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Abstract
In this study, a single triangular sharp-crested weir and four combined structures consisting of the weir and rectangular

gates with different dimensions were tested to find the effects of water head over the weir (h) and geometric parameters

such as gate height (d), gate breadth (b), and the distance between top of the gate and bottom of the weir (y) on discharge

coefficient (Cd) under free flow conditions. A new form was proposed for the equation used to compute Cd, which is based

on a combination of triangular weir and rectangular gate equations. Experimental results showed that as dimensionless

ratios of h/d, h/b, and h/y increased, the discharge coefficient and total discharge increased, too. Additionally, discharge

coefficient for the combined weir–gate increased with increasing gate opening at same flow rates. It was concluded that, at

low discharges, the gate and its opening are the main water head controllers, while water levels at high discharges are

mainly controlled by the weir. The two utilized soft computing models (MLP and SVR) predicted Cd accurately, with R2

values (for total data) of 0.966 and 0.967, respectively. However, MLP was considered superior, due to its better statistical

indices of RMSE, MAE, and R2 (0.027, 0.022, and 0.984, respectively) for validation data set compared to those of SVR

(0.065, 0.042, and 0.948, respectively). Comparison of results with equations presented in the literature showed that some

equations match the observed data much better than others, which are noticeably different. It was concluded that assuming

the general form of a gate or a triangular weir equation for a combined weir–gate structure shall be reconsidered before its

utilization in particular applications.

Keywords Discharge coefficients � Free flow � Combined structure � Triangular weir � Rectangular gate � MLP �
SVR

List of Symbols
Ag Gate area

b Gate width

b1 Weir breadth

B Channel width

C Regularization cost parameter in SVR

Cd Discharge coefficient

d Gate height

Fr Froude numbers

g Gravity acceleration

h Water head over the weir

H Upstream water depth

hd Depth of water just downstream the gate

k Kernel function in SVR

N Number of data set in RMSE and MAE equation

Qt Total combined structure discharge

Re Reynolds numbers

v Fluid velocity

wij Weight of the connection between the jth neuron in a

layer with the ith neuron in the previous layer of

ANN

We Weber numbers

xi Value of the ith neuron in the previous layer of ANN

y Distance between top of the gate and bottom of the

weir

Yi Prediction parameter in RMSE and MAE equation

(Cd in this study)

yj Output from the jth neuron in a given layer of ANN
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e Size of error insensitive zone in SVR

h Top angle of the triangular weir

r Surface tension

q Flow density

l Fluid dynamic viscosity

c Kernel specific parameter in SVR

1 Introduction

Weirs and gates are common and important structures

usually used to control and measure flow in open channels.

In waterways with alluvial beds where weirs are used,

sediments deposit upstream of the weir, reduce its effective

height over time, and ultimately deteriorate its perfor-

mance. Compared to a single weir, a combined weir–gate

structure may be used to measure flow discharge and, at the

same time, avoid sediment deposition behind the structure.

As classical flow measuring devices, researchers have

carried out extensive studies on flow over triangular sharp-

crested weirs and through rectangular gates. Rajaratnam

(1977), French (1986), Swamee (1992), Lozano et al.

(2009), Habibzadeh et al. (2011), Belaud et al. (2012), and

Khalili Shayan and Farhoudi (2013) were among

researchers studying flow through gates (sluice gates).

Among investigations conducted on weirs, studies by

Swamee (1988), Bos (1989), Munson et al. (1994), Johnson

(2000), Aydin et al. (2002), Martı́nez et al. (2005), Qu et al.

(2009), Aydin et al. (2011), Chanson and Wang (2013), and

Bautista-Capetillo et al. (2014) may be found in the

literature.

Performance of a combined weir–gate structure has also

been investigated by some researchers. Negm (1995) is

among early researchers studying characteristics of a free

combined flow over a rectangular weir with different side

contractions and through a rectangular gate. El-Saiad et al.

(1995) studied combined flow through high-discharge

irrigation channels. They focused their investigations on a

rectangular weir combined with a V-notch gate and a V-

notch weir combined with a rectangular gate to present a

flow estimation equation for both systems as:

Qt
ffiffiffiffiffi

2g
p

d2:5
¼ �5:119þ 1:475

H þ h

d

� �

� 2:531
h

b

� �

þ 0:367
b

b1

� �

þ 1:2698 ð1Þ

They also concluded that the combination of a V-notch

weir and a rectangular gate performs better than the com-

bination of a rectangular weir and a V-notch gate.

Negm et al. (1997) studied the effect of downstream

submergence on flow discharge and derived a set of

equations for free flow through a triangular weir over a

contracting sluice gate and vice versa with specific

restrictions. They concluded that the gate submergence

ratio (tail water depth to the gate opening) affects upstream

water height and flow discharge. They proposed the fol-

lowing equation for a triangular weir placed over a rect-

angular gate:

Qt
ffiffiffiffiffi

2g
p
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H þ h

d

� �

� 1:308
h

b
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hd
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ð2Þ

The following constraints were considered in derivation

of Eq. 2:

1\
b

d
\3; 1\

y

d
\3; 2:9\

ðH þ hÞ
d

\7:9 and 0:6\
b

b1
\5:4:

Characteristics of combined flow through a triangular

weir over a contracting rectangular gate were studied by

Alhamid et al. (1997), too. He assumed that the combined

weir–gate acts as a single gate and, therefore, derived a total

discharge equation like that of a gate (a function of H1/2):

Qt ¼ 0:84þ
2:41 tan h

2
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The following constraints were considered in his study:

0:3\
y

H
\0:7; 0:17\

b

B
\0:5; 30\h\90; 0:35

\
d

d þ y
\0:5 andH[ ðd þ yÞ:

Negm (2000) simulated a combined rectangular weir

and a rectangular gate model and developed a relationship

for the flow. He generalized his model and presented an

equation for both free and submerged flows. Negm et al.

(2002) conducted similar experiments on different channel

slopes and analyzed their model with different geometries

for both mild and steep slopes and presented an equation

for all models. Hayawi et al. studied the effect of hydraulic

and geometric parameters on the discharge coefficient

computed from an equation similar to the rectangular weir

equation. They present the following equation for predic-

tion of total discharge:

Qt

g0:5h2:5
¼ 0:0197

y

h

� �0:2195 b

h

� �1:647
d

h

� �0:543

ð4Þ

subject to the following constraints.

30\h\60; 0:05\y\0:15

Altan-Sakaraya and Kokpinar (2013) conducted exper-

iments to find a discharge–depth relationship for
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simultaneous flow through rectangular gates and over

rectangular weirs.

In recent years, popularity of soft computing models has

increased in various fields due to their capability for

solving complex and nonlinear problems that might

otherwise not have any tractable solution. Multilayer per-

ceptron (MLP) artificial neural networks (ANN) and sup-

port vector machines (SVM) may be considered as two of

the most popular soft computing models utilized in

hydraulic applications. Baylar et al. (2009) used SVM to

predict aeration performance of plunging overfall jets from

weirs. Ozkan and Kaya (2010) used MLP and adaptive

neuro-fuzzy inference system (ANFIS) models to predict

air demand ratio in Venturi weirs. Bilhan et al. (2011) and

Emiroghlu et al. (2011) used MLP, multiple linear and

nonlinear regression models to predict discharge coeffi-

cient for a triangular labyrinth side weir in curved and

straight channels, respectively. Juma et al. (2014) used

MLP to determine discharge coefficient for a hollow

semicircular crested weir. Mohammadpour et al. (2015)

used SVM to predict water quality index in constructed

wetlands. Balouchi et al. (2015) used ANN and M5P model

tree to predict maximum scour depth at river confluences

under live-bed conditions. Haghiabi et al. (2017) used MLP

and SVM to predict head loss on a cascade weir. Their

results show that SVM yields better results than MLP.

Parsaie et al. (2017) evaluated ANFIS and MLP models for

a cylindrical weir–gate similar to a broad crested weir and

compared it with a sharp-crested weir. In their study, they

showed that MLP is the superior model.

In the present study, four combined triangular weir and

rectangular gate physical models with different gate

dimensions, and a single weir physical model were con-

structed. Experiments were conducted for different dis-

charges with extended measuring ranges for relevant

parameters. Then, the effects of hydraulic and geometric

parameters on discharge coefficient through these models

were studied. MLP and support vector regression (SVR; as

a certain type of SVM) models were constructed, trained,

and tested to estimate discharge coefficients for a variety of

combined weir–gate structures under different discharges.

Results were compared with equations presented for flow

through combined weir and gate structures in the literature.

2 Materials and Methods

Figure 1 shows the overall flowchart and methodology for

this study. As shown, once dimensional analysis and

experimental setup were completed, measurements were

made and the effect of each non dimensional parameter on

discharge coefficient was experimentally investigated. The

collected data set was divided into training and validating

subsets and fed to the soft computing models. Statistical

indices were used to compare accuracy of the models for

discharge coefficient prediction in combined weir–gate

structures. Finally, results were compared and contrasted

with equations presented in previous studies for similar

structures.

2.1 Physical Model Setup and Dimensional
Analyses

A 11-m-long, 0.25-m-wide, and 0.5-m-deep rectangular

channel in Hydraulic Laboratory of Water Engineering

Department at Shahid Chamran University was used for

experimental tests. Water was pumped into an elevated

tank and fed into the channel with a constant rate, mea-

sured by a standard 53� triangular weir and a digital gage

with 0.1 mm accuracy.

Four combined weir–gate structures and a single weir

were all cut by a laser machine out of a 10-mm-thick

Plexiglas sheet. All weirs were triangular ones with 60� top
angles, and their top edges were beveled according to

USBR standards. Figure 2 and Table 1 give variables and

dimensions for the models. A total of 46 experiments were

carried out with ranges of relevant dimensionless ratios as;

0:96\ h
b
\3:62, 0:18\ h

y
\0:75, 2:12\ h

d
\12:16,

1\ b
d
\4, 4:6\ y

d
\21:4, 9:8\ ðHþhÞ

d
\46:7, and

0:045\ d
ðdþyÞ\0:18.

Performing a dimensional analysis, similar hydraulic

characteristics of utilized weirs and gates were combined.

Start

Dimensional analysis

Experimental setup of combined 
triangular weir and rectangular gate

Data set 
collection Investigate the 

effect of non 
dimensional 

parameters on 
the discharge 

coefficient

End

Training the soft computing models 
(MLP and SVR) with training data set

Validating the models using validation data set

Use statistical indices to compare accuracy of the soft 
computing models and select the more accurate one

comparison with previous studies

End

Fig. 1 Methodology flowchart for the current study
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For this purpose, it was inferred that the discharge through

a combined structure depends upon geometric, kinematic,

and dynamic variables:

Qt; g; h;l; h; r; q; v; d; b; y;Bf g ð5Þ

where Qt is total discharge through the structure, g is

gravitational acceleration, h is water head over the weir, l
is fluid dynamic viscosity, h is the top angle of the trian-

gular weir, r is surface tension, q is flow density, v is fluid

velocity, d is gate height, b is gate width, y is the distance

between top of the gate and bottom of the weir, and B is

channel width (all shown in Fig. 2). With a total of twelve

independent parameters and three major quantities (length,

mass, and time), nine dimensionless variables were derived

based on Buckingham p theorem:

Qt

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:125g
p

ðH � dÞ1:5
¼ f Re;We; Fr; h;

h

d
;
h

y
;
h

b
;
h

B

� �

ð6Þ

where Re, We, and Fr are Reynolds, Weber, and Froude

numbers, respectively. In this study, water depth over the

weir–gate was sufficiently high and surface tension (and

Weber number) effects were neglected. Furthermore, the

effect of viscosity (Reynolds number) was neglected due to

dominance of a turbulent flow and relatively high dis-

charges through the models. The term Qt

b
ffiffiffiffiffiffiffiffiffiffi

0:125g
p

ðH�dÞ1:5
on

Eq. 6 was considered as a representative for Froude num-

ber (Fr), and the number itself on the right-hand side of the

equation was removed. h was constant in all models, and

therefore, it was concluded that the term Qt

b
ffiffiffiffiffiffiffiffiffiffi

0:125g
p

ðH�dÞ1:5
(a

dimensionless discharge, or discharge coefficient Cd) is a

function of three dimensionless ratios only:

Cd ¼
Qt

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:125g
p

ðH � dÞ1:5
¼ f

h

d
;
h

b
;
h

y

� �

ð7Þ

The conventional discharge equation for a triangular

weir is a function of h2.5 and for a rectangular gate a

function of H0.5 (Munson et al. 1994). Therefore, one may

expect discharge through a combined triangular weir–

rectangular gate structure (Qt) to be a function of a water

head indicator somewhere between h and H, to a power

between 0.5 and 2.5. Hence, for the combined structure

authors proposed Eq. 7, where discharge is considered a

function of (H - d)1.5.

2.2 Soft Computing Models

MLP and SVR soft computing models were constructed

with three non dimensional parameters (h
d
; h
b
; h
y
) as their

inputs and the discharge coefficient as their output

parameter. 70% of the data set was randomly selected from

different experimental models and used to train the models,

while the remaining 30% of the data set was used for

models validation.

Fig. 2 The physical model

sketches and variables for

combined weir–gate structures

Table 1 Ranges of relevant variables for five models utilized in the study

Model

No.

Range of variables

d (cm) b (cm) h y (cm) B (cm) Qt (m
3/s) h/y h/b h/d

1 0 0 60 28 25 0.0015–0.0135 0.21–0.68 – –

2 1.25 5 60 26.75 25 0.0015–0.0091 0.18–0.57 0.96–3 3.84–12.16

3 2.5 5 60 25.5 25 0.0028–0.012 0.26–0.7 1.36–3.56 2.72–7.12

4 3.75 5 60 24.25 25 0.006–0.0135 0.4–0.75 1.96–3.62 2.6–4.8

5 5 5 60 23 25 0.008–0.0135 0.46–0.75 2.12–3.46 2.12–3.46
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2.2.1 Multilayer Perceptron (MLP) Model

ANNs are based on the present understanding of biological

nervous system, though much of the biological detail is

neglected (Ozkan and Kaya 2010). They are generally used

to predict an output vector based on known values in the

input vector, especially where the relationships between the

two are complex or nonlinear (Malekmohamadi et al.

2011). A typical configuration for an MLP model, a special

class of ANNs, is shown in Fig. 3, where a set of data (x1;

x2; …) is first fed into the network through the input layer.

The data pass through one or more hidden layers and are

finally outputted as predicted output, y (Bateni et al. 2007).

The number of hidden layers determines complexity of the

network, as a greater number of hidden layers increase the

number of connections in the ANN.

In an MLP, neurons receive inputs from their upstream

interconnections and generate outputs by their transfor-

mation with an appropriate nonlinear transfer function (Lee

et al. 2007). In the case of sigmoid transfer function, for

instance, the output yj from jth neuron in the layer is

determined by:

yj ¼ f
X

wijxi

� �

¼ 1

1þ e�
P

wij xið Þ ð8Þ

where wij is the weight of the connection joining jth neuron

in the layer with ith neuron in the previous layer and xi is

the value of ith neuron in the previous layer.

In an ANN training process, input and known output

data are provided to the model simultaneously, and inter-

connection weights are adjusted to minimize the output

error. Once the model is successfully trained, it is tested

with a validation data set whereby the accuracy of model’s

prediction is evaluated by comparing the model output with

observed values.

In this study, a three-layer feed-forward back-propaga-

tion network with seven neurons in the hidden layer was

used as the MLP model. Optimum number of neurons in

the hidden layer (7 neurons) was determined through a trial

and error process. Therefore, the final architecture of MLP

configuration in this study was 3-7-1 (Homayoon et al.

2010; Keshavarzi et al. 2012). A hyperbolic tangent sig-

moid function and a linear function were used as transfer

functions in the second and the third layers, respectively,

and Levenberg–Marquardt optimization method was used

for the network training.

2.2.2 Support Vector Regression (SVR) Model

Vapnik (1995) introduced support vector machines (SVM)

as a type of supervised machine learning technique

belonging to a family of generalized linear classifiers. SVM

is based on structural risk minimization (SRM) concept, as

opposed to empirical risk minimization (ERM) approach,

commonly employed within statistical learning methods.

SRM minimizes an upper bound on the generalization

error, as opposed to ERM which minimizes training data

error. It is this difference that equips SVM with a greater

potential to generalize. In addition, solutions offered by

traditional ANN may tend to fall into a local optimal

solution, whereas a global optimum solution is guaranteed

in an SVM. SVM may be applied to both classification and

regression problems (Jahangirzadeh et al. 2014). For fur-

ther details on SVM methods, authors suggest Vapnik

(1998) and Kecman (2001).

SVR finds a function that has at most a limited deviation

from the actual target output vector for a given training

data and has to be as flat as possible (Pal et al. 2011). SVR

models depend on a kernel function and user defined

parameters such as kernel specific parameter (c), size of

error insensitive zone (e), and regularization cost parameter

(C) which control model’s tolerance to error. Application

of any SVR model involves optimization of cost parameter

(C), kernel type, and kernel specific parameter (c).
In nonlinear SVR, a kernel function simplifies the

learning process by changing the representation of data in

the input space to a linear representation in a higher-di-

mensional space, i.e., feature space (Hong et al. 2012).

Several choices exist for a kernel function k, including

linear, polynomial, and Gaussian radial basis functions.

Gaussian function used in the current study is defined as

(Hong et al. 2012):

kðxi; xÞ ¼ exp �c x� xij j2
n o

ð9Þ

which is most commonly used to map samples into a

higher-dimensional space to better handle nonlinear prob-

lems (Goyal and Ojha 2011). A large number of trials were

carried out and statistical indices (highest correlation

coefficient, smallest mean absolute error, MAE, and root

mean-squared error, RMSE) were employed to find the

optimum combination values for C and c. In this study,

c = 1, C = 5, and e = 0.1 were found to provide the best
Fig. 3 A typical three-layer MLP neural network model
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results. For further details on SVR, readers may refer to

Vapnik (1995).

3 Results and Discussion

Effects of each dimensionless ratio in Eq. 7 on the total

discharge and its coefficient were studied in four combined

weir–gate and a weir-only (d = 0 mm) structures. Figure 4

depicts measured heads and discharges for all physical

models. As expected, total discharge (Qt) increased with

increasing head (h), however, at the same discharge, with

increasing gate opening (d), water head over the weir

decreased. In other words, as the gate opening increased,

more discharge passed through it and less over the weir,

causing a decrease in water elevation. The decrease in

water head over the weir was greater at low discharges

(Qt B 0.01 m3/s). For instance, it decreased 23.4% from

0.128 m (for d = 0 mm) to 0.098 m (for d = 37.5 mm) at

0.0053 m3/s, but decreased 5.2% from 0.191 m (for

d = 0 mm) to 0.181 m (for d = 37.5 mm) at 0.0135 m3/s.

At low discharges, the gate (and its opening) may be

considered as the main water head controller compared to

the weir, while weir would mainly control water level at

high discharges (Qt[ 0.01 m3/s).

As expected, discharge and its coefficient were directly

proportional for all gate openings (Fig. 5). At the same

discharge, however, discharge coefficient increased with

increasing gate opening (d). For instance, at Qt-

= 0.008 m3/s, Cd increased from 0.55, to 0.59, 0.62 and

0.74 when d increased from 12.5, to 25, 37.5, and 50 mm,

respectively (Fig. 5).

Figure 6 depicts observed discharges for weir-only

against the theoretical equation (Qt ¼ 8
15
Cd tan

h
2

ffiffiffiffiffi

2g
p

h2:5)

for a triangular sharp-crested weir (Bos 1989). As shown,

observed data agree very well with the theoretical dis-

charges (R2 = 0.992), suggesting an overall data reliability.

Figure 7 shows variations of discharge coefficient (Cd)

against h/d for different gate openings (d). In general, Cd

consistently increased with increasing h/d for all gate

openings. However, this increase was sharp at high d’s and

gentle at low ones. For instance, the slope of trend lines for

0.000

0.003

0.006

0.009

0.012

0.015

0.03 0.06 0.09 0.12 0.15 0.18 0.21

Q
t

(m
³/s

ec
)

h (m)

d = 0 mm

d = 12.5 mm

d = 25 mm

d = 37.5 mm

d = 50 mm

Fig. 4 Variation of discharge

versus h for all physical models

Fig. 5 Variation of discharge

versus its coefficient for all

combined models
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d = 12.5 mm and d = 50 mm is 0.057 and 0.158, respec-

tively. One may conclude that careful considerations

should be given to water head measurements and Cd cal-

culations, especially at high d values.

Figures 8 and 9 show variations of discharge coefficient

(Cd) for combined weir–gate structures versus h/y and h/b,

respectively. In both figures, with constant d, as h/y or h/

b increases, discharge coefficient increases. Any constant

d (and the corresponding trend line) in these figures refers

to a certain physical model, where not only d, but also

b and y are constants, implying that the trend line reflects

Cd variation as a function of h. As h is proportional to Qt, it

may be concluded that total discharge is directly propor-

tional to discharge coefficient (Cd) in any combined weir–

gate structure.

3.1 Discharge Coefficient Prediction

In this study, capacity of MLP and SVR models to deter-

mine complex relationships was utilized to predict the

discharge coefficient of a combined weir–gate structure.

Figure 10 shows predicted versus observed coefficients for

R² = 0.992

0

0.005

0.01

0.015

0 0.005 0.01 0.015

Q
t t

he
or

et
ic

al
 (

m
³/s

ec
)

Qt observed (m³/sec)

triangular weir (d=0)

Fig. 6 Comparison between observed and theoretical discharges

0.0

0.2

0.4

0.6

0.8

1.0
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C
d

h/d

d=12.5 mm
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Fig. 7 Variation of discharge

coefficient (Cd) for combined

weir–gate structure versus h/

d for different gate openings
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Fig. 8 Variation of discharge

coefficient (Cd) for combined

weir–gate structure versus h/

y for different gate openings
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both MLP and SVR models. As shown, both models pre-

dict Cd more accurately when it is smaller (0.2\Cd\ 0.5)

compared to larger (0.5 B Cd\ 1). However, R2 values of

0.966 and 0.967 for MLP and SVR models, respectively,

show a very good agreement between predicted and

observed Cd’s over the entire range. Ranges of errors for

MLP and SVR models are (- 0.088 to 0.138) and

(- 0.099 to 0.172), respectively.

Figure 11 shows experimental data along with MLP and

SVR results for training and validating data sets. As shown,

data numbers 1–23 belong to the training, and 24–33

belong to validating data sets. In general, both models

predict discharge coefficients well; however, MLP appears

to demonstrate a better performance over SVR in the val-

idation data set. A comprehensive accuracy analysis would

evaluate performance of each model, quantitatively.

Root mean-squared error (RMSE), mean absolute error

(MAE), and R2 criteria were used to evaluate MLP and

SVR model results more accurately. RMSE indicates the

goodness of fit related to high-discharge coefficient values,

whereas MAE measures a more balanced perspective of the

goodness of fit at moderate discharge coefficients. They are

defined as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i¼1

ðYi observed � Yi estimatedÞ2
v

u

u

t ð10Þ

MAE ¼ 1

N

X

N

i¼1

Yi observed � Yi estimatedj j ð11Þ

where N is the number of data, and Yi is the discharge

coefficient, in this study. RMSE, MAE, and R2 values for

MLP and SVR models are shown in Table 2.
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As shown, RMSE, MAE, and R2 values are better for

SVR model compared to MLP, in training data. However,

for validation data set, these statistical indices are better for

MLP model compared to SVR. For the total data set, on the

other hand, the indices are very close in both models.

Considering the fact that accuracy of validation data set is

more important than training data set, it is concluded that

MLP model may be used as an accurate and efficient model

to predict discharge coefficient for a combined triangular

weir–rectangular gate structure.

3.2 Comparing the Results with Existing
Equations

As explained earlier, there are four main regression equa-

tions in the literature that predict discharge in a combined

structure of triangular weir–rectangular gate (Eqs. 1: El-

Saiad et al. 1995; 2: Negm et al. 1997; 3: Alhamid et al.

1997; and 4: Hayawi et al. 2008). It should be noted that

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 5 10 15 20 25 30 35

D
is

ch
ar

ge
 c

oe
ff

ic
ie

nt
 

Number of total data

Observed MLP model SVR model

Training Validation

Fig. 11 Comparison of
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SVR model results during
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Table 2 Statistical indices for Cd’s estimated by MLP and SVR

models

Soft computing model Data set Statistical indices

RMSE MAE R2

MLP Training data 0.045 0.032 0.961

Validation data 0.027 0.022 0.984

Total data 0.04 0.029 0.966

SVR Training data 0.025 0.01 0.98

Validation data 0.065 0.042 0.948

Total data 0.042 0.02 0.967
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Fig. 12 Comparison of

observed data with existing

equations
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the range of discharge (m3/s) for El-Saiad et al. (1995),

Negm et al. (1997), Alhamid et al. (1997), and Hayawi

et al.’s (2008) studies is (0.003, 0.015), (0.0019, 0.015),

(0.007, 0.23), (0.000023, 0.000054) and (0.0015, 0.0135),

respectively. A comparison of these equations with

observed data in this study would be insightful (Fig. 12).

As shown, El-Saiad et al. (1995) and Negm et al. (1997)

equations match the observed data much better than

Alhamid et al. (1997) and Hayawi et al.’s (2008) results,

which are noticeably different. It was concluded that

assuming the general form of a gate equation in Alhamid

et al. (1997) and a weir equation in Hayawi et al. (2008) for

the combined weir–gate structure shall be reconsidered

before utilization.

Figure 13 depicts the performance of MLP model in

comparison to El-Saiad et al. (1995) and Negm et al.’s

(1997) equations. As shown, MLP model predicts dis-

charges much more accurately compared to both equations.

Apparently, it was due to MLP being capable of deter-

mining complex relationships more flexibly than rigid

regression equations. Additionally, small differences in

scales and ranges of hydraulic parameters used in each

study may have caused some differences, too.

Table 3 shows RMSE, MAE, and R2 values for MLP

model and Eqs. 1, 2, and 3. Considering these statistical

indices, it was concluded that MLP model predicts total

discharge (Qt) more accurately, followed by Negm et al.

(1997), El-Saiad et al. (1995), and Alhamid et al. (1997)

equations, respectively.

4 Conclusions

In this study, experiments with extended measuring ranges

for relevant parameters were conducted on combined tri-

angular weir and rectangular gate structures under free flow

conditions to estimate discharge coefficients (Cd) and

compare them with those reported in the literature. Inves-

tigating effects of three dimensionless parameters (h/d, h/b,

and h/y) on Cd showed that as the parameters increase, so

does discharge (Qt) and its coefficient. At the same dis-

charge, however, discharge coefficient increased with

increasing gate opening (d). For instance, at Qt-

= 0.008 m3/s, Cd increased from 0.55, to 0.59, 0.62, and

0.74 when d increased from 12.5, to 25, 37.5, and 50 mm,

respectively. Moreover, it was concluded that, at low dis-

charges (Qt B 0.1 m3/s), the gate and its opening are the

main water head controllers, while water levels at high

discharges (Qt[ 0.1 m3/s) are mainly controlled by the

weir.

Utilized soft computing models (MLP and SVR), both

predicted Cd accurately (with R2 of 0.966 and 0.967,

respectively). However, MLP was considered superior, due

to better statistical indices of RMSE, MAE, and R2 (0.027,

0.022, and 0.984, respectively) in the validation data set

compared to SVR (0.065, 0.042, and 0.948, respectively).

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 5 10 15 20 25 30 35

D
isc

ha
rg

e  
(m

^3
/s)

 

Number of total data

Observed data

El-Saiad et al. (1995)

Negm et al. (1997)

MLP model

Fig. 13 Comparison of

observed data, the equations,
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Table 3 Values of accuracy criteria for Qt estimated by MLP and

existing regression equations

Study MAE RMSE R2

El-Saiad et al. (1995) 0.0087 0.0034 0.54

Negm et al. (1997) 0.0024 0.0029 0.51

Alhamid et al. (1997) 0.083 0.099 0.77

Present study (MLP) 0.0066 7.5 9 10-20 0.999
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Comparing results with existing equations showed that El-

Saiad et al. (1995) and Negm et al.’s (1997) equations

match the observed data much better than noticeably dif-

ferent Alhamid et al. (1997) and Hayawi et al.’s (2008)

results. It was concluded that assuming the general form of

a gate equation in Alhamid et al. (1997) and a weir equa-

tion in Hayawi et al. (2008) for the combined weir–gate

structure shall be reconsidered before utilization in par-

ticular applications.
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