured in

meters (Fig. 1); h = upstream head (piezometric or total

head was not specified) measured relative to the weir crest

elevation in meters (0.4PmB h B 2Pm); and q = weir dis-

charge per unit spillway channel width (in cubic meters per

second per meter). The form of Eq. (3) (linear, q � h) is

significantly different from the standard weir equation

[Eq. (1)] (nonlinear, Q � H1:5
t ). In Eq. (3), the constant,

4.3, is representative of a fixed-value discharge coefficient;

published Cd values for other nonlinear weirs (e.g.,

labyrinth weirs) related to Eq. (1) are typically not constant

but vary with Ht.

Recent works mainly focused on hydraulic behavior,

flow conditions, and the discharge coefficient for different

types of weirs. Kabiri-Samani and Javaheri (2012) carried

out a set of laboratory experiments to investigate the effect

of geometry on the discharge coefficient. Head–discharge

data and visual observations were collected for PKW by

Anderson (Logan 2011) over a wide range of discharges and

compare the appropriateness of the recommended equa-

tions. Ribeiro et al. (2012) as a technical note reviewed the

previous studies on the efficiency of planned and built

PKW, and the results were evaluated by comparing an

actual PK-weir’s discharge to that theoretically obtained for

a sharp-crested spillway with crest length equal to the width

of the PK-weir for a given hydraulic head.

Today by advancing the computational intelligence

approaches in almost all areas of water engineering fields,

especially in the water engineering studies, researchers

have attempted to use these techniques for predicting and

modeling the hydraulic or hydrologic phenomena (Tayfur

2014). As clear from the name of the computational

intelligence approaches, developing these models is based

on the data set; therefore, for developing the types of the

computational intelligence models, investigators have tried

to collect the related data set from the various reliable

sources such as books, peer-reviewed articles and hand-

books. During the data collection process defining the most

affective independent parameters sometimes becomes dif-

ficult, therefore, to this purpose several mathematical

approaches such as principal component analysis as mul-

tivariable analysis techniques have been proposed. Using

these approaches leads to defining the most affective

parameter on the desired phenomenon.

So far there have been several approaches of computa-

tional intelligence methods for application in prediction of

discharge coefficient of weirs. For example, there has been

an investigation of prediction discharge coefficient of weirs

with artificial neural network (Bilhan et al. 2010). Some of

the other applied intelligence methods in predicting dis-

charge coefficient of weirs are: prediction of discharge

coefficient for trapezoidal labyrinth side weir using a

neuro-fuzzy approach by Emiroglu and Kisi (2013); pre-

dicting discharge coefficient of compound broad-crested

weir by using genetic programming (GP) and artificial

neural network (ANN) techniques by Salmasi et al. (2013);

gene expression programming (GEP) to predict the

Fig. 1 Typical PK-weir geometries (top and bottom)
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discharge coefficient in rectangular side weirs by Ebtehaj

et al. (2015); radial basis neural network and particle

swarm optimization-based equations for predicting the

discharge capacity of triangular labyrinth weirs by Zaji

et al. (2015); prediction of lateral outflow over triangular

labyrinth side weirs using soft computing approaches and

two ANN techniques, that is, the radial basis neural net-

work and GEP by Kisi et al. (2012); estimating discharge

coefficient of semi-elliptical side weir using ANFIS by

Dursun et al. (2012).

Recently machine learning (ML) technique is a popular

learning technique for classification, regression, and other

learning tasks. Unlike traditional artificial neural network

technique, the quadratic programming (QP) with linear

limitations is formulated in support vector machine (SVM)

problems (Berthold and Hand 2003; Negnevitsky et al.

2005). Parsaie et al. (2018) used SVM to predict the dis-

charge coefficient of cylindrical weir–gate. During the

development of SVM model, it was found that the radial

basis function as kernel function and hyperbolic tangent

sigmoid as transfer function have a better accuracy com-

pared to other tested functions. Also, simplifying the opti-

mization processes of SVMs can be performed through a

modification version of SVM, namely least-square support

vector machine (LS-SVM) (Ahmadi et al. 2015a; 2015b).

Researchers successfully applied LS-SVM for solving dif-

ferent problems in engineering (Sadri and Burn 2012; Wong

et al. 2013; Goyal et al. 2014). Also, in recent years, there

has been increasing interest in extreme learning machine

(ELM), which is an extraordinary learning scheme for

single hidden layer feed-forward neural network (SHLFN)

(Huang et al. 2006, 2004). In ELM, the weights and biases

of input layers are assigned randomly and the output

weights are determined analytically. ELM produces high

generalization performance at very high speed (Huang et al.

2011). There are different applications of ELM in the lit-

erature (Balbay et al. 2012; Du et al. 2014; Yu et al. 2013).

In this study, a new version of ELM, called Bayesian ELM

(BELM), which learns the output weights of basic ELM

based on parametric Bayesian methods. BELM attempts to

estimate the probability distribution of the output values,

and hence the overfitting problem of conventional ELM is

solved. Instead of fitting a curve to a set of data points,

Bayesian methods try to estimate the probability distribu-

tion of output values and achieve higher generalization. The

Bayesian approach involves taking advantage of some

parameters (hyper parameters) that allow regularization.

This regularization term is obtained from the distribution of

model parameters and avoids the overfitting of the model. In

the current literature (Soria-Olivas et al. 2011), many

researches have already attempted to apply a BELM.

Logistic regression is another learning machine and

statistical analysis method used for predicting and

understanding categorical dependent variables (e.g., true/-

false, or multinomial outcomes) based on one or more

independent variables (e.g., predictors, features, or attri-

butes). Logistic regression is used to analyze the relation-

ship between a single predictor, or several predictors, and

an outcome that is dichotomous in nature (such as the

presence or absence of an event). This form of regression

analysis has become an increasingly employed statistical

tool, especially over the last two decades (Oommen et al.

2011; Das et al. 2010; Wang et al. 2013; Shahabi et al.

2014). It is widely regarded as the statistic of choice for

situations in which the occurrence of a binary (dichoto-

mous) outcome is to be predicted (Hosmer and Lemeshow

2000; King and Zeng 2001).

In this study, we introduced an estimation model for

discharge coefficient of a PK-weir by using the soft com-

puting approach of machine learning. To the best knowl-

edge of the authors, there is not any published study

indicating the input–output mapping capability of compu-

tational intelligence techniques in modeling the discharge

coefficient of PK-weirs. In addition, there is no report pre-

senting the use of the soft computing approach based on

machine learning in modeling discharge coefficient of any

type of weir. Thus, the present study is focused on the

introduction of different computational intelligence meth-

ods based on learning machine, such as LR, LS-SVM,

ELM, and BELM to predict the discharge coefficient using

a measured data set. These methods offer advantages over

conventional modeling, including the ability to handle large

amounts of noisy data from dynamic and nonlinear systems,

especially when the underlying physical relationships are

not fully understood. In addition, we discussed the accuracy

of these techniques via the comparison of their perfor-

mances. Our emphasis in this regard is simply from the

point of view of obtaining higher accuracy. It is relevant to

note that the models investigated in the present study are

normally applied within deterministic frameworks in pro-

fessional practices, which encouraged the practice of

comparing the actual with predicted values. Therefore, the

paper presents a comparative study on new generation

computational intelligence approaches as a superior alter-

native to the linear and nonlinear regression models for

predicting the discharge coefficient of a PK-weir located on

a straight open channel under subcritical conditions.

2 Experimental Setup

The experiments were conducted on a smooth toughened

glass-sided and smooth painted bed steel plate flume of

10 m working length. The flume cross-sectional area is

83 cm wide and 50 cm deep. The flume was equipped with

a rolling point gauge (readability 0.01 cm) instrumentation
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carriage, which was used to measure water surface and

crest elevations at various locations upstream of the PK-

weir after the water level had been allowed to stabilize for

a minimum of 5 min. All weir data were collected for flows

ranging from 5 to 90 l/s. Flow rates were measured using

calibrated ultrasonic flow meter. The channel was fed by a

centrifuge pump delivering flow in an upstream stilling

basin. The slope of the channel was considered zero in all

the experiments. To dissipate large eddies, grid walls and

wave suppressors were laid upstream along the channel.

Water was pumped from the main tank to the flume.

Experiments were performed for subcritical flow,

stable flow conditions, and free overflow conditions. An

elevation view of the flume is presented in Fig. 2. A total of

70 experiments were done for various hydraulic conditions

to calculate Cd.

Some statistical properties of the input and output

variables in the training and validation datasets are given in

Table 1, which include the mean, standard deviation (Sd),

skewness coefficient (Csx), minimum, maximum of data.

From this table, it could be observed that the extreme

values of input data were in the training set.

When dividing the data set into training and validation

subsets, it is essential to check that the data subsets

represent the same statistical population. In general,

Table 1 illustrates relatively similar statistical characteris-

tics between training and validation sets in terms of mean,

standard deviation and skewness coefficient. Skewness

coefficients were low for both training and validation sets

(see the Csx values). This is appropriate for modeling,

because high skewness coefficient has a considerable

negative effect on model performance (Altun et al. 2007).

The skewness is not directly related to the relationship

between the mean and median: A distribution with negative

skew can have its mean greater than or less than the

median, and likewise for positive skew.

The weirs walls were fabricated using 6-mm-thick

plexiglass acrylic sheeting. The weirs were assembled with

acrylic glue, and the crest level was machined using a

computer numerical controlled (CNC) milling machine.

Models were designed with N = 4, and featured with a flat

top crest. Weirs were sealed with silicon and other sealants.

The weirs were installed in the flume on a short,

adjustable base and leveled (± 0.5 mm) using surveying

equipment. An overview of the test facility with the PKW

installed is presented in Fig. 3. Table 2 presents the

description of the weir configurations tested and their

corresponding prefixes.

In this table, important geometric parameters for PK-

weir design (most of which are shown in Fig. 1) include the

total weir height (P), crest centerline length (L), inlet and

outlet key width (Wi andWo), PK-weir spillway width (W),

footprint length (Bb), upstream (outlet key) and down-

stream (inlet key) apex cantilever lengths (Bo and Bi,

respectively), inlet or outlet key length (B), weir wall

thickness (Ts) and number of keys (N).

3 Methodology

3.1 Logistic Regression (LR)

Logistic regression is a statistical modeling method for data

analysis, in which the dependent variable y has only two

Fig. 2 Overview of weir test setup

Table 1 Statistics analysis of input and output data sets

Statistical

parameters

Training set Validation set

Q (lit/

s)

H/P

(dimensionless)

H/L

(dimensionless)

Cd

(unit-

less)

Q (lit/

s)

H/P

(dimensionless)

H/L

(dimensionless)

Cd

(unit-

less)

Mean 43.9 0.16 0.008 0.44 41.8 0.14 0.007 0.40

Sd 20.8 0.06 0.003 0.09 19.5 0.07 0.003 0.05

Csx 0.04 - 0.02 - 0.02 0.21 0.03 - 0.02 0.01 0.10

Min 5.2 0.02 0.001 0.33 5.4 0.02 0.001 0.32

Max 88.5 0.03 0.015 0.72 87.5 0.03 0.014 0.70
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possible values, especially in the cases involving categor-

ical response variables, such as yes/no or safe/unsafe. It is

often used to find the relationship between probabilities

and values of y. For simplicity, y is assigned to 1 in the case

of positive outcome or success (i.e., yes or safe) and to 0 in

the case of negative outcome (i.e., no or unsafe). For a set

of p independent variables denoted by the vector

x0 ¼ x1; x2; . . .; xp, Hosmer and Lemeshow (2000) pre-

sented the following equation to represent the conditional

mean of y in the logistic distribution (Cramer 2002; Wat-

timena et al. 2013):

E yjxð Þ ¼ p xð Þ ð4Þ

The logistic regression model is formed as follows:

p xð Þ ¼ eb0þb1x1þb2x2þ���þbpxp

1þ eb0þb1x1þb2x2þ���þbpxp
ð5Þ

where b0, b1, b2,…, and bp are the model’s parameters.

Logistic regression is based on a linear model for the

natural logarithm of the odds in favor of y = 1, which are

simply the ratio of the proportions for the two possible

outcomes (Moore et al. 2009):

Odds ¼ p xð Þ
1� p xð Þ ð6Þ

A transformation of p xð Þ is the logit transformation, which

is defined as follows:

ln
p xð Þ

1� p xð Þ

� �

¼ b0 þ b1x1 þ b2x2 þ � � � þ bpxp ð7Þ

This equation is also known as the logit transformation of

p(x), and the related analysis is known as ‘‘logit analysis.’’

3.2 Least-Square Support Vector Machine (LS-
SVM)

Least-square support vector machine (LS-SVM) models

are used to approximate the nonlinear relationship between

input variables and output variables with certain accuracy

(Suykens 2001; Smola and Bernhard 2004). The LS-SVM

model is to use the least-square linear system as the loss

function, and the inequality constraints are revised as the

equality constraints in the LS-SVM model.

The given training sample is S xi; yið Þj i ¼f
1; 2; 3; . . .;mg; m is the number of samples, the set {xi} 2 R

represents the input vector, y 2 {- 1,1} indicates the

corresponding desired output vector, the input data are

mapped into the high dimensional feature space by using

nonlinear mapping function / �ð Þ. Then the existing opti-

mal classification hyperplane must meet the following

conditions:

xTxi þ b� 1; yi ¼ 1

xTxi þ b� � 1; yi ¼ �1

�

ð8Þ

where x is omega vector of superplane, b is offset quantity.

Then the classification decision function is described as

follows:

f xið Þ ¼ sgn xTxi þ b
� �

ð9Þ

Fig. 3 Overview of Test flume (a) side view and (b) plan view

Table 2 Test weir dimensions

Test weir dimensions

P 24 cm B 48 cm

L 462.16 cm Bb 20 cm

W 83 cm Bi 14 cm

Wo 9.77 cm Bo 14 cm

Wi 9.77 Ts 0.6 cm
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The classification model of LS-SVM is described by the

optimization function
min

x; n; b
J x; nið Þ:

min

x; n; b
J x; nið Þ ¼ 1

2
xTxþ 1

2
c
X

m

i¼1

n2i ð10Þ

s:t: yi x
T/ xið Þ þ b

� 	

¼ 1� ni; i ¼ 1; 2; 3; . . .;m ð11Þ

where ni is slack variable, b is offset, x is support vector,

n ¼ ðn1; n2; . . .; nmÞ; c is regression fiction parameter to

balance the fitness error and model complexity.

The optimization problem is transformed into its dual

space. Lagrange function is introduced to solve it. The

corresponding optimization problem of LS-SVM model

with Lagrange function is described as follows:

L x; b; n; að Þ ¼ 1

2
xTxþ 1

2
c
X

m

i¼1

n2i

�
X

m

k¼1

ai yi x
T/ xkð Þ þ b

� 	

� 1þ ni

 �

ð12Þ

where ai is the Lagrange multiplier, and

ai � ¼ 0ði ¼ 1; 2; 3; . . .; mÞ. Then the classification

decision function is described as follows:

f xið Þ ¼ sgn
X

m

i¼1

aiyiK x; xið Þ þ b

 !

ð13Þ

3.3 Extreme Learning Machine

Extreme learning machine (ELM) is the modified version

of single hidden layer feed-forward networks (SLFN)

(Huang et al. 2004; Huang and Chen 2007). Due to the

random determination of the input weights and hidden

biases, ELM requires numerous hidden neurons. In prac-

tice, the number of hidden neurons should be larger than

the number of the variables in dataset, since the useless

neurons from the hidden layer will be pruned automati-

cally. Figure 4 shows the topology of a single hidden layer

feed-forward neural network based on ELM using the

activation function, g(x) = sig(wi. xi? b).

In SLFN, the relationship between input (x) and output

(t) is given below:

X

L

i¼1

biG ai; xj; bj
� �

¼ tjj ¼ 1; . . .;N ð14Þ

where N is the number of samples, L is the number of

hidden nodes, bi is the output weight and (ai, bi) is the ith

parameter of the ith hidden node. In this study, Lx and Ly
are used as inputs of the ELM. The output of ELM is d. So,

x = [Lx, Ly] and t = [d]. Equation (14) is written in

Eq. (15):

Hb ¼ T ð15Þ

where

H ¼
G a1; x1; b1ð Þ . . . G aL; xL; bLð Þ

..

.
. . . ..

.

G a1; xN ; b1ð Þ . . . G aL; xN ; bLð Þ

2

6

4

3

7

5

N�L

;

b ¼
bT1
..
.

bTL

2

6

4

3

7

5

L�m

; T ¼
tT1
..
.

tTL

2

6

4

3

7

5

N�m

ð16Þ

H is called the hidden layer output matrix of ELM (Ahmadi

et al. 2015). The value of b is determined from Eq. (17):

b ¼ HyT ð17Þ

where Hy is the Moore–Penrose generalized inverse (Serre

2002).

3.4 Bayesian Extreme Learning Machine (BELM)

Combining ELM and Bayesian linear regression, BELM

(Huang et al. 2006) learns the weights of the output layer in

the Bayesian framework. In the single output case, BELM

follows the relationship:

t ¼ hbþ e ð18Þ

where e follows a Gaussian distribution with zero mean and

variance r2; h ¼ ½h x; o1; r2ð Þ; . . .; h x; oM; rMð Þ is the output

vector of hidden layer with respect to the input x, and b is

the output weights vector. Then, the conditional distribu-

tion of the output can be written as

p tjh; b; r2
� �

¼ N hb; r2
� �

ð19Þ

The corresponding conjugate prior is usually considered

to be a Gaussian distribution (Bishop et al. 2006)

Fig. 4 Topology of single hidden layer feed-forward neural network

using ELM
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p bijað Þ ¼ N 0; a�1
� �

i ¼ 1; . . .;M ð20Þ

where a is a hyper parameter. In this case, the posterior

distribution is also Gaussian when both the prior distribu-

tion of b and the conditional distribution of the output are

Gaussian. Then, the maximum likelihood estimation of the

posterior mean b̂ and the posterior variance S can be

written as (Bishop et al. 2006; Soria-Olivas et al. 2011)

b̂ ¼ r�2SHTt ð21Þ

S ¼ aI þ r�2HTH
� ��1 ð22Þ

where t = [t1,t2,…,tN] has the output vector and H has the

same definition as in ELM. The regularization term a in

(20) does not need to be specified by user, which differs

from the conventional regularized approaches (Soria-Oli-

vas et al. 2011; Oommen et al. 2011).

3.5 Model Performance Criteria

The results of the comparison between equation and those

proposed models (LR, LS-SVM, ELM and BELM) in this

study are presented herein, root-mean-square error

(RMSE), the coefficient of correlation (R), the Nash–Sut-

cliffe model efficiency coefficient (NSE) and scatter index

(SI), as defined below:

R ¼
1
n

Pn
i¼1 xi� �xð Þ yi� �yð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn
i¼1 xi� �xð Þ2

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn
i¼1 yi� �yð Þ2

q ð23Þ

NSE ¼ 1�
Pn

i¼1 xi � yið Þ2
Pn

i¼1 xi � �xð Þ2
ð24Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

ðxi � yiÞ2
s

ð25Þ

SI ¼ RMSE

�x
ð26Þ

where yi and xi are the modeled and calculated Cd values,

respectively, and �y and �x are the mean modeled and cal-

culated Cd values, respectively. The afore-mentioned

indexes represent the estimated values as prediction error

average but provide no information on the prediction error

distribution of the presented models. The RMSE index only

indicates a model’s ability to predict a value away from the

mean. Therefore, in order to test the effectiveness of the

model developed, it is important to test the model using

some other performance evaluation criteria such as

threshold statistics (Jain et al. 2001; Jain and Ormsbee

2002). The threshold statistics (TS) not only give the per-

formance index in terms of predicting Cd but also the

distribution of the prediction errors.

The threshold statistic for a level of x % is a measure of

the consistency in forecasting errors from a particular

model. The threshold statistics are represented as TSx and

expressed as a percentage. This criterion can be expressed

for different levels of absolute relative error from the

model. It is computed for x% level (TL) as

TSx ¼
Yx
n
� 100 ð27Þ

where Yx is the number of computed Cd (out of n total

computed) for which the absolute relative error is less than

x% from the model.

In the present study TS for absolute relative error levels

of 5, 10 and 15 percent (TS5 and TS10) were used to

measure the effectiveness of the models regarding their

ability to accurately predict data from the calibrated model.

3.6 Data Preprocessing

In order to achieve effective training, the data are needed to

be normally distributed using an appropriate transforma-

tion method. Luk et al. (2000) reported that networks

trained on transformed data achieve better performance and

faster convergence in general. Besides, Aqil et al. (2007)

showed that the data preprocessing with log sigmoidal

activation function before processing the black-box mod-

els. In this study, transformation is performed on all data

independently using the following equation:

z ¼ a log10 Gþ bð Þ ð28Þ

where z is the transformed value of Cd, a is an arbitrary

constant, and b was set to 1 to avoid the entry of zero Cd in

the log function. The final forecast results were then back

transformed using the following equation:

G ¼ 10z=a � b ð29Þ

4 Applications and Results

This part of the study focused on comparing the perfor-

mance of LR, LS-SVM, ELM and BELM models for

estimating discharge coefficient of the PK-weir. For this

purpose, three input parameters, that is, the dimensionless

upstream head H/P, the dimensionless parameter H/L, and

discharge (Q) were considered in the study. For the same

basis of comparison, the same training and validation sets,

respectively, were used for all the above models developed,

while the five quantitative standard statistical performance

evaluation measures were employed to evaluate the per-

formances of various models developed. The results are

summarized in Tables 3 and 4. It was apparent that all of

the performances of these models are almost similar during
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training as well as validation. In order to get an effective

evaluation of the LR, LS-SVM, ELM, and BELM models

performance, the best model structures have been used to

compare the models. From the best-fit model, it was found

that the difference between the values of the statistical

indices of the training and validation set did not vary

substantially. It was observed that all four models generally

gave low values of the RMSE, and SI as well as high NSE,

the performances of the LR, LS-SVM, ELM, and BELM

models performance in the Cd estimation were satisfactory.

In this study, three input parameters were used for the

estimation of Cd. For modeling Cd, a three-layered archi-

tecture was adopted for ELM model development (Fig. 4).

The first layer (input layer) used different input parameters.

The output layer had one neuron representing the estimated

discharge coefficient. For the hidden layer, a maximum of

40 neurons were tested for each model. For determining the

optimum number of neurons in the hidden layer, initially 5

neurons were tested and subsequently the number of neu-

rons was gradually increased to 40 by an interval of one.

Radial basis activation function was employed for all the

ELM models tested.

LS-SVM uses equality optimization constrains instead

of inequalities constrains used in the traditional SVM.

Equality optimization results in a direct least-square solu-

tion by avoiding quadratic programming. Choice of kernel

functions and hyperparameters are some critical issues

needed to be addressed before the application of LS-SVM.

Radial basis function (RBF) a more compactly supported

kernel function is able to reduce the computational com-

plexity of the training process and provides a good per-

formance. Hence, RBF kernel function was employed in

this study. Different techniques for tuning the hyperpa-

rameters related to the regularization constant are available

in the literature. In this study, the regularization parameter

gamma (c) and kernel function parameter (r2) were

obtained by grid search technique based on leave-one-out

cross-validation.

A model can be claimed to produce a perfect estimation

if the NSE criterion is equal to 1. Normally, a model can be

considered as accurate if the NSE criterion is greater than

0.8 (Shu and Ouarda 2008). Tables 3 and 4 show that the

NSE values for various applied methods in this study are

over 0.8. This indicated that they had good performance

during both training and validation and these models

achieved acceptable results. It also showed that the BELM

model had the smallest value of the RMSE as well as

higher value of NSE in the validation period, so it was

selected as the best-fit model for predicting the Cd in this

study. Also, the SI values for the BELM model that predict

the Cd value were higher than those for the other models,

which indicates that the overall quality of estimation of the

BELM model is better than the LR, LS-SVM, and ELM

models according to SI and NSE. Compared among models

from the TS viewpoints, it was found that ELM and BELM

models exhibited 100% estimates lower than 5% and 10%

relative error. On the other hand, for LS-SVM and LR

models, the estimates of relative error decreased to 83.84%

and 56.6%, respectively, for TS5. Therefore, the BELM

and ELM models performed a bit better than the others. For

analyzing the results during training phase, it can be

observed that the BELM model outperformed all other

models. Also, in the validation phase, the BELM model

obtained the best RMSE, R, NSE and SI statistics of 0.011,

0.998, 0.989 and 0.009. Thus, in the validation phase, as

shown in Tables 3 and 4, the values with the ELM and

BELM models prediction were able to produce a good,

near forecast as compared to those with other models. But

the performance of BELM is slightly better than the ELM

model. Furthermore, as shown in Tables 3 and 4 the virtues

or defect degrees of forecasting accuracy are different in

terms of different evaluation measures during the training

phase and the validation phase. BELM model is able to

obtain the better forecasting accuracy in terms of different

evaluation measures, not only during the training phase but

also during the validation phase.

It appears that while assessing the performance of any

model for its applicability in predicting Cd, it is not only

important to evaluate the average prediction error but also

the distribution of prediction errors. The statistical perfor-

mance evaluation criteria employed so far in this study are

global statistics and do not provide any information on the

distribution of errors. Therefore, in order to test the

robustness of the model developed, it is important to test

the model using some other performance evaluation criteria

Table 3 Quantitative study of the presented models’ results in com-

parison with the experimental results using verification criteria

(training period)

Models RMSE R NSE SI TS5 TS10

LR 0.018 0.983 0.923 0.052 58.4 93.2

LS-SVM 0.008 0.989 0.971 0.024 87.6 100

ELM 0.003 0.998 0.988 0.010 100 100

BELM 0.003 0.998 0.991 0.007 100 100

Table 4 Quantitative study of the presented models’ results in com-

parison with the experimental results using verification criteria (val-

idation period)

Models RMSE R NSE SI TS5 TS10

LR 0.023 0.979 0.910 0.077 56.6 91.7

LS-SVM 0.015 0.988 0.969 0.033 83.8 100

ELM 0.016 0.997 0.986 0.011 100 100

BELM 0.011 0.998 0.989 0.009 100 100
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such as threshold statistics. On comparing the TS statistics

for the models, it was found that the LR and LS-SVM

models exhibited 56.6, 91.7 and 83.8%, 100% estimates

lower than 5% and 10% relative error, respectively. On the

other hand, for ELM and BELM model the estimates of

relative error increased to 100%. The distribution of errors

is presented in Fig. 5, which gives a clear indication of

better performance by the BELM model. Figure 5 shows

that all applied models perform almost similarly in terms of

the distribution of the errors. According to this figure,

nearly 92% and 98% of the discharge coefficients esti-

mated using ELM and BELM have a relative error lower

than 2%, respectively. However, according to Fig. 5, for

LR and LS-SVM models, almost 88% and 98% of the

estimated amounts have less than 8% error, respectively,

and this is 100% for ELM and BELM. Based on the given

explanations so far, it can be said that BELM is fairly

accurate in estimating Cd.

Figure 6 displays the estimation discharge coefficients

as presented by the four models in this study against the

experimental results. This figure demonstrates that almost

all applied model estimated the results fairly accurately,

with all the discharge coefficient amounts estimated by this

model having a relative error below 10%. It was obviously

seen from these figures that the BELM and ELM estimates

were closer to the corresponding observed flow values than

those of the other models. As seen from the fit line equa-

tions (assume that the equation is y = ax ? b) in the scatter

plots that a and b coefficients for the ELM and BELM

model are, respectively, closer to the 1 and 0 with a higher

R2 value of 0.099 than other models for Cd.

Overall, LS-SVM, ELM, and BELM models gave good

prediction performance and were successfully applied to

establish the forecasting models that could provide accu-

rate and reliable Cd prediction. The results suggested that

the BELM model was superior to the others in this fore-

casting. The reason for a better prediction accuracy of

BELM model than other models lies, primarily, in the

shortcoming of the models, e.g., slowly learning speed,

overfitting, curse of dimensionality. and convergence to

local minimum. Conversely, BELM model was based on

the empirical risk minimization principle, which could

attack the problem in theory.

The distributions of forecast errors by all models for Cd

are given in Fig. 7 from which it was clearly evident that

the ELM and BELM performed better than the other

models. Figure 7 shows that for all developed models no

specific clustering was observed.

The data in Fig. 8 showed that the BELM was extremely

closer to the experimental Cd values than other approaches

used in this study. So it was evident that ELM and LS-

SVM consistently performed better than LR.

Cd data for each model presented in Fig. 9 were nor-

malized relative to modeled results to experimental data at

a dimensionless upstream head, HT/P in performance. As

shown in Fig. 8, for BELM model, Cd (BELM)/Cd (ex-

perimental) was nearest to 1.0 and the results of Cd pre-

diction demonstrated the effectiveness and efficiency of the

LR, ELM, and LS-SVM models.

Since four models had been developed to predict the

discharge coefficient of piano key weir, a comparative

study had been carried out between the adopted LR, LS-

SVM, ELM, and BELM models (Fig. 10).

Figure 10 concludes that all four presented models

provide fairly good results for discharge coefficient of a

PK-weir. The only difference between the estimations of

different models is their relative error distribution.

According to the basic concept of a Bayesian extreme

learning machine, this type of learning machine has a

high accuracy that may control the ill-posed problem,

automatical selection problem of the hidden nodes and

overfitting problem of ELM. This heuristic is essentially

found to be true in the current study, as the BELM is

found to perform better than the ELM in terms of most

of the performance statistics. It can be concluded that the

ELM and BELM algorithms have better generalization

than LS-SVM and LR for the classification problem in

the standard data sets. Moreover, the BELM algorithm is

stable for different assignment of hidden node parame-

ters. So the performance of the BELM as illustrated in

earlier discussions confirms that it is able to preserve the

advantages of the ELM. Accordingly, considering the

given explanations, the fact that compared to other

models the relative error by BELM was the lowest, and

Fig. 5 Distribution of forecast error across different error thresholds

for all the models

Iran J Sci Technol Trans Civ Eng (2019) 43 (Suppl 1):S89–S101 S97

123



the RMSE and SI indexes presented for this model are

good, it can be argued that compared to other models,

BELM can serve as a replacement method. In general,

BELM can be easily implemented by any flexible

Bayesian prior distribution, and hence it is attractive for

developing application. This suggests promising research

areas for future studies.

5 Conclusion

In this paper, we have designed various high-accuracy

machine learning techniques (e.g., LR, LS-SVM, ELM and

BELM), to estimate discharge coefficient of a PK-weir. To

achieve this objective, an experimental data set was

employed to develop various models investigated in this

study. The methods utilized the statistical properties of the

data series. The obtained results indicated that computa-

tional intelligence methods were powerful tools to model

Cd and could give good estimation performance. Therefore,

the results of the study were highly encouraging and sug-

gested that BELM and ELM approaches were promising in

modeling Cd, and this might provide valuable reference for

researchers and engineers who applied the methods for

modeling long-term hydraulic parameters estimating. As

the next step, comparing the results of the models, it was

seen that the value of NSE of BELM models was higher

than other models. Therefore, BELM and ELM models

Fig. 6 Comparing the estimated results of the four models to the laboratory results
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could improve the accuracy over the other applied models.

Overall, the analysis presented in this study showed that the

BELM method was superior to the LS-SVM, LR, and ELM

in forecasting Cd of piano key weir. In general, the

implementation of all intelligence models in the present

study illustrated the flexibility of Cd modeling. It is hoped

that future research efforts will focus in these directions,

i.e., more efficient approach for learning machines,

improve the prediction accuracy, especially for the high

values of Cd, by combining or improving model parame-

ters, saving computing time or more efficient optimization

algorithms in searching optimal parameters of SVM model,

to improve the accuracy of the forecasting models in terms

Fig. 7 Distribution of forecast error across the full range of discharge

coefficient

Fig. 8 LR, LS-SVM, ELM, and BELM modeled Cd versus HT/P data

Fig. 9 LR, LS-SVM, ELM, and BELM Cd versus HT/P data

normalized to experimental data
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of different evaluation measures for better planning,

design, operation, and management of various engineering

systems.
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