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Abstract
This paper presents the dynamic soil–bridge interaction under high-speed railway lines, under different soil stiffness

conditions. Starting from the analysis of a simply supported Euler–Bernoulli beam model subjected to moving loads, a

three-dimensional multi-body (soil–abutment–bridge–ballast–sleeper–rail) model formulated in the time domain to study

the vibrations induced due to the passage of moving concentrated loads was analysed using the direct finite element method

of soil–structure interaction analysis. The high-speed train was considered to be a set of concentrated loads, the rail was

modelled as a Euler–Bernoulli beam (frame element), and the sleepers, ballast, bridge, abutments and soil were modelled

using eight-node solid (brick) elements. Layered soil stratum’s effects on the dynamic response of the bridge deck and

variation of stresses were studied. From this study, it was observed that the direct method of FE analysis can be an effective

tool to solve the complex dynamic soil–structure interaction problems.

Keywords Dynamic soil–bridge interaction � Moving loads � 3D continuum model � Newmark-b integration �
Layered soil

1 Introduction

The dynamic behaviour of high-speed railway bridges is

one of the most studied problems in civil engineering. The

phenomenon of resonance takes place when the operating

speed of high-speed railway becomes close to the funda-

mental frequency of bridge. This leads to vibrations and the

problems related to the safety, train stability and passengers

comfort. Hence, the dynamic behaviour of high-speed

railways cannot be ignored. Immense literature about the

dynamic response of railway bridges is available. Yang and

Yau (1997), Yang et al. (1997, 1999) and Yau et al. (1999)

studied the impact response of bridges to high-speed trains

and the interaction of vehicle–bridge systems (VBI). In

this, complex VBI elements are developed to simulate the

interaction behaviour between the bridge and the high-

speed railway systems moving over it. Frýba (2001)

developed a theoretical model of a bridge using the integral

transformation method, which provided an estimate of the

amplitude of free vibrations.

To study the vibration response of railway bridges, the

engineering community has used various moving models,

namely the force model, the mass model and the oscillator

model (Museros and Alarcón 2005; Museros and Martínez-

Rodrigo 2007; Martínez-Rodrigo and Museros 2011; Pes-

terev et al. 2003; Liu et al. 2009). The numerical approa-

ches, such as finite element method (FEM), for modelling

complex structures have gained importance in the last few

years. Delgado and Cruz (1997) studied the dynamic

behaviour of railway bridges assuming the moving mass

model and the train model traversing on a bridge model

made up of finite elements. Wu et al. (2001) developed a

sophisticated 3D vehicle–rail–bridge interaction (VRBI)

model to study the dynamic interaction between the mov-

ing trains and a railway bridge, considering the effects due

to track irregularities. A substantial increase in the response
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of both train and bridge due to the track irregularities is

found. Song et al. (2003) developed a new three-dimen-

sional bridge deck model consisting of variable-node

nonconforming flat shell (NFS) elements, to study the high-

speed train–bridge interaction. These elements have high

performance in dynamic problems, especially for discon-

tinuities due to complicated track structures. Ju and Lin

(2003) performed a simply supported multi-span bridge

pier resonant analysis using a three-dimensional FEM

system. The fundamental train frequency and the first

bridge natural frequency in each direction were recom-

mended to be as different as possible to prevent resonance.

Cheng et al. (2001) developed a new bridge–vehicle–track

element to examine the moving train–railway track–bridge

interaction. The moving vehicles were modelled as a two-

degree-of-freedom mass–spring–damper system, which is

added to an upper beam that simulates the rails and a lower

beam to model the bridge deck. Biondi et al. (2005)

compared the work of Cheng et al. (2001) with the sub-

structure technique.

A great deal of experimental work to study the dynamic

response of the existing multi-span bridges under high-

speed lines was reported by Xia et al. (2003, 2005, 2006).

The purpose of these experimental works was to collect the

dynamic response data and compare the data with the

sophisticated vehicle (train)–bridge numerical model(s).

Most civil engineering structures are supported by soils/

rocks. As the supporting soil is much larger in size than the

structure itself, it is considered infinite in dimension (un-

bounded). This system of structure and soil can be sub-

jected to static or dynamic loads. To determine the actual

response of the structure under dynamic actions, dynamic

soil–structure interaction analysis has to be performed.

This complex phenomenon can be solved using two

methods, namely the sub-structure method and direct

method (Wolf 1985, 1986). The sub-structure method

divides the soil–structure system into two parts, namely the

super-structure that may include a portion of soil in the

vicinity of the structure and the remaining, an unbounded

soil domain. The direct method considers a definite extent

of half-space soil–structure model in a continuous manner,

with the only distinction being in material property. The

sub-structure and direct method work in frequency and

time domains, respectively. In the direct method, to

achieve accurate dynamic response of the structure con-

nected with the soil, it is essential that the waves propagate

and decay in all the directions and travel to far fields.

Lysmer and Waas (1972) and Kausel et al. (1975) and

Kausel and Roesset (1977) developed wave-transmitting

boundaries, and Song and Wolf (1996) considered the

extended mesh concept to account for the proper boundary

condition at finite domains.

A rigorous dynamic soil–structure–high-speed moving

vehicle interaction analysis has gained attention in recent

years. Hanazato et al. (1991) and Pyl et al. (2004a, b)

studied the effect of dynamic soil–road under traffic on the

adjacent buildings and structures. Ülker-Kaustell et al.

(2010) in their work presented a qualitative analysis of the

dynamic SSI of a portal frame railway bridge based on the

linear theory of elasticity. Using simple concepts from the

finite element theory, the influence of SSI on the dynamic

properties of the structure and its response due to the high-

speed load model (HSLM) of the Eurocode1 was found

out.

Recently, Romero et al. (2013) have investigated the

soil–structure interaction’s (SSI’s) influence on a small

simply supported railway bridge response. A three-di-

mensional FE and boundary element (BE) numerical model

was developed to study the dynamic SSI of a bridge, in the

time domain. It is noticed that the resonant train speeds

reduce due to soil–bridge interaction, whereas the funda-

mental periods and damping ratios of the response increase

due to SSI. Many complex parameters such as the spring–

dashpot model to represent the articulated train, track

irregularities and most importantly the BE-FE formulations

were used to solve this 3D dynamic soil–bridge interaction

problem. For the systems with complicated geometry and

material properties, application of BEM has proven to be

difficult. BEM cannot be applied directly for the analysis of

soil–structure system. It is to be used with FEM.

The structural designers’ community is always in search

of a simple approach to achieve rapid and appropriate

solutions for such complex problems, with the use of

commercial software packages. Thus, it is necessary to

develop a simplified approach for the analysis of a full-

scale 3D soil–bridge model, which can be easily imple-

mented and analysed in relevant commercial software. To

do this, a direct finite element method to analyse dynamic

soil–bridge interaction is attempted using commercial

software package capable of analysing moving loads

problems (SAP2000 2014). Study related to 3D continuum

soil–bridge interaction analysis subjected to high-speed

moving loads cannot be seen. In this work, a full-scale 3D

continuum dynamic soil–bridge interaction analysis under

simple moving loads, to verify the resonance response of a

simply supported bridge is presented. Since the resonance

response of the bridge alone is considered, the track

irregularities are neglected (Yang et al. 2004).

This paper presents the verification of dynamic analysis

for the passage of high-speed trains on Euler–Bernoulli

beam, in SAP2000 finite element (FE) program. Further,

the development of a three-dimensional finite element

numerical model to study the dynamic soil–structure

interaction in time domain (Fig. 1) is presented. The direct

method of analysing soil–structure interaction is used to
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study this numerical model. Changes in modal parameters

are studied considering different types of soils. The effect

of these soils on the resonance response of the deck slab is

then studied. Dynamic soil–bridge interaction analysis

under moving loads, for layered soil, has not yet been

performed. Thus, a case study on the 3D continuum soil

model, to study the dynamic response of the deck slab, is

carried out by considering the layered soil.

2 Analytical Solution for Moving Forces

The closed form solution for vertical displacement y(x, t)

and acceleration a(x, t) response of a simply supported

Euler–Bernoulli beam (Fig. 2) of span L subjected to row

of N axel forces Fn, where n= 1, 2, 3,…, N, moving with

constant speed ‘v’ along the beam, at a distance x with

respect to time t is represented by Eqs. (1) and (2),

respectively (Frýba 2001).
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where y0 is the displacement at the centre of the beam, Fn is

the nth axle force, x. is the circular frequency, xD is the

circular frequency of the damping, x1 is the first circular

frequency, t is the time, and tn and Tn are time instants

when the nth force Fn enters and leaves the beam. j is the

Direct FE method 
of dynamic SSI

Waves reflecting 
towards infinity

Fig. 1 Moving loads–track–

soil–structure interaction

L

d2

dn F1F2Fn

Fig. 2 Movement of series of forces over a simply supported beam
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natural vibration mode of a damped beam with j = 1, 2,

3,…; h(t) stands for the Heaviside unit function related to

time t as:

h tð Þ ¼ 0 or t\0

1 for t� 0:

�
ð3Þ

The solution for displacements and accelerations can be

obtained by using the mutual relations of the Fourier

integral transform and its derivation can be confirmed, in

Ref. (Frýba 2001). The analytical solutions help in under-

standing the basic principles of the dynamic system,

investigating the key parameters, and their significance.

2.1 Numerical Modelling

For a multi-degree-of-freedom lumped mass system, the

force equilibrium conditions can be expressed as a function

of time, as a sum of forces with different origins, as follows

(Chopra 2008):

mj €uj þ fDj þ fSj ¼ pj tð Þ; ð4Þ

where mj is the mass at j levels j ¼ 1; 2; . . .; nð Þ; fDj is the

damping force, fSj is the elastic (or inelastic) resisting

force, and pj tð Þ is the external force. In finite element

method, Eq. (4) can be solved using direct integration

technique. Finite element (FE) techniques perform dis-

cretization in spatial coordinates for linear and nonlinear

behaviours of any structure. This discrete multi-degree-of-

freedom system of equations can be expressed as:

m€uþ c _uþ ku ¼ p tð Þ; ð5Þ

where e, c and k are the mass, damping and stiffness

matrices, respectively, (t) the load vector (from moving

loads), and u, _u and €u the vectors of nodal displacement,

velocity and acceleration. Equation (5) was solved using

Newmark-b method (Chopra 2008).

The simplest procedure to represent the load train

(moving loads) in FE method is to apply load pulse time

histories for each node, depending on the time of arrival

and the discretization (Fig. 3).

The damping matrix c was considered proportional to

the mass matrix m and the stiffness matrix k as:

c ¼ a0mþ a1k: ð6Þ

The damping ratio for the nth mode of such a system is

fn ¼
a0

2

1

xn

þ a1

2
xn: ð7Þ

The coefficients a0 and a1 can be determined from

specified damping ratios fi and fj for the ith and jth modes,

respectively. If both the modes are assumed to have the

same damping ratio f, which is reasonable based on

experimental data, then

a0 ¼ f
2xixj

xi þ xj

; a1 ¼ f
2

xi þ xj

: ð8Þ

The damping is then found out from Eq. (6), and the

damping ratio for any other mode, given by Eq. (7), varies

with natural frequency as shown in Fig. 4.

2.2 Validation of Dynamic Response

The analytical solution of a simply supported bridge of span

40 m with a damping ratio of 1%, bending stiffness of

280.1329 9 106 kN/m2 and line mass of 30 ton/m subjected

to HSLM-A3 (Eurocode1 2008) moving along the span can

be seen in Henriques (2007). An attempt was made to analyse

the same problem using SAP2000 FE program. In this FE

analysis, frame elements of 1 m length each were considered

to model the bridge. The support conditions were hinged. The

displacement and acceleration responses as shown in Fig. 5 at

the bridge mid-span for the train load travelling at resonant

speed were validated with the analytical solution.

Time t = ti-1 Time t = ti Time t = ti+1 

F(t)

ti-1 ti+1ti

F

t

F
v

i-1

F
v

i+1i

F
v

i-1 i+1i

F
v

F
v

i+1ii-1

Fig. 3 Load function variation

on node i in finite element

model
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From Fig. 6, it can be seen that the displacement and

acceleration responses have a fair agreement with the

analytical solution. For moving trains travelling on the

beam, the resonant condition of the beam can be derived as

follows (Teng et al. 2008):

vbrn;i ¼
3:6:fbn�d

i
n ¼ 1; 2; 3. . .; i ¼ 1; 2; 3. . .ð Þ; ð9Þ

where vbrn,i is the resonant moving train’s velocity (km/h); fbn

is the nth natural frequency of the beam (Hz); d is the char-

acteristic distance of the moving high-speed trains (HST)

(m); and i represents the number of complete oscillation

cycles for the nth mode of the beam to vibrate during the

passage of two adjacent loads (Wang et al. 2010). For the

aforesaid problem, the natural frequency corresponding to

first mode was found to be 18.786 rad/s and the characteristic

distance was taken as load interval which was approximately

20 m. From this, the resonant velocity vbr1;1 was evaluated as

215.28 km/h. From Fig. 5, it is evident that the resonant

velocity calculated is in fair agreement with the FEM solu-

tion. Finally, it can be stated that the agreement between both

approaches is verified and, therefore, the method followed

for performing the dynamic analyses in SAP2000 FE pro-

gram for the passage of high-speed trains can be used. In the

following sections, direct method of analysing soil–structure

interaction, using SAP2000 FE program, is presented.
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Rayleigh damping

Fig. 4 Rayleigh damping
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3 3D Soil–Structure Interaction Model

The underlying soil medium significantly affects the

dynamic response of a structure. In addition, due to wave

radiation to infinity, damping is developed by a

homogeneous soil stratum (von Estorff 1991). In this paper,

a three-dimensional direct finite element method for anal-

ysis of soil–structure interaction is used to explore the

dynamic soil–structure behaviour.

In the direct method, modelling of linear regular soil

adjacent to the soil–structure interface leads to many

degrees of freedom. It can be advantageous from a com-

putational point of view to introduce generalized coordi-

nates, especially when the total dynamic system behaves

linearly and when (frequency-independent) springs, dash-

pots and masses are used to model the transmitting

boundary (Wolf 1988). It was assumed that there is no

separation between sleepers and ballast and between soil

and the adjoining structures; hence, a perfect bond is

assumed. Viscous dampers were assumed to simulate the

silent boundaries. These silent boundaries were represented

with damping coefficients cn and ct at each node in the

normal and tangential directions (Wolf 1988):

cn ¼ Aqcp; ct ¼ Aqcs; ð10Þ

where cp represents the dilatational wave velocity, cs rep-

resents the shear wave velocity, A represents the applicable

area, and q represents the density of soil. The velocity of a

dilatational and shear waves is controlled by the shear

modulus (G) as (Wolf 1988):

cp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2Gð Þ

q

s

; cs ¼
ffiffiffiffi
G

q

s

; ð11Þ

where

k ¼ E

1 þ mð Þ 1 � 2mð Þ and G ¼ E

2 1 þ mð Þ : ð11:1Þ

E and v are the modulus of elasticity and Poisson’s ratio,

respectively.

Figure 7 shows the three-dimensional continuum soil–

structure model with viscous dampers simulating the silent

boundaries.

3.1 High-Speed Train (HST) Model

The train type considered in this paper was referred from

Romero et al. (2013). The authors considered one front

traction car, eight passenger cars and one rear traction car.

Passenger cars adjacent to traction cars shared one bogie

with the neighbouring passenger car, while central pas-

senger cars shared both bogies with the neighbouring cars.

Bogie distances and axle distances of the articulated HST

were 3 and 18.7 m, respectively (Fig. 8). The mass of

different parts of the HST is summarized in Table 1.

Moving loads model (Fig. 9) was considered (Domé-

nech and Museros 2011). This model does not take into

account the inertial effects of the train masses, and
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Fig. 6 Mid-span vertical acceleration (a) and displacement (b) plots

at resonant speed, present study. The figure also shows the mid-span

vertical acceleration (c) and displacement (d) plots at resonant speed

with blue solid line obtained by analytical solution and green solid

line given by Henriques (2007).
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therefore, the train is modelled as a series of concentrated,

constant-valued loads travelling at constant speed. Never-

theless, the multi-body model of HST as studied by the

authors in Ref. (Romero et al. 2013) furnishes a sophisti-

cated analysis approach; the closed form solutions of the

equations of motion for the moving loads model can easily

be obtained.

3.2 High-Speed Railway Bridges

In this section, the dynamic soil–bridge interaction analysis

is presented. A simply supported 12-m-long railway bridge

considered by Romero et al. (2013) was studied. The deck

(Fig. 10a) was composed of a 0.2-m-thick concrete slab.

The slab rested over five pre-stressed concrete beams with

a 0.8 9 0.3 m rectangular cross section. The width of the

slab was 6 m. The concrete properties were the following:

density q = 2500 kg/m3, Poisson’s ratio v = 0.2 and

Young’s modulus E = 31 9 109 N/m2. The deck leaned

over two concrete abutments (Fig. 10b) with the following

properties: density q = 2500 kg/m3, Poisson’s ratio

m = 0.3 and Young’s modulus E = 20 9 109 N/m2. The

beams rested on laminated rubber bearings. The thickness

of the bearings was 20 mm, and their stiffness and damping

values were 560 9 106 N/m and 50.4 9 103 Ns/m,

respectively. A single ballast track was located over the

deck. The track was composed of two rails with a bending

stiffness of EI = 6.45 9 106 Nm2 and a mass per unit

length of 60.3 kg/m for each rail. The rail pads had a

thickness of 10 mm and stiffness and damping values of

150 9 106 N/m and 13.5 9 103 Ns/m, respectively. The

pre-stressed concrete mono-block sleepers had the

Viscous dampers

Soil

Viscous dampers

Fig. 7 Three-dimensional

continuum soil–structure model

with viscous dampers

Fig. 8 Schematic representation of HST configuration

Table 1 Summary of the mass of various parts of HST

Description Name Traction cars Passenger cars Unit

Mass of car body Mc 55,790 24,000 kg

Mass of bogie Mb 2380 3040 kg

Mass of wheel axle Mw 2048 2003 kg

P= (Mw +0.5.Mb+0.25.Mc).g

P P P P

Fig. 9 Moving loads vehicle model
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following characteristics: length l = 2.60 m, width

w = 0.25 m, height 0.25 m (under the rail) and mass

300 kg. A distance d = 0.6 m between the sleepers was

considered. The ballast had a density of q =1800 kg/m3,

Poisson’s ratio of m = 0.2 and Young’s modulus of

E = 209 9 106 N/m2. The width of the ballast was 4.00 m,

and the height was h = 0.75 m. The structure was assumed

to be located on top of the soil. The soil was a homoge-

neous viscoelastic soil with Poisson’s ratio v = 0.35 and

mass density q =1800 kg/m3. Table 2 summarizes the

aforesaid information. The rails were modelled as

Bernoulli–Euler beam elements, and the sleepers, ballast,

abutments and soil were modelled as eight-node brick

element, whereas the rail–pads were modelled as spring–

damper elements. Four different S-wave velocities were

analysed, corresponding to a soil with infinite stiffness

(Cs = ! m/s), a hard soil (Cs = 400 m/s), a medium soil

(Cs = 250 m/s) and a soft soil (Cs = 150 m/s). Soil–bridge

discretization is shown in Fig. 7.

Rail

Rail-pad
Concrete 
sleeper

a

0.2

0.8

6
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1.30
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0.25

0.75

0.30.30.30.30.3

1.35 1.5 1.351.5

Ballast layer

b

1

7

7

1
2

1

Fig. 10 a Cross section of bridge deck. b Abutment dimensions. All dimensions are in metres

Table 2 Summary of properties

of soil–bridge parameters
Description Properties Value Unit

Concrete slab and pre-stressed beams Mass density q 2500 kg/m3

Poisson’s ratio m 0.2 –

Young’s modulus E 31 9 109 N/m2

Concrete abutments Mass density q 2500 kg/m3

Poisson’s ratio m 0.3 –

Young’s modulus E 20 9 109 N/m2

Bearings Stiffness 560 9 106 N/m

Damping 50.4 9 103 Ns/m

Rails Bending stiffness EI 6.45 9 106 Nm2

Mass per unit length 60.3 kg/m

Rail pads Stiffness 150 9 106 N/m

Damping 13.5 9 103 Ns/m

Concrete sleepers Mass 300 kg

Ballast Mass density q 1800 kg/m3

Poisson’s ratio m 0.2 –

Young’s modulus E 209 9 106 N/m2

Soil Poisson’s ratio m 0.35 –

Mass density q 1800 kg/m3
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3.3 Dynamic Soil–Structure Interaction

When the frequency of an external force matches the

fundamental frequency of the structure, resonance occurs.

Also, a lightly damped structure initiates a resonant regime.

Four natural frequencies and the mode shapes of the simply

supported rail–bridge structure are shown in Fig. 11. These

natural frequencies are comprised of the following modes:

(1) symmetric bending mode, (2) torsional mode, (3)

symmetric bending of cross-sectional mode and (4)

antisymmetric bending mode shape. The response of a

structure in terms of deflections, moments, etc., is of spe-

cial importance in structural engineering. Many researchers

have considered the higher modes’ contributions to com-

pute these important parameters. But, for the maximum

acceleration response of simply supported railway bridges,

the contribution of the first symmetric and antisymmetric

bending modes is essential (Museros and Alarcón 2005).

Hence, in the present study, these two modes are

considered.

As discussed earlier, the damping matrix is obtained by

assigning the same damping ratio of 2% (assumed for

reinforced concrete, Eurocode1 2008) to these modes

considering xi = x1 and xj ¼ x4. Rayleigh damping

parameter values from Eq. 7 are a0 2.32 s-1 and

a1 ¼ 1:192� 10�4 s. The damping of the system was

evaluated by using free vibration analyses. Table 3 sum-

marizes the results of fundamental frequencies and damp-

ing ratios for the different soil types considered.

It is evident from Table 3 that for different soil types,

the soil–structure interaction leads to a decrease in fre-

quency and an increase in damping ratio for various soil

types.

3.4 Soil–Structure Vibrations

Resonance of a bridge excited by a row of moving forces is

expressed by Eq. (9). Figure 12 shows the maximum ver-

tical acceleration at the centre of the deck for a range of

train speeds between 30 and 130 m/s (108 km/h and

468 km/h, respectively). The deck acceleration was found

to increase with train speed. Considering the characteristic

distance between bogies of d = 18.7 m, maximum accel-

erations were reached at resonant speeds corresponding to

the first bending mode shape. Figure 12 also shows maxi-

mum vibration levels at speed v1,2 = 111 m/s when soil–

bridge interaction was not considered. The response of the

structure changed significantly when soil–structure inter-

action was considered. The second resonant speed of the

Fig. 11 Four natural frequencies: a f1=11.90 Hz. b f2 = 14.57 Hz. c f3 = 26.16 Hz. d f4 = 41.5 Hz, and mode shapes of the structure

Table 3 Results of dynamic soil–bridge interaction for various modal

properties and resonant speeds

Soil type cs (m/s) f1 (Hz) f1 v1,2 (m/s)

Infinitely stiff – 11.90 0.020 111

Hard soil 400 10.90 0.029 101

Medium soil 250 9.96 0.042 95

Soft soil 150 7.84 0.056 73.4
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first mode shape decreased to v1,2 = 101 m/s and

v1,2 = 95 m/s for hard and medium soils, respectively, due

to the change in the dynamic behaviour of the system

(Table 3). No resonant effects occurred with soft soil.

Nevertheless, the resonant speed for soft soil was

v1,2 = 73.4 m/s. In all soil types (except for infinitely stiff

soil), the maximum acceleration at the centre of the mid-

span deck was below amax = 3.5 m/s2, this is the limit set

by the European Committee for Standardization (CEN)

(Eurocode1 2008).

The results presented here are compared with the results

discussed by Romero et al. (2013). The nature of curves

and maximum vertical accelerations for three soils (hard,

medium and soft) have a fair agreement with those pre-

sented by authors, but for the infinitely stiff soil case, a

significant reduction in the maximum acceleration value

for the corresponding resonant speed is observed (Fig. 13).

Since in this study the effect of dynamic SSI on bridge

deck vibrations is emphasized, their results are closely

examined. A small variation between the results of the

present study and the referred article is observed (Fig. 13)

due to the slight change in the dimensions of the deck cross

section and abutment geometry.

Figure 12 shows the vertical acceleration time histories at

the centre of the mid-span deck for speed v1,2 and the

acceleration limit for a ballasted track of amax = 3.5 m/s2

(Eurocode1 2008). Figure 14a–c represents a variation in the

response of the structure with consecutive passage of loads.

The vertical acceleration response with each passage of

travelling loads was more when SSI was excluded. It was

interesting to note that the vertical acceleration response was

reduced for lower soil stiffness, and the magnification of

response was almost absent in soft soil (Fig. 14d).

4 Case Study

A case study was worked out to examine the effect of

layered soil and the HST model (same as discussed in

above section) on the dynamic response of the mid-span
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section of the deck slab. The properties of elastic half-

spaced layered soil were referred from Rajasankar et al.

(2007). Following properties were assumed. Hard rock

stratum up to a height of 12 m from bottom with shear

wave velocity of 1390 m/s and bulk unit weight of 28 kN/

m3; weathered rock stratum up to a height of 6 m above

hard rock with shear wave velocity of 571 m/s and bulk

unit weight of 26 kN/m3; compressible clay stratum up to a

height of 10 m above weathered rock with shear wave

velocity of 307 m/s and bulk unit weight of 17 kN/m3; and

dense sand layer up to a height of 2 m above compressible

clay with shear wave velocity of 235 m/s and bulk unit

weight of 18.5 kN/m3.

The second resonant speed of the first mode shape

(f1 = 10.372 Hz) and the system damping from free

vibration analyses of layered soil were v1,2 = 96 m/s and

0.0363, respectively. Figure 15 shows the maximum ver-

tical acceleration at the centre of the deck corresponding to

a range of train speeds between 30 and 130 m/s (108 and

468 km/h, respectively), for the layered soil system.

4.1 Stress Analysis Between Abutment and Soil

Stress variation during the analysis was studied to identify

the critical values at the interface between the abutment

and layered soil. A discontinuity of thickness or modulus

leads to the discontinuity in stress (Cook et al. 2004). Thus,

effective/von Mises stresses were considered to observe the

interface stress variation. Figure 16 representing the stress

contours manifests the maximum stresses at the abutment

and soil interface. As the concrete abutment and the adja-

cent flexible soil may behave independently of the maxi-

mum vertical acceleration of the structure, a separation

between them may be observed. Further, it was decided to

study the effect of stresses developed due to maximum

positive vertical acceleration of structure at the interface of

abutment and the homogeneous soils. From Fig. 17 it is

apparent that maximum stress (dark blue colour) for all the

cases is obtained between the rigid abutment and the

comparatively flexible soil interface. Hence, a check on the

magnitude of stresses developed at the interface will signal
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Fig. 17 von Mises stress contours: a hard soil, resonant train speed v = 101 m/s; b medium soil, resonant train speed v = 95 m/s; and c soft soil,

resonant train speed v = 73.4 m/s
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the structural modifications to be carried out for a contin-

uous connectivity between the abutment and soil.

5 Discussion and Conclusions

This paper attempts to present (1) the utility of SAP2000

FE program to perform dynamic analysis of moving loads

and (2) a 3D numerical model to study the effects of

vibrations on a small-span simply supported railway

bridge. This numerical model was based on direct finite

element formulations in the time domain. The high-speed

trains were modelled as a set of moving loads, and the

results obtained were compared with those discussed by

Romero et al. (2013). Following are the conclusions drawn:

• The method followed for performing the dynamic

analyses in SAP2000 FE program for the passage of

high-speed trains/moving loads can be used to study

complex FE problems, pertaining to moving loads.

• The concentrated moving loads analysis is adequate to

study the vertical dynamic SSI response of simply

supported resonant bridges, since this analysis yielded

results that are in fair agreement with the results of the

dynamic SSI response of a simply supported resonant

bridge subjected to the movement of a multi-body

model of HST.

• The resonance frequencies dominate the resonance

condition in railway bridges. Resonant train speeds and

amplification in the resonant regime were lower when

soil–bridge interaction was considered.

• The fundamental periods and damping ratios of the short-

span simply supported railway bridge’s response were

higher when soil–structure interaction was considered

than when it was not. It may be affirmed that soil–structure

interaction leads to changes in dynamic behaviour.

• The effects of dynamic soil–structure interaction on

railway bridges show variations in amplitudes of bridge

deck accelerations. Resonance effects were observed at

lower operating speeds. Thus, the effects of dynamic

soil–structure interaction are an important issue in

bridge structure analysis and design.

• Stresses developed at the interface shall warrant the

precautions and structural modifications to be carried

out for a continuous connectivity between the abutment

and soil.
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