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Abstract
Material handling is one of the essential activities in the construction industry. Suitable location of facilities in the

construction site can affect the costs and duration of the construction material handling process. The construction site

layout planning to supply material and engineering demands within the minimum transportation distance is a quadratic

assignment problem. Metaheuristics are widely used to solve construction site layout planning problems. In this article, the

performance of four metaheuristic algorithms called charged system search, whale optimization algorithm, vibrating

particles system, and enhanced vibrating particles system (EVPS) are compared in terms of their effectiveness in resolving

a practical construction site layout problem. Results show that EVPS performs better than the other three methods.

Keywords Construction site layout planning � Quadratic assignment problem � Vibrating particles system �
Metaheuristic algorithm � Material handling

1 Introduction

Material handling is one of the essential activities in the

construction industry. Appropriate choice of the location of

facilities in the construction site affects the costs and

duration of the construction material handling process

considerably. Based on a study carried out by Tompkins

et al. (2010), between 20 and 50% of the total operating

costs in manufacturing companies are spent on material

handling and a good position for facilities can reduce these

costs by at least 10–30% (Tompkins et al. 2010). Another

study shows that material handling costs will increase

about 36% with an ineffectual layout (Balakrishnan and

Cheng 2007). In the recent decades, several research

studies have been carried out to provide the best methods to

solve the Construction Engineering Optimization Problems

(CEOPs). Metaheuristics have been applied extensively to

solve construction site layout planning problems (Ab-

delmegid et al. 2015; Wang et al. 2015; Kaveh et al. 2016;

Kaveh and Rasteghar Moghaddam 2017; Kaveh and

Vazirinia 2017, 2018). An appropriate construction site

layout can increase the production efficiency. Recently,

marketing competition drives many building companies to

make good organization and management for their con-

struction sites in order to ensure good productivity and new

margins of profitability (Alkriz and Mangin 2005). The

construction site layout problems (CSLPs) to supply

material and engineering demands within the minimum

transportation distance are the interesting CEOPs, because

they brought the consideration of layout esthetics and

usability qualities into the facility design process. The

construction site layout planning (CSLP) is a quadratic

assignment problem. Every construction project requires

enough spaces for temporary facilities for performing the

construction activities in a safe and efficient manner.

Construction site-level facilities layout is an important step

in site planning. Planning construction site spaces to allow

for safe and efficient working status is a complex and

multi-disciplinary task as it involves considering a wide

range of scenarios. CSLPs are known as combinatorial

optimization problems. There are two methods for the

solution consisting of metaheuristics for large search sized

problems and the exact method with a global search for

smaller search sized problems (Kaveh 2017). For example,
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Li and Love (1998) developed a construction site-level

facility layout problem for allocating a set of predeter-

mined facilities into a set of predetermined locations, while

satisfying the layout constraints and requirements. They

applied the genetic algorithm to solve the CSLP by

assuming that the predetermined locations are in rectan-

gular shape and are large enough to accommodate the

largest facility. Gharaie et al. (2006) resolved their model

by ant colony optimization. Kaveh et al. (2012) used an

improved harmony search algorithm for facility layout

optimization. Kaveh et al. (2016) utilized the colliding

bodies optimization (CBO) and its enhanced version

(ECBO), resolving a practical construction site layout

problem.

Solving real-life problems by metaheuristic algorithms

has become an interesting topic in recent years. Many

metaheuristics with different philosophy and characteristics

are developed and applied to a wide range of fields. The

objective of these optimization methods is to efficiently

explore the search space in order to find global or near-

global solutions. Since these algorithms are not problem

specific and do not require the derivatives of the objective

function, they have received increasing attention from both

academia and industry (Kaveh and Ilchi Ghazaan 2017).

Metaheuristic methods are global optimization methods

that try to reproduce natural phenomena (genetic algorithm

(Golberg 1989), particle swarm optimization (Eberhart and

Kennedy 1995), whale optimization algorithm (WOA)),

humans social behavior (imperialist competitive algorithm

(Atashpaz-Gargari and Lucas 2007)), or physical phe-

nomena (ray optimization (RO) (Kaveh and Khayatazad

2013), charged system search (CSS) (Kaveh and Talatahari

2010), colliding bodies optimization (Kaveh and Mahdavi

2014), big bang–big crunch (Erol and Eksin 2006),

vibrating particles system (VPS) (Kaveh and Ilchi Ghazaan

2017), thermal exchange optimization (Kaveh and Dadras

2017)). Exploitation and exploration are two important

characteristics of metaheuristic optimization methods.

Exploitation serves to search around the current best

solutions and to select the best possible points, and

exploration allows the optimizer to explore the search

space more efficiently, often by randomization (Kaveh

2017).

In this paper, charged system search (CSS), whale

optimization algorithm (WOA) (Mirjalili and Lewis 2016),

vibrating particles system (VPS) (Kaveh and Ilchi Ghazaan

2017), and enhanced vibrating particle system (EVPS)

(Kaveh et al. 2017) are used to optimize the construction

site layout problem. This model is related to the flow of

materials among facilities.

2 Optimization Algorithms

2.1 Charged System Search

Charged system search is an optimization algorithm pro-

posed by Kaveh and Talatahari (2010 and has its governing

rules inspired by electrostatics and Newtonian mechanics.

Each candidate solution in this algorithm is assumed as a

charged sphere, called charged particle (CP). These

charged spheres impose electric forces on each other. The

force that each particle exerts on the others is determined

according to its electric charge and using Eq. (1):

qi ¼
fit ið Þ � fitworst

fitbest � fitworst
ð1Þ

where fit ið Þ is the objective function value of the ith par-

ticle; fitbest and fitworst are the best and worst cost

function values among all particles, respectively. As well

as the electric charges, the force that a particle imports on

another one depends on their relative distance, which is

defined as a dimensionless quantity by Eq. (2).:

rij ¼
Xi � Xj

ðXi þ XjÞ=2 � Xbest þ e
ð2Þ

where Xi and Xj are the positions of the ith and jth particles;

Xbest is the position of the best current CP, and e is a small

positive number to avoid division by zero. It covers the

probability that the current best record is in the middle

point between two charged particles.

All better particles attract worse ones, but only some of

the worse particles attract better ones. This rule can be

mathematically stated as follows:

pij ¼ 1 $ fit ið Þ � fitworst

fitbest � fitworst
[ rand, or, fit ið Þ[ fit jð Þ

1 $ else

(

ð3Þ

where pji is the probability of the jth particle being

attracted by the ith particle. The resultant electric force Fj

on the jth particle can be calculated by Eq. (4):

fj ¼ qj
X
i;i 6¼j

qi

a3
� rij � w1 þ

qi

r2
ij

� w2

 !
� pij � ðXi

þ XjÞ;
w1 ¼ 1; w2 ¼ 2 $ rij\a

w1 ¼ 2; w2 ¼ 1 $ rij � a

j ¼ 1; 2; . . .; n

8<
: ð4Þ

where a is the radius of the charged sphere. It helps to

discern global and local search phases as discussed by

Kaveh and Talatahari (2010). When the final forces are

determined, the new position for the jth particle can be

calculated by Eq. (5):
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Xj;new ¼ randj1 � ka �
fj

mj

� Dt2 þ randj2 � kv � Vi;old � Dt

þ Xj;old; ð5Þ

Vj;new ¼ Xj;new � Xj;old

Dt
ð6Þ

where randj1 and randj2 are two random numbers uniformly

distributed in the range (0, 1); mj is the mass of the particle

that is taken equal to qj. Dt is the time interval and is taken

as unity. ka and kv are two coefficients to control the

exploration and exploitation tendencies of the algorithm

and are called acceleration coefficient and velocity coeffi-

cient, respectively. Two coefficients are defined in Eqs. (7)

and (8) to maintain more exploration at the early stages of

the optimization process and more exploitation at the final

stages.

Ka ¼ c1 1 þ iter/itermaxð Þ ð7Þ
Kv ¼ c2 1 � iter/itermaxð Þ ð8Þ

where iter is the current iteration number and itermax is the

maximum number of iterations. In (Kaveh and Talatahari

2010), c1 and c2 are both suggested to be taken as 0.5.

These parameter values have been determined through trial

and error, which can be a time-consuming process. The

pseudocode of the CSS algorithm is illustrated in Fig. 1.

2.2 Whale Optimization Algorithm (WOA)

The WOA is a novel population-based algorithm which

mimics the social behavior of humpback whales. This

metaheuristic algorithm has been developed by Mirjalili

and Lewis (2016). In this method, the spiral bubble-net

feeding maneuver is mathematically modeled to perform

optimization. Bubble-net feeding is a unique behavior that

can only be observed in humpback whales (Mirjalili and

Lewis 2016). In order to update the position of the whales

during optimization, two behaviors are identified, the

shrinking encircling mechanism and the spiral bubble-net

feeding maneuver. Since the position of the optimum

design in the search space is not known, the basic WOA

algorithm assumes that the current best candidate solution

is the optimum or is close to the optimum and the other

search agents will update their positions toward the best

search agent (Mirjalili and Lewis 2016). Similar to other

multi-agent methods, the WOA starts with a set of random

populations. At each iteration, search agents update their

positions according to A~ vector’s value. Updating mecha-

nism is detailed in following. This process continues until

terminating criterion is satisfied. The WOA algorithm has

two phases, exploitation and exploration phase. This

algorithm transits between exploration and exploitation

phase smoothly. The transition is done due to the variation

of A~ vector’s value. A~ vector’s value is decreased during

iterations, half of the iterations are assigned to exploration

phase when | A~ | C 1 and the other half is dedicated to

exploitation when | A~ |\ 1. Here, the sign | | indicates the

absolute value. The vector A is computed as follows:

A~¼ 2a~ � r~� a~ ð9Þ

where a~ is linearly decreased from 2 to 0 over the course of

iterations and r is a random vector in [0,1].

2.2.1 Exploitation Phase (Bubble-Net Attacking Method)

In order to model the bubble-net behavior of humpback

whales mathematically, two approaches are considered:

shrinking encircling mechanism and spiral updating posi-

tion. Since the humpback whales swim around the prey

within a shrinking circle and along a spiral-shaped path

simultaneously, WOA assumes that there is a probability

(p) of 50% to choose between these two behaviors.

Shrinking encircling mechanism is modeled as Eqs. (10),

(11), and (12):

C~ ¼ 2r~ ð10Þ

Pseudo code of Charged System Search (CSS)
Initialize algorithm parameters
Initialize a population of random solutions
Evaluate the cost function values and determine the charges of the CPs
While maximum iterations is not fulfilled 

for each particle
Determine the resultant force acting on the particle
Determine the velocity vector for the particle
Determine the new position for the particle

end for
Evaluate the cost function values for the particles in new positions
Record the best particles in Charged Memory
Update the charges of the particles

end While
end

Fig. 1 Pseudocode of the

charged system search

algorithm (Kaveh and Zolghadr

2014)
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D~ ¼ C~ � X~best � X~
��� ��� ð11Þ

X~
new ¼ X~best � A~ � D~ ð12Þ

where X~
new

and X~ are new position and previous position

of whales, respectively. X~best is the best position vector of

the best solution obtained so far. A~ and C~ are coefficient

vectors and | | is the absolute value.

Additionally, spiral-shaped movement of whales is

simulated by Eqs. (13) and (14):

D
0!
¼ X~best � X~
�� �� ð13Þ

X~
new ¼ D

0!
� eb:l � cos 2p � lð Þ þ X~best ð14Þ

where b is a constant that defines the spiral shape of

movement and l is a random number in range [- 1,1].

2.2.2 Exploration Phase (Search for Prey)

If Aj j � 1 exploration phase has happened, WOA updates

the position of a whale in the exploration phase according

to a randomly chosen whale instead of the best search

agent. Thus, new position is computed by Eqs. (15) and

(16):

D
0!
¼ C~ � X~rand � X~
��� ��� ð15Þ

X~
new ¼ X~rand � A~ � D~ ð16Þ

The pseudocode of the WOA is shown in Fig. 2.

2.3 Vibrating Particles System

The VPS is a population-based algorithm which simulates

a free vibration of single degree of freedom systems with

viscous damping (Kaveh and Ilchi Ghazaan 2017). Similar

to other multi-agent methods, VPS has a number of indi-

viduals (or particles) consisting of the variables of the

problem. In the VPS, each solution candidate is defined as

‘‘X’’ and contains a number of variables (i.e., Xi = { X
j
i })

and is considered as a particle. Particles are damped based

on three equilibrium positions with different weights, and

during each iteration, the particle position is updated by

learning from them: (1) the historically best position of the

entire population (HB), (2) a good particle (GP), and (3) a

bad particle (BP). The solution candidates gradually

approach to their equilibrium positions that are achieved

from current population and historically best position in

order to have a proper balance between diversification and

intensification. Main procedure of this algorithm is defined

as:

Step 1 Initialization

Initial locations of particles are created randomly in an

n-dimensional search space, by Eq. (9):

x
j
i ¼ xmin þ rand � xmax � xminð Þ; i ¼ 1; 2; 3; . . .; n;

ð17Þ

where x
j
i is the jth variable of the particle i. xmax and xmin

are, respectively, the minimum and the maximum

Fig. 2 Pseudocode of the whale

optimization algorithm

(Mirjalili and Lewis 2016)
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allowable values vectors of variables; rand is a random

number in the interval [0,1]; and n is the number of

particles.

Step 2 Evaluation of candidate solutions

The objective function value is calculated for each

particle.

Step 3 Updating the particle positions

In order to select the GP and BP for each candidate

solution, the current population is sorted according to their

objective function values in an increasing order, and then

GP and BP are chosen randomly from the first and second

half, respectively.

According to the above concepts, the particle’s position

is updated by Eq. (18):

x
j
i ¼ x1: D � A � rand1 þ HB j

� �
þ x2

� D � A � rand2 þ GP j
� �

þ x3 � D � A � rand3 þ BP j
� �

ð18Þ

where x
j
i is the jth variable of the particle i. x1, x2, x3 are

three parameters to measure the relative importance of HB,

GP, and BP, respectively (x1 þ x2 þ x3 ¼ 1). rand1,

rand2, and rand3 are random numbers uniformly dis-

tributed in the range of [0, 1], respectively. The parameter

A is defined as:

A ¼ x1 � HB j � x
j
i

� �� �
þ x1 � GP j � x

j
i

� �� �
þ x1 � BP j � x

j
i

� �� �
: ð19Þ

Parameter D is a descending function based on the

number of iterations:

D ¼ iter

itermax

� ��a

: ð20Þ

In order to have a fast convergence in the VPS, the

effect of BP is sometimes considered in updating the

position formula. Therefore, for each particle, a parameter

like p within (0, 1) is defined, and it is compared with rand

(a random number uniformly distributed in the range of [0,

1]) and if p\ rand, then x = 0 and x2 ¼ 1 � x1.

Three essential concepts consisting of self-adaptation,

cooperation, and competition are considered in this algo-

rithm. Particles move toward HB so the self-adaptation is

provided. Any particle has the chance to influence on the

new position of the other one, so the cooperation between

the particles is supplied. Because of the p parameter, the

influence of GP (good particle) is more than that of BP (bad

particle), and therefore the competition is provided.

Step 4 Handling the side constraints

There is a possibility of boundary violation when a

particle moves to its new position. In the proposed algo-

rithm, for handling boundary constraints a harmony search-

based approach is used (Kaveh and Talatahari 2010). In

this technique, there is a possibility like harmony memory

considering rate (HMCR) that specifies whether the vio-

lating component must be changed with the corresponding

component of the historically best position of a random

particle or it should be determined randomly in the search

space. Moreover, if the component of a historically best

position is selected, there is a possibility like pitch

adjusting rate (PAR) that specifies whether this value

should be changed with the neighboring value or not.

Step 5 Terminating condition check

Steps 2 through 4 are repeated until a termination cri-

terion is fulfilled. Any terminating condition can be con-

sidered, and in this study, the optimization process is

terminated after a fixed number of iterations. The pseu-

docode of the VPS is shown in Fig. 3.

Pseudo code of Vibrating Particles System (VPS)
Initialize algorithm parameters
Create initial positions randomly by Eq. (17)
Evaluate the values of objective function and store HB
While maximum iterations is not fulfilled 

for each particle
The GP and BP are chosen
if P<rand

W3=0 and w2=1-w1
end if
for each component

New location is obtained by Eq. (18)
end for
Violated components are regenerated by harmony search-based handling approach 

end for
end while
The values of objective function are evaluated and HB is updated

end 

Fig. 3 Pseudocode of the

vibrating particles system

algorithm (Kaveh and Ilchi

Ghazaan 2017)
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2.4 Enhanced Vibrating Particles System

In this method, two new parameters are introduced as

‘‘Memory’’ and ‘‘OHB.’’ Memory acts as HB with the

difference that it saves NB number of the best historically

positions in the entire population, and OHB (one of the best

historically positions in entire population) is one row of

memory that is selected randomly. HB is replaced with

memory in the EVPS algorithm. Another change in the

VPS algorithm is that Eqs. (18) and (19) should be

replaced with Eqs. (21) and (22). In Eqs. (21) and (22), one

of (a), (b), and (c) equations is applied with the probability

of x1, x2, and x3, respectively.

x
j
i ¼

D � A � rand1 þ OHB j
� �

ðaÞ
D � A � rand2 þ GP j
� �

ðbÞ
D � A � rand3 þ BP j
� �

ðcÞ

8<
: ð21Þ

A ¼
�1ð Þ OHB j � x

j
i

� �
ðaÞ

�1ð Þ GPj � x
j
i

� �
ðbÞ

�1ð Þ BPj � x
j
i

	 

ðcÞ

8><
>: ð22Þ

where (�1) is applied randomly. It should be noted that

OHB, GP, and BP are determined for every particle inde-

pendently. Other sections of the EVPS are defined exactly

the same as in the VPS algorithm.

The pseudocode of the EVPS algorithm is illustrated in

Fig. 4.

3 Problem: Site Precast Yard Layout
Planning (cheung et al. 2002)

Construction site layout problem was formulated as a QAP.

Originally, this formulation presented by Koopmans and

Beckmann (1957) associates n facilities to n mutually

individual locations. This layout problem assumes that

each facility consumes the same area, and so any facility

can be allocated to any site (Koopmans and Beckmann

1957). A CSLP problem called site precast yard layout

planning optimization model was presented by Cheung

et al. (2002) that was solved by several models such as

(Liang and Chao 2008; Wong et al. 2010; Kaveh et al.

2012, 2016; Kaveh and Rasteghar Moghaddam 2017). The

performance of a site precast yard in the optimization of

the construction site precast yard layout is very much

affected by location of the various facilities (Wong et al.

2010).

Here, we are going to explain the site precast yard layout

planning optimization problem.

In the model by Cheung et al. (2002), the following

assumptions are considered:

• The geometric layout of available locations is fixed and

predetermined.

• Just one facility can be located at every location.

• Number of facilities and locations are equal (if, the

number of locations is greater than the number of

facilities and dummy facilities can be added for

computation purpose.).

3.1 Material Flow (Liang and Chao 2008)

In the model by Cheung et al. (2002), n facilities are

located to n locations. These facilities are placed in

appropriate locations based on their traveling frequencies

and distance description. Several types of resources are

considered in order to calculate the transportation costs

between facilities in the model. The aim of layout planning

is to achieve the lowest costs for the transportation of

resources to facilities through appropriate site arrangement.

Pseudo code of Enhanced Vibrating Particles System (EVPS)
Initialize algorithm parameters
Create initial positions randomly by Eq. (17)
Evaluate the values of objective function and update “Memory”
While maximum iterations is not fulfilled 

for each particle
Select the GP, BP, and OHB
if P<rand

W3=0 and w2=1-w1
end if
for each component

Update positions by Eq. (21)-(a), (b), or (c) with probability of , and 
end for
Regenerate violated components by harmony search-based handling approach

end for
end while
The values of objective function are evaluated and HB is updated

end 

Fig. 4 Pseudocode of the

enhanced vibrating particles

system algorithm (Kaveh and

Vazirinia 2018)
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Each replacement by a facility from another facility will

increase or decrease the total cost by evaluating the

objective function. The total cost is defined as follows:

Minimize Total Cost ¼
Xn
k

Xn
i

Xn
j

TCLMki;j ð23Þ

where TCLMki;j calculates by Eq. (24):

TCLMki;j ¼ MLMi;j � CMk ð24Þ

where CMk is the cost per unit distance for resources Mk

flow, and MLMi;j is the distance traveled by resource Mk

flow per unit time between locations i and location j and is

calculated by Eq. (25):

MLMi;j ¼ FLMki;j � Dij ð25Þ

where the FLMki;j is the frequency of resource Mk flow

between location i and j per unit time and is calculated

using Eq. (24), Dij is the distance between location i and

j and is calculated by Eq. (25):

FLMki;j ¼

FLMk1;1 FLMk1;2 FLMk1;q

FLMk2;1 FLMk2;2 � � � FLMk2;q

..

. . .
. ..

.

FLMkq;1 FLMkq;2 � � � FLMkq;q

2
6664

3
7775
ð26Þ

Di;j ¼ XLj � XLi
�� ��þ YLj � YLi

�� �� ð27Þ

Table 1 Facilities and their corresponding index numbers

Index number Facilities

1 Main gate

2 Side gate

3 Batching plant

4 Steel storage yard

5 Formwork storage yard

6 Bending yard

7 Cement and sand and aggregate storage yard

8 Curing yard

9 Refuse dumping area

10 Casting yard

11 Lifting yard

Table 2 Four types of materials and transport costs per unit distance

MK Material Cost per unit

1 Aggregate, sand and cement/concrete 4

2 Reinforcement bars 5

3 Formwork 8

4 Completed precast units 8.5

Table 3 Coordinates of the

available locations
Location number 1 2 3 4 5 6 7 8 9 10 11

X 15 13 22 25 20 12 40 48 48 5 32

Y 40 30 30 20 10 10 10 20 35 20 42

Table 4 Distance between

locations
Distance Location

1 2 3 4 5 6 7 8 9 10 11

Location 1 0 12 17 30 35 33 55 53 38 30 19

2 12 0 9 22 27 21 47 45 40 18 31

3 17 9 0 13 22 30 38 36 31 27 22

4 30 22 13 0 15 23 25 23 38 20 29

5 35 27 22 15 0 8 20 38 53 25 44

6 33 21 30 23 8 0 28 46 61 17 52

7 55 47 38 25 20 28 0 18 33 45 40

8 53 45 36 23 38 46 18 0 15 43 38

9 38 40 31 38 53 61 33 15 0 58 23

10 30 18 27 20 25 17 45 43 58 0 49

11 19 31 22 29 44 52 40 38 23 49 0
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where Li and Lj are the coordinates of the locations within

the site area.

4 Numerical Examples

A case study is presented by Cheung et al. (2002) that

was solved by several methods such as (Liang and Chao

2008; Wong et al. 2010; Kaveh et al. 2012, 2016; Kaveh

and Rasteghar Moghaddam 2017). There are 11 facilities

that should be assigned to 11 predetermined locations in

the yard. The facilities and their corresponding index

numbers are listed in Table 1. Four types of resources

and transport costs per unit distance are also presented in

Table 2. Coordinates of the available locations are listed

in Table 3. With these coordinates, the rectangular dis-

tance matrix Di;j for the locations was then calculated

and presented as Table 4. Flow frequency of the four

types of resources between the facilities is listed in

Table 5.

5 Results and Discussion

Due to the central limit theorem, if the sample size

becomes larger the distribution of the sample mean con-

verges to the normal distribution; the sample size must be

equal or more than 30. Therefore, 30 independent experi-

mental runs through 1000 iterations are performed.

Employing four optimization methods, the problem is

solved by MATLAB R2014a. Since the performance of the

CSS, VPS, and EVPS are dependent on the control

parameters, several tests have been conducted to select the

appropriate parameters for finite-time performance of these

algorithms. The parameter settings of algorithms used in

this paper are listed in Table 6.

The comparison results of algorithms for CSLP are

listed in Table 7. The mean convergence curves of algo-

rithms are shown in Fig. 5. Also, the comparison of best

Table 5 Flow frequency of the four types of materials between the

facilities

1 2 3 4 5 6 7 8 9 10 11

Facility

1. Aggregate, sand and cement

1 20

2 15

3 35 35

4

5

6

7 20 15 35

8

9

10 35

11

2. Reinforcement

1 30

2 20

3

4 30 20 50

5

6 50 50

7

8

9

10 50

11

3. Formwork

1

2

3

4

5 48

6

7

8

9

10 48

11

4. Complete precast units

1 28

2 20

3

4

5

6

7

8 48 48

9

10 48

11 28 20 48

Table 6 Parameter settings of the algorithms

CSS Pop. size a c

50 1 eps*

WOA Pop. size

50

VPS Pop. size a w1 w2 p

50 0.07 0.3 0.3 0.2

EVPS Pop. size a w1 w2 p

50 0.07 0.3 0.3 0.2

eps: a small positive number to avoid division by zero
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Table 7 Comparison of

algorithms for the CSLP
Best cost Mean cost Std. Dev. Worst cost

GA (Cheung et al. 2002) 99,788 N/A N/A N/A

MIP (Wong et al. 2010) 59,828.7 N/A N/A N/A

TS (Liang and Chao 2008) 94,858 N/A N/A N/A

HMCSS ? LS (Kaveh et al. 2012) 92,758 N/A N/A N/A

PSO (Kaveh et al. 2016) 92,758 97,667 3363.1 106,630

CBO (Kaveh et al. 2016) 92,758 97,504 3149 103,038

ECBO (Kaveh et al. 2016) 92,758 96,670 2733.5 102,920

CSS* 92,758 98,074.5 3055 105,046

WOA* 92,758 104,189 4677.2 111,816

VPS* 92,758 97,301.9 2498.2 102,308

EVPS* 92,758 97,178.8 2736.4 103,502

N/A not available, *present work

Table 8 Best layouts of this

paper and previous researches
Algorithm Best layout

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

GA (Cheung et al. 2002) 1 10 9 6 8 5 11 3 7 4 2

MIP (Wong et al. 2010) 1 10 8 6 7 5 9 3 11 4 2

TS (Liang 2008) 5 7 10 8 1 9 6 3 11 2 4

HMCSS ? LS (Kaveh et al. 2012) 5 7 9 6 1 10 8 3 11 2 4

PSO (Kaveh et al. 2016) 5 7 9 6 1 10 8 3 11 2 4

CBO (Kaveh et al. 2016) 5 7 9 6 1 10 8 3 11 2 4

ECBO (Kaveh et al. 2016) 5 7 9 6 1 10 8 3 11 2 4

CSS* 5 7 9 6 1 10 8 3 11 2 4

WOA* 5 7 9 6 1 10 8 3 11 2 4

VPS* 5 7 9 6 1 10 8 3 11 2 4

EVPS* 5 7 9 6 1 10 8 3 11 2 4

N/A not available, *present work

0 100 200 300 400 500 600 700 800 900 1000
Iteration

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

C
os

t

105

Charged System Search(CSS)
Vibrating Particle System (VPS)
Enhanced Vibrating Particle System (EVPS)
Whale Optimization Algorithm (WOA)
Colliding Bodies Optimization (CBO)
Enhanced Colliding Bodies Optimization (ECBO)
Particle Swarm Optimization (PSO)

Fig. 5 Convergence curves

obtained for the CSLP problem
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results of this paper and previous studies is listed in

Table 8.

As shown in Table 7 and Fig. 5, the EVPS algorithm

converges faster than other algorithms and has better effi-

ciency in the mean (97,276) and worst (102,794) costs and

the standard deviation of the VPS (2498.2) is better than

other three algorithms. Totally, ECBO still performs better

solutions for this problem.

As shown in Table 8, facilities 1 through 11 are closet to

locations 5, 7, 9, 6, 1, 10, 8, 3, 11, 2, and 4, respectively.

These results are similar to those obtained by (Kaveh et al.

2012, 2016). The proposed laoyut arrangement plan and

flow diagram for the site pre-cast yard are depicted in

Fig. 6.

6 Conclusions

In this paper, four recently developed metaheuristic algo-

rithms consisting of CSS, WOA, VPS, and EVPS are

applied for resolving a practical construction site layout

planning algorithm. The performances of these meta-

heuristic algorithms are compared in terms of their effec-

tiveness. Results show that all of these metaheuristics are

able to reach the best cost. The VPS, and EVPS algorithms

present more reliable solutions than others. Future resear-

ches can focus on integrating this model with tower crane

layout planning problem for presenting a model that con-

siders three dimensions of material handling in the con-

struction site.
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