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Abstract
The most important problem threatening dams are the sediment inputs to the dam reservoir. Due to various problems,

estimating the amount of sediments is a complicated process. So some methods have been created by researchers to

overcome these problems. Among these methods, three methods, namely artificial neural network (ANN), adaptive neuro-

fuzzy inference system (ANFIS), and genetic algorithm (GA), are used and evaluated in this study. They are used to predict

the sediment load in the Maku dam reservoir, Maku City, Iran. Mazra_e station on Gizlarchay River is selected for this

study. The data of temperature, discharge, and CM (three-section method of sediment sampling) are utilized as input

parameters, which have been harvested from 12 consecutive years (2002–2013). Sediment data are used as output

parameter. Input parameters in ANN and ANFIS have been normalized with two methods: first between - 1 and ? 1 range

and second between - 2 and ? 2 range. Input parameters for GA were without normalization. Output was natural data for

all three approaches. Internal percentage error (PE) is applied to evaluate the error of performances between approaches.

Results revealed that ‘‘logsig’’ membership function (MF) with five neurons has the best performance in ANN approach.

Second normalization method had better performance for ANN, while the first one had better results in ANFIS. Results for

ANFIS indicated that ‘‘gaussmf’’ MF had the best performance. The number of 100 and 1200, respectively, for individual

populations and generations produced better performance in GA approach. Finally, it is concluded that ANFIS with the

average 0.968% PE had the least error and ANN with the average 5.63% PE was in the second position. Although GA with

an average 10% PE had the third place, considering that it did not need any normalization at input stage, it can be said that

it had superior advantage in comparison with the other two approaches.
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1 Introduction

A large part of the sediment in lowland rivers is transported

as wash load. About 85% of this load consists of silt and

clay. Thus, it is concluded that the wash load plays an

important role in sediment transport in a river (Mohamad

Rezapour et al. 2010, 2012). The carried sediment load by

a river is one of the most important factors in the creation

and formation of the related delta in the river mouth.

Therefore, accurate forecasting of the river sediment load

can play a significant role in studying the river delta.

However, by considering the complexity and nonlinearity

of the phenomenon, the classic experimental or physically

based approaches generally cannot handle the problem

sufficiently (Nourani 2009). Predicting the sediment load
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of a river has long been a goal of engineers, hydrologists,

sedimentologists, and many other earth scientists (Leopold

et al. 1992). Information on suspended sediment load is

crucial to river management and environmental protection

(Melesse et al. 2011). The difficulties associated with bed-

load measurement field have made most researchers to

develop an equation for the prediction. Prediction of sed-

iment load requires solving such problems as: determining

the dead volume of a dam, sediment transport in a river,

design of stable channels, estimation of aggradation and

degradation around bridge piers, prediction of sand and

gravel mining effects on riverbed equilibrium, determina-

tion of the environmental impact assessment, and dredging

needs. Besides, sediment is a major pollutant and carrier of

nutrients, pesticides, and other chemical materials (Dogan

et al. 2007). Although the watershed characteristics do not

follow a linear model, it is dynamic with rapid changes that

occur constantly. The conventional approaches like clus-

tering techniques and other statistical methods have some

limitations when they are used with a large amount of data

for classification. Soft computing methods such as genetic

algorithm (GA), artificial neural networks (ANN), and

adaptive neuro-fuzzy inference system (ANFIS) have an

edge over the conventional while dealing with nonlinear

complex data in classification. These methods have been

applied in most of the fields of science and technology,

such as estimation of oxidation parameters (Asnaashari

et al. 2015), prediction of discharge coefficient and soil

permeability coefficient (Emiroglu and Kisi 2013; Ganji-

doost et al. 2015), lot-sizing problem (Senyigit and Atici

2013), rainfall–runoff forecasting (Akrami et al. 2014;

Tayfur and Singh 2006), soil temperature modeling (Kisi

et al. 2016), and groundwater quality (Khashei-Siuki and

Sarbazi 2013).

ANNs are parallel computational models that resemble

biological neural network and have better generalization

capabilities. They are widely applied in forecasting

hydrology and water resource variables. They can recog-

nize patterns, find association among various affecting

factors, and use them in forecasting (Kaastra and Boyd

1996). In ANN, back-propagation (BP) network models are

common to engineers. The so-called BP network model has

the feed-forward artificial neural network structure and a

back-propagation algorithm. The multilayer perceptron

(MLP) neural networks with the error back-propagation

(EBP) training algorithm are one of the most popular ANN

architectures, too. An MLP distinguishes itself by the

presence of one or more hidden layers, with computation

nodes called hidden neurons. By adding hidden layer(s),

the network is able to extract higher-order statistics. In a

rather loose sense, the network acquires a global perspec-

tive despite its local connectivity due to the extra set of

synaptic connections and the extra dimension of neural

networks (NN) interconnections (Haykin 1994).

Many researchers have utilized soft computing methods

for sediment estimation (Firat and Gongor 2010; Ab. Ghani

and Azamathulla 2011, 2012; Cigizoglu 2002; Wang et al.

2008, 2009; Chang et al. 2012). Rajabi and Feyzolahpour

(2012) for estimating suspended sediment load, used fuzzy

neural models (NF), generalized regression neural network

(GRNN), multilayer perceptron (MLP), radial basis func-

tion (RBF), and sediment rating curves (SRC) in their

study. After that, the models were compared with neural

differential evolution (NDE). For this purpose, discharge

and sediment data considered above models as inputs and

then suspended sediment load values were estimated.

Results showed that the ANFIS model in comparison with

MLP, RBF, GRNN, and SRC models achieved better

results; but from the above models, neural differential

evolution (NDE) has maximum ability to estimate sus-

pended sediment load. Iamnarongrit et al. (2007) used BP

as learning process and sigmoid function as transfer func-

tion in their study. Calculation was done to find variance of

network, which considered proper fitness value of heredity

by using RMSE. They found that the neuro-genetic opti-

mizer model provided forecast results for the Lam Phra

Phloeng reservoir closer to the actual sediment volume

than the regression model. From the results of Wang et al.’s

(2009) study, the BP configuration showed the highest

statistical performance in the sediment estimation when the

turbidity and water discharge data were used as associated

input variables in the network.

ANFIS was first introduced by Jang in (1993) and is a

universal imaginative; as such, it is capable of approxi-

mating any real continuous function on a compact set to

any degree of measurability. ANFIS, on the other hand,

combines the advantages of both ANN and fuzzy inference

system (Okkan 2012). It is a multilayer feed-forward net-

work, which uses neural network learning algorithms and

fuzzy reasoning to map an input space to an output space.

ANN and ANFIS have some problems when dealing with

non-stationary data (Seo et al. 2015). From a study based

on 346 data sets collected from the Kerayong, Kinta,

Langat, and Kulim River catchments, Azamathulla et al.

(2008) indicated that employing local sediment transport

data yielded a network. It can predict measured bed-load

transport in moderately sized rivers, more accurately.

Ebtehaj and Bonakdari (2017) developed a new hybrid

ANFIS method based on a differential evolutionary algo-

rithm (ANFIS-DE). They employed Gaussian membership

function (MF) in the study and compared the test results

with the results of ANFIS model and regression-based

equation. They showed that the ANFIS-DE technique

predicted sediment transport at limit of deposition with

higher accuracy than regression-based equations.
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Genetic algorithm, as a tool of artificial intelligence

methods that has inspired and adapted from nature, can

predict and optimize complex processes. This global opti-

mization procedure is based on the Darwinian principle of

survival of the fittest. Applied to a biological community, it

is the principle by which chances of survival of an entire

community within a particular environment are increased

by discarding inferior members and replacing them with

superior offspring (Mohamad Rezapour et al. 2012). GAs

are now being used more frequently to solve optimization

problems. They also provide a solution for more complex

nonlinear problems when compared with traditional gra-

dient-based approaches (Espinoza et al. 2005). GAs have

been applied to numerous engineering problems such as

management of water systems (Cai et al. 2001), coastal

engineering (Cha et al. 2008), river pipeline scour (Aza-

mathulla and Ab. Ghani 2010), groundwater resources

design (Hilton and Culver 2005), and total bed material

load estimation (Zakaria et al. 2010)

In this study, we investigated ANN, ANFIS, and GA

approaches for forecasting the amount of sediment load in

Maku dam reservoir. Two normalization methods were

applied for input data in both ANN and ANFIS approaches,

but GA does not require any normalization. Results have

been compared to determine which method performs bet-

ter. In other articles, comparison between the membership

functions of each approach is not seen, but here we used

various membership functions to compare their results and

the best ones have been introduced.

2 Materials and Methods

2.1 Definition of CM

In general, the three-section method is used when it is

possible to sample directly from sediments over Teleferic

bridge, during times of flood. On the other hand, multi-

cross-sectional method is often done only at first-class

stations. In some cases, three-section method can be used at

second- and third-class stations. Operational steps sam-

pling of this method is as follows:

(a) A particular section of river, where the discharge is

measured, is selected.

(b) River section is divided into three parts with rather

equal discharges.

The amount of sample concentration is measured in the

library based on the collected samples from the river. The

average concentration of section (Cm or CM) is calculated

by Eq. 1. The sample concentration in the fixed point (Cf or

CF) is also measured in the library. The ratio of CM/CF, in

other words K, is computed and a chart change in K is

drawn according to each discharge section. Using

chart changes in K according to Q, it is sufficient for

sampling to be done only in the deepest point of each cross

section; therefore, the amount of CM is estimated. K has a

value between 0.4 and 1.6.

CM ¼ C1Q1 þ C2Q2 þ C3Q3 þ C4Q4 þ � � �
Q1 þ Q2 þ Q3 þ Q4 þ � � � ð1Þ

where C1, C2, C3, C4 are sediment concentration in mg/l;

Q1, Q2, Q3, Q4 are water discharges in each part of river

section in m3/s, the sum of which is equal to measured

discharge of entire section; CM is section mean concen-

tration in mg/l.

2.2 General Assumption

Temperature [�C], water discharge [m3/s], and CM [mg/l]

were three effective parameters as inputs, and they were

considered as output in yielding sediment load (ton/day).

There were 181 types of data for each parameter, so there

were 724 types of data in total (4 9 181) used in the

approaches. Seventy percent of data are used for training

and 30 percent for testing.

In ANN and ANFIS approaches, input data are nor-

malized with two methods but target data are natural data.

In GA approach, both input and output data are natural.

One of the normalizing methods is between [- 1, ? 1] and

the other one is between [- 2, ? 2] as illustrated in Eqs. 2

and 3, respectively.

Xnormal ¼
Xo � Xmin

Xmax � Xmin

� �
� 2� 1 ð2Þ

Xnormal ¼
Xo � Xmin

Xmax � Xmin

� �
� 4� 2 ð3Þ

Three input patterns are introduced to software as

follows:

(1) Temperature, discharge, and CM. (2) CM, temper-

ature, and discharge. (3) Discharge, CM, and temperature.

Then, they were investigated and the first pattern is used as

the only input pattern, due to the better performance. The

seventh version of MATLAB software is used for the

implementation of the methods. Microsoft Excel 2010 is

used for calculating the various statistical errors.

2.3 Performance Evaluation

To evaluate the external predictive performance of the

models, 54 more experiments were carried out as a test set.

Equations 4–8 are used to evaluate the errors in the study.

Some of them are used in specific approach, but internal

present error (PE) is used for evaluating the performance of

all the different approaches. The other equations are sum-
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squared error (SSE), mean absolute error (MAE), mean

square error (MSE), and coefficient of correlation (R) as

follows:

PE ¼
X Yobserved

i � Ymodel
i

Yobserved
i

����
����� 100 ð4Þ

SSE ¼
X127
i¼1

Yobserved
i � Ymodel

i

� �2 ð5Þ

MAE ¼ 1

n

Xn
i¼1

Yi � �Yij j ð6Þ

MSE ¼ 1

n

Xn
i¼1

Yi � �Yið Þ2 ð7Þ

R ¼ n
P

�YiYið Þ �
P

�Yið Þ
P

Yið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

�Y2
i

� �
�

P
�Yið Þ2

h i
n
P

Y2
ið Þ �

P
Yið Þ2

h ir ð8Þ

where Yi (or Yobserved
i ) and �Yi (or Ymodel

i ) denote the

observed and estimated total sediment load at the ith step,

respectively, and n is number of time steps. MSE indicates

the discrepancy between the observed and computed val-

ues. The lower the MSE, the more accurate the prediction.

In addition, MAE is a linear scouring rule and describes

only the average magnitude of the errors, ignoring their

direction.

2.4 The Study Area

Maku dam watershed in Iran is chosen in this study. It is

between 38�570N and 39�160N latitude and 44�060E to

44�390E longitude. The watershed is located in the north–

west region of Iran. Its climate is semiarid type. The used

data in this study are achieved from Mazra_e station.

Figure 1 shows the Mazra_e station, which is located at

about 39�100N latitude and 44�250E longitude with an

elevation of 1712 m. Digital elevation model (DEM) is

created by GIS, and classification of elevation (nine clas-

ses) can be seen by the different colors in it. The site of the

Maku dam includes the Gizlarchay River and the Zangmar

River which join together at the back of the dam and are

also displayed in Fig. 1. The minimum of monthly average

discharge related to September is 1.14 m3/s, and the

maximum of it related to May is 10.21 m3/s. Maku dam is

78 m in height, has a length of 350 m, and is an earth dam.

The area of dam lake is about 800 hectares.

2.5 ANN Approach

A three-layer BP network model has been proven satis-

factory for forecasting and stimulation as a general

approximation (Hornik et al. 1989). Thus, a BP network

model with 2–5 layers is chosen for this study. The MLP is

trained using the Levenberg–Marquardt technique, as this

technique is more powerful than the conventional gradient

descent techniques (EL-bakyr 2003; Hagan and Menhaj

2010; Kisi 2004). In addition, networks with three transfer

functions, namely tan sig, log sig, and pure line, with

momentum back-propagation are designed in this study.

Throughout all MLP simulations, the adaptive learning

rates were used to speed up training. 1000 number of

epochs and 10 maximum fail are constant for all ANN

networks. Number of layers, number of neurons, and type

of transfer function are variable, except output layer that is

purelin because of using natural data as mentioned before.

The primary transfer function created appropriate initial-

ization weights, and they used as the neural network initial

weights. First, a network that is just large enough to pro-

vide an adequate fit is selected in order to prevent over-

training problem, via trial and error; secondly, early

stopping technique is applied. The data are divided into

three subsets. The first subset is the training set. To con-

struct the second and third subsets, the test and the vali-

dation sets are considered as the same sets. Then, the error

on the validation set is monitored during the training pro-

cedure. Because the structure of the network is selected

optimal, the validation error decreased during the initial

phase of training, as did the error of training set. Now that

the model is obtained, all the weights are fixed to examine

the generalization ability of the trained neural network, by

the remaining 54 unused data sets.

Similar to the previous procedure, to evaluate the

external predictive performance of the neural network

model, 54 more experiments were carried out as a test set.

2.6 ANFIS Approach

In this study, in order to obtain the values of the output

variable from those of the input ones, the neuro-fuzzy

model implements the Sugeno fuzzy approach introduced

by Takagi and Sugeno (1985). Eight membership functions

(MFs) are used and the number of MFs determined itera-

tively. Ebtehaj and Bonakdari (2014) showed that the

hybrid algorithm presents better results than back-propa-

gation; so, hybrid algorithm was also used. Nonetheless,

the grid partitioning identification methods of the Sugeno

FIS models are applied for mapping the nonlinear rela-

tionship among the input–output variables. The grid par-

titioning method proposes independent partitions of each

antecedent variable through defining the membership

functions of all antecedent variables. Two types of input

normalization are implemented like the ANN approach.

Therefore, the input variables of the ANFIS models are

normalized variables and the output layer corresponds to

the natural one.
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2.7 GA Approach

In this study, the experimental design is a modified Box–

Behnken design for three variables. An MLP is used to

model the relationship through the input data and the out-

put. In fact, MLP acts as a blackbox that represents a model

for the sediment load for which the temperature, water

discharge, and CM are the model inputs. The complete

design consists of 127 experimental points. These experi-

ments are carried out in random order. Obtained data are

analyzed to fit the following polynomial equation to sedi-

ment load. This nonlinear model corresponds to Eq. 9.

Y ¼ b0 þ b1X
a1
1 þ b2X

a2
2 þ b3X

a3
3 þ b12X1X2 þ b13X1X3

þ b23X2X3

ð9Þ

where b values are constant regression coefficients; tem-

perature is considered with X1, water discharge with X2,

and CM with X3. These three independent variables are

considered in the preparation of sediment yield which is

denoted with Y. GA method was applied to calculate

constant regression coefficients (b values), optimally. First,

a model was modified by Eq. 9 that includes seven

unknown parameters. The parameters should be deter-

mined by GA to minimize cost function as sum square

error (SSE), defined in Eq. 5. Here, Yobserved
i is ith sediment

observed in experiment and Ymodel
i is ith sediment obtained

by the model Eq. 9. The following values were set for the

parameters of the GA method, in all simulations. Twenty

chromosomes constructed the population. This population

size is suitable because high population size causes the

algorithm to be complicated and slow, where low popula-

tion size may make a weak algorithm which falls in local

optimum. In the early stages of the algorithm, when good

solutions are not found, the crossover rate (Xrate) is set to

0.6. After some generations, the GA found that near-opti-

mal solution’s X rate reduced gradually as more good

parents survive and mate. This enables more usage of good

parents to create excellent chromosomes. The initial value

for mutation rate is set to 0.65. Then, gradually decreasing

values, starting from 0.65, are defined for the mutation

operator. Finally, rank selection method was selected for

selection operator. According to the experience, literature

(Valizadeh et al. 2009), and trial and error, the maximum

number of generations and populations size for GA method

is selected to be 1200 and 100, respectively. To evaluate

the external predictive performance of the models, 54 more

experiments were carried out as a test set.

3 Results and Discussion

ANN With considering different form of normalization in

ANN approach, different results have achieved that are

displayed in Tables 1 and 2. Table 1 shows the results of

input normalization between - 1 and ? 1 interval, and

Fig. 1 The study area with its details
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Table 2 shows it for - 2 to ? 2 interval. Both ‘‘logsig’’

MF and ‘‘tansig’’ MF are used as input and hidden layers.

All the output layers are ‘‘purelin’’ type, because of using

normal data; they are not mentioned in the tables for

summary. The results prove the following.

Network regression performance for training, validation,

test, and total steps for the - 2 to ? 2 and - 1 to ? 1

intervals is presented in Figs. 2 and 3, respectively. It is

obvious that Fig. 2 shows better results at all steps.

(A) Comparison between all results in both

tables showed that ‘‘logsig’’ MF with five neurons

has the best performance (row of 5 in Table 2). It has

values of 0.303 and 0.106 for training and testing

errors, respectively. However, the results are not

stable and have more fluctuations in terms of MFs

type and number of neurons.

(B) Network with seven-digit number of neurons pro-

duced a better answer in terms of low error rate and

error distribution than the other ones.

(C) Comparing peer-to-peer results of both normaliza-

tion methods indicated that error values in normal

range of - 2 to ? 2 are less (3.611 for training and

2.217 for testing error) than similar values in the

other range (7.644 for training and 4.574 for testing

error). This better performance also is shown in

Fig. 2 in comparison with Fig. 3.

(D) The ‘‘logsig’’ MF gives better results in both

normalization intervals, as lowest training and

testing error and with 3.853 average error.

(E) The average of 4.515% PE is achieved for overall

runs in this approach. This error consisted of 5.63%

PE in train phase and 3.40% in testing phase.

ANFIS Several types of membership functions (MFs)

can be used for implementation of fuzzy logic. However,

some studies have shown that the type of MF does not

affect the results, fundamentally (Vernieuwe et al. 2005);

but this study emphasized on the importance of MF type on

the obtained results, like Kisi and Shiri’s (2012) paper.

Results of these MFs are given in Tables 3 and 4.

Increasing number of epochs causes errors to decrease, and

it can be seen for a run in training step in Fig. 4. The results

prove the following:

(A) In general, for each type of MF, error values are

decreased by increasing the number of courses to a

specific number. This performance is shown in

Fig. 4, too. In the meantime, the ‘‘trimf’’ MF is the

only function that produced fixed course answers.

Table 1 ANN results for normalization between - 1 and ? 1

Row Number of layers Type of input MF Type of hidden layer MF Training error Testing error Number of neurons

1 4 tan sig tan sig 1.929 1.41 5

2 2 tan sig – 5.758 5.51 7

3 2 tan sig – 8.694 4.051 10

4 5 tan sig tan sig 14.259 10.967 13

5 5 log sig log sig 17.87 9.512 5

6 4 log sig log sig 3.456 2.342 7

7 4 log sig log sig 8.825 2.355 10

8 2 log sig – 0.364 0.445 13

Table 2 ANN results for normalization between - 2 and ? 2

Row Number of layers Type of input MF Type of hidden layer MF Training error Testing error Number of neurons

1 3 tan sig tan sig 10.774 8.656 5

2 3 tan sig tan sig 1.825 0.975 7

3 4 tan sig tan sig 3.303 3.011 10

4 2 tan sig – 1.063 0.547 13

5 3 log sig log sig 0.303 0.106 5

6 2 log sig – 1.947 0.403 7

7 5 log sig log sig 1.796 1.225 10

8 2 log sig – 7.879 2.813 13
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Therefore, this function is considered a useless

function for this study.

(B) It was observed that ‘‘dsigmf’’ MF and ‘‘psigmf’’ MF

have produced very close output results in both

tables in this section.

(C) The best and the worst results are observed for

‘‘gaussmf’’ MF and ‘‘pimf’’ MF, respectively, and

results had less fluctuation.

(D) The input normalization between - 1 and ? 1

interval has produced 0.679 average error, while

the second interval had 1.245 average error. It

indicates that the first normalization has better

performance in this approach in contrast to the

ANN one.

(E) The average of 0.968% PE is achieved for overall

runs in this approach.

GA Table 5 displays the best performance of GA

approach consisting of training and testing error with

numbers of generation and population. Figure 5 shows the

best (elite) minimized (SSE) by GA in 1200 generations.

As this figure shows, no superior improvement was

achieved in the decreasing cost, after about 350 genera-

tions. Therefore, one of the mentioned stopping criteria is

satisfied that the algorithm can be terminated after 350

generations and the optimal solution (elite) has returned.

The accuracy of the proposed model is validated by con-

ducting other reactions with different conditions. Then, the

obtained results are compared with the model. The internal

percentage error (PE) of the proposed model can be cal-

culated using Eqs. 4 and 5 for the 154 experiments. The

average PE for all 154 experiments obtained by GA is 10%.

The modified model, obtained by using GA for sediment

yield, is the following equation:

Y ¼ �55:47þ 2:41X2:3
1 þ 2:01X1:3

2 þ 24:40X0:74
3

þ 0:013X1X2 � 0:45X1X3 þ 0:30X2X3 ð10Þ

The Ymodel
i is the sediment yield that is calculated using

Eq. 10, and Yobserved
i is the sediment yield that is obtained

in defined conditions for each experiment. Genetic algo-

rithm is used for finding the optimum values of the model

while minimizing an error cost function. The results prove

the following:
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Fig. 2 One of the runs for

normalization between - 2 and

? 2 interval
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(A) In this approach, several learning error and testing

error values are seen, with decreasing and increasing

population and the number of generations. It is

shown that the number of 100 individual populations

and the number of 1200 generations produced better

results, by trial and error. It can be said that

increasing the number of population and the number

of generations will not decrease the error, mostly.

(B) The advantage of this method is the use of non-

normal (natural) amounts, which can reflect the

adaptability of the algorithm in the distribution of

nonlinear phenomena such as sediment.
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Fig. 3 One of the runs for normalization between - 1 and ? 1 interval

Table 3 ANFIS results for

normalization between - 1 and

? 1

Number of MF Type of MF Number of epochs Value of first output Value of second output

3 3 3 gaussmf 100 0.675 0.676

3 3 3 gauss2mf 100 0.666 0.666

7 7 7 trimf 50 0.019 0.139

4 4 4 trapmf 100 0.695 0.695

3 3 3 gbellmf 100 1.069 1.079

7 7 7 pimf 100 0.471 0.471

6 6 6 dsigmf 100 0.919 0.919

6 6 6 psigmf 100 0.919 0.919
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(C) This approach had the values of 7% PE for training

error and 13% PE for the test error. So, the average

of 10% PE is achieved in this approach.

4 Summary and Conclusions

Sedimentation in dam’s reservoir is one of the most

important problems that is threatening dams’ capacity. On

the other hand, sediment transport phenomenon is one of

the complicated discussions in river engineering. There-

fore, it is important for engineers to forecast the amount of

sediment discharge at the inlet of dams. In order to manage

this problem, many methods are created and used by

researches. We used three artificial intelligent (AI)

approaches for forecasting the amount of sediment load

inletting the Maku dam reservoir. These approaches were

artificial neural network (ANN), adaptive neuro-fuzzy

inference system (ANFIS), and genetic algorithm (GA).

Temperature [�C], water discharge [m3/s], and CM (three-

section method of sediment sampling) [mg/l] were three

input parameters to the models. Two normalizing methods

are done for these input parameters at ANN and ANFIS

approaches: first the interval between - 1 and ? 1, and the

second one between - 2 and ? 2. GA approach does not

require any normalization at input stage. Sediment

Table 4 ANFIS results for

normalization between - 2 and

? 2

Number of MF Type of MF Number of epochs Value of first output Value of second output

4 4 4 gaussmf 100 0.325 0.372

3 3 3 gauss2mf 100 0.687 0.692

3 3 3 trimf 100 0.081 0.148

4 4 4 trapmf 100 2.718 2.667

4 4 4 gbellmf 100 0.576 0.577

6 6 6 pimf 100 1.278 1.264

5 5 5 dsigmf 100 2.652 2.657

5 5 5 psigmf 100 1.641 1.641

Fig. 4 Error via epochs performance

Table 5 The best performance of GA
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Fig. 5 The best minimized error

(SSE) computed by GA
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discharge [ton/day] was the only output parameter. There

was not any normalization in three approaches, and natural

data were used for all. Some methods such as sum-squared

error (SSE), mean absolute error (MAE), mean square error

(MSE), and coefficient of correlation (R) are used to

evaluate the performance of membership functions (MFs)

in each approach. Internal present error (PE) is used to

evaluate the error of performances between three approa-

ches. Results for ANN revealed that: ‘‘logsig’’ MF with

five neurons has the best performance between the other

runs. Normalization method between the range of - 2 and

? 2 had better performance that the range of - 1 to ? 1.

Results for ANFIS indicated that: ‘‘gaussmf’’ MF had the

best performance. Normalization method between - 1 and

? 1 was better than the other one. This was in contrast to

the ANN approach. Results for GA showed that the number

of 100 and 1200, respectively, for individual populations

and generations produced better performance. Finally, we

can say that ANFIS with the average 0.968% PE had the

least error and ANN with the average 5.63% PE was in the

second place. Although GA with the average 10% PE had

the third place, with considering that it did not require any

normalization at input stage, it can be said that it had

superior advantage in comparison to the other two

approaches.
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