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Abstract
The large damages that result from construction conflicts due to delays, cost overruns and decreasing productivity justify

developing new models and decision support systems for resolving conflicts in large construction projects. Since most

games take place in uncertain environments, the payoffs cannot be exactly assessed in many real-world problems. In these

games, the uncertainty is mainly due to the inaccuracy of information and fuzzy comprehension of situations by players. In

such cases, it is reasonable to model the problems as games with fuzzy payoffs. In this paper, two methodologies are

proposed for conflict resolution in construction projects using nonzero-sum games with fuzzy payoffs. The first

methodology transforms the original matrix game into a family of its a-cut equivalents. The second methodology intro-

duces fuzzy goals for payoffs in order to incorporate ambiguity of player’s judgments. In this game, each player tries to

maximize the degree of attainment of his fuzzy goal. The methodologies are applied to a large oil project in the Persian

Gulf. The results show that the proposed methodology can be effectively used for resolving contractual conflicts between

owners and contractors in a construction project.

Keywords Construction disputes � Fuzzy bimatrix games � Conflict resolution � Bilinear programming � Fuzzy payoff

1 Introduction

Disputes are currently considered endemic in the con-

struction industry. Over the past couple of decades, the

construction industry has experienced an increase in dis-

putes and difficulty in reaching reasonable and effective

settlements (Barrie and Paulson 1992). As construction

conflicts can cause large damages due to delays, cost

overruns and decreasing productivity, developing new

methodologies for resolving conflicts in construction pro-

jects is highly recommended.

Construction projects are usually long-term transactions

with high complexities and large uncertainties, and it is

almost impossible to resolve every detail at the beginning of

the projects. As a result, situations often arise are not clearly

addressed by contracts (Mitropoulos and Howell 2001).

In past decades, game theory has been successfully

applied to many important issues in civil engineering (see

the literature review provided by Niksokhan et al. 2009;

Sadegh et al. 2010; Jafarzadegan et al. 2013; Ghodsi et al.

2016; Mahjour and Pourmand 2017 for more details).

Applications of game theory in construction management

have been relatively limited. Pena-Mora and Wang (1998)

developed a system to facilitate collaborative negotiation in

a large-scale civil engineering project, in which negotiators

are motivated by both individual and group benefits. The

negotiation mechanism is built based on a simple formal

game. Ho (2001) utilized the game theory to analyze the

information asymmetry problem during the procurement of

a build–operation–transfer (BOT) project. Ho and Liu

(2004) developed a game theoretic model for analyzing the

behavioral dynamics of builders and owners in construction

claims. Kassab et al. (2006) proposed a model for resolving
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contractual conflicts considering four different concepts of

equilibrium. They used players’ preferences and a formal

game theory to find an equilibrium status for opponents.

Perng et al. (2006) established a conceptual model of

competitive bidding in economically most advantageous

tender projects to reflect the credibility of bidding situa-

tions using a bidding game. Shen et al. (2007) presented a

new BOT concession model for identifying a concession

period by using game theory. They presented an alternative

method by which a group of concession period solutions is

produced.

Aliahmadi et al. (2011) proposed a method for risk

assessment of a tunnel project where there are three main

parameters called taskmaster, adviser and contractor. Their

model was built based on the interactive framework of a

game theory where, in making a decision, each player con-

siders other possible risks choices. They implemented three-

person cooperative game theory combined with an interactive

decision structural model of fuzzy analytical hierarchy pro-

cess to perform a balance between actions and suitable co-

operative strategy for each player. The results revealed that

collaboration strategies give the highest outcome for the three

players. Barough et al. (2012) discussed two types of proba-

bilistic conflicts in construction projects and showed that the

chicken and prisoners’ dilemma games are helpful for ana-

lyzing construction management problems.

Nasirzadeh et al. (2016) presented a cooperative-bar-

gaining game model for quantitative risk allocation that

accounts for both client and contractor costs. The behavior

of contracting parties in the quantitative risk allocation

process was modeled as the players’ behavior in a game. A

bargaining process was then performed to share the benefit

of a decrease in the contractor cost between the client and

the contractor. Recently, Khanzadi et al. (2017) developed

a model based on a discrete zero-sum two-person matrix

game with gray numbers to study conflicts between con-

tractor and employer in delayed design–bid–build projects.

Based on different risk values, they determined suit-

able solutions for both parties.

When the game theory is applied to real-world problems

such as decision making in managerial problems, it is difficult

to exactly assess the payoffs. In such cases, it is reasonable to

model the problems as games with fuzzy payoffs, in which

payoffs are represented as fuzzy numbers. In this paper, we

deal with a contractual conflict in a large construction project,

in which we cannot exactly assess opponents’ payoffs. The

fuzzy versions of two matrix games are proposed for

resolving disputes in construction projects considering the

fuzzy payoffs of owner and contractor.

The first model transforms the original matrix game into

a family of its a-cut equivalents. A decomposition

scheme is used to translate the original bilinear model into

a set of a-parameterized linear optimization models. The

second model introduces fuzzy goals for payoffs in order to

incorporate ambiguity of player’s judgments. In this game,

each player tries to maximize the degree of attainment of

his fuzzy goal.

2 Case Study

The Persian Gulf and its coastal areas are the world’s lar-

gest source of crude oil. The largest offshore oilfield is also

located in the Persian Gulf. Iran and Qatar have a giant gas

field across the territorial median line (Fig. 1).

This gas field covers an area of 9700 km2, of which

3700 km2 belongs to Iran. The Iranian portion, which is

called South Pars, is estimated to contain about 14 trillion

cubic meters of gas reserves and about 18 billion barrels of

gas condensates. This amounts to roughly 8 percent of the

world’s gas reserves and approximately half of the Iran’s

gas reserves. South Pars gas field development shall meet

the Iran’s growing demands of natural gas.

Presently, the development of the gas field is conducted

through large projects in 24 phases by an Iranian govern-

mental company called Pars Oil and Gas Company

(POGC). The underdevelopment phases of South Pars gas

field mainly consist of offshore facilities, products transfer

pipeline to onshore facilities, onshore facilities, gas transfer

pipelines to the national gas distribution system and export

facilities for exporting gas condensate, liquefied petroleum

gas (LPG) and sulfur.

The conflict examined in this paper arose in a major oil

industrial project in the South Pars Field, between the

owner (POGC) and an international contractor company.

(The name of the project and contractor has been omitted

due to confidentiality.)

The total value of the project was estimated about $2

billion USD. The contractor was awarded the job by

bringing the best proposal. The capital expenditure had a

$1.9 billion GMP (guaranteed maximum price). The pro-

ject has a restrictive time constraint, and the contractor

started working on the site in 2006, after signing the

contract.

Now that the project tends to be finished, contractor

claims that project’s capital cost has increased due to

additional works, which is not fully acceptable by the

project’s owner. The contractor’s main argument is that the

bid documents were not clear, and many addenda were

issued during the bidding and construction period. The

owner, on the other hand, while officially had rejected the

contractor’s claim, evaluated the situation by its technical

and financial consultants and decided to negotiate with

contractor’s representative in project Joint Managerial

Committee (JMC). The owner needs a speedy completion

of construction so they do not want to extend the
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negotiation time. Owner options include full payment,

partial payment and finally reject to reimburse. Conse-

quently, the contractor can pressure the owner by stopping

work, claim on lower demand, on upper demand or just not

claim any reimbursement. During negotiations, it is

assumed that both sides can estimate his and the oppo-

nent’s earned values.

To find an equilibrium solution to this conflict, we have

to evaluate both sides’ options and related payoffs. Experts

from the owner’s project management department and the

contractor managerial boards were asked to fill in a special

questionnaire. The questionnaire provides the fuzzy pref-

erences in the range of 0 to 100. Owner’s options are

represented by F for full payment, P for partial payments

and R for rejection to reimburse. Consequently, contractor

options are represented by N for not claiming any reim-

bursement, S for stop working on the project, 1 for lower

level and 2 for a higher level of claim. Tables 1 and 2,

respectively, show the estimated fuzzy payoffs for the

owner (~aij) and the contractor (~bij), where i and j are the

indices of the options of the owner and the contractor. The

fuzzy payoffs are presented as triangular membership

functions.

In the next section, the concepts of fuzzy sets and fuzzy

matrix games are described, and two fuzzy games are

presented.

3 Fuzzy Matrix Games

A nonzero-sum game can be used for resolving conflicts

between contractor and owner in a construction project.

Communication is pointless in zero-sum games because

there is no possibility of mutual gain from cooperating. In

nonzero-sum games, on the other hand, the ability to

Fig. 1 Geographical location of the South Pars gas field

Table 1 The fuzzy payoffs of the owner (~aij)

Status Owner selected

option (i)

Contractor

selected option

(j)

Estimated fuzzy

payoffs (aij; a
0
ij;

8aij)

1 F N (95.5, 2.5, 2.5)

2 P N (96.5, 2.5, 2.5)

3 R N (97, 2, 2)

4 F 1 (78.5, 6.5, 6.5)

5 P 1 (80, 5, 5)

6 R 1 (85.5, 2.5, 2.5)

7 F 2 (73, 7, 7)

8 P 2 (75.5, 6.5, 6.5)

9 R 2 (82, 3, 3)

10 F S (65, 7, 7)

11 P S (62, 6, 6)

12 R S (60.5, 5.5, 5.5)
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communicate and the effectiveness of communication can

affect the outcome. For games in which the players have

both common and conflicting interests (in other words, in

most nonzero-sum games, whether cooperative or nonco-

operative), a solution is much harder to define and make

persuasive.

Although solutions to nonzero-sum games have been

defined in a number of different ways, they sometimes

seem inequitable or are not enforceable. One well-known

cooperative solution to two-person variable-sum games

was proposed by Nash (1950, 1951). Given a game with a

set of possible payoffs and associated options for each

player, Nash showed that there is a unique equilibrium

(UE) that satisfies all conditions defined for a solution to

the game.

Since Zadeh (1965) introduced the concept of a fuzzy

set, it has been employed in numerous areas. A fuzzy set ã

is defined by a membership function mapping the elements

of a universe U to the unit interval [0, 1]:

~a : U ! 0; 1½ �: ð1Þ

A fuzzy number is a fuzzy set ã on the set of real

numbers such that:

1. There exists a unique real number x such that ~a xð Þ ¼ 1,

2. ~aa must be a closed interval for every a 2 0; 1ð �,
3. The support of ~a must be bounded, where ~aa ¼

xjAðxÞ� af g is the a-cut of ~a.

This paper considers a bimatrix game with fuzzy pay-

offs. In the crisp form of bimatrix games, the payoffs of

players I and II are demonstrated as U1ði; jÞ ¼ aij and

U2ði; jÞ ¼ bij, when player I chooses a pure strategy i 2 I

and player II chooses a pure strategy j 2 J. Then a nonzero-

sum two-person game in normal crisp is represented as a

pair of m 9 n payoff matrices:

A ¼
a11 . . . a1n

..

. . .
. ..

.

am1 . . . amn

�
�
�
�
�
�
�

�
�
�
�
�
�
�

B ¼
b11 . . . b1n

..

. . .
. ..

.

bm1 . . . bmn

�
�
�
�
�
�
�

�
�
�
�
�
�
�

ð2Þ

The game is defined by (A, B) and is also referred to as a

bimatrix game. In this crisp game, when players do not

have any dominant strategy, they have to choose a mixed

strategy. Mixed strategies of players I and II are repre-

sented by probability distributions to pure strategies of

them, i.e., xT ¼ ðx1; . . .; xmÞ 2 X where 0\xi\1 and
P

xi ¼ 1 is a mixed strategy of player I. Expected payoffs

of players I and II when player I chooses a mixed strategy

x 2 X and player II chooses a mixed strategy y 2 Y are:

E1ðx; yÞ ¼
Xm

i¼1

Xn

j¼1

aij xij yj ¼ xT Ay

E2ðx; yÞ ¼
Xm

i¼1

Xn

j¼1

bij xij yj ¼ xT By

ð3Þ

For a fuzzy bimatrix game ~A; ~B
� �

, a Nash equilibrium

solution is a pair of strategies, namely m-dimensional

column vector x� and n-dimensional column vector y�, if
for any other mixed strategies x and y:

x�T ~Ay� � xT ~Ay�

x�T ~By� � x�T ~By
ð4Þ

where ~A and ~B are the fuzzy payoff matrices of players I

and II, respectively.

In this paper, we assume that fuzzy payoffs ~aij and ~bij
are L–R type fuzzy numbers. L–R type fuzzy number M is

defined by shape functions L(x) and R(x), mean value m,

and parameters a and b that define the length of the base in

the triangular fuzzy set M to the left and right of the mean

value, using the simplified notation below (Zimmermann

2001):

M ¼ m; a; bð ÞLR ð5Þ

Shape functions LðxÞ and RðxÞ satisfy the following

conditions:

1. L(x) = L(- x), R(x) = R(- x);

2. L(0) = 1, R(0) = 1;

3. both L and R are not increasing functions.

Table 2 The fuzzy payoffs of the contractor (~bij)

Status Owner selected

option (i)

Contractor

selected option

(j)

Estimated fuzzy

payoffs (bij; b
0
ij;

8bij)

1 F N (69, 6, 6)

2 P N (67, 7, 7)

3 R N (64.5, 5.5, 5.5)

4 F 1 (91.5, 4.5, 4.5)

5 P 1 (84, 7, 7)

6 R 1 (65, 6, 6)

7 F 2 (95, 3, 3)

8 P 2 (89, 4, 4)

9 R 2 (65.5, 6.5, 6.5)

10 F S (63.5, 5.5, 5.5)

11 P S (66, 6, 6)

12 R S (66.5, 6.5, 6.5)

374 Iran J Sci Technol Trans Civ Eng (2018) 42:371–379

123



Then, L–R fuzzy number M is defined by L and R such

as:

lMðxÞ ¼
L

m� x

a

� �

x�m; a� 0

R
m� x

b

� �

x�m; b� 0

8

>><

>>:

ð6Þ

~aij and ~bij can be presented as aij; a
0
ij;

8aij
� �

LijRij
and

bij; b
0
ij;

8bij
� �

LijRij
, while aij, a

0
ij,

8aij, bij, b
0
ij and

8bij are finite

numbers.

In this paper, two different bimatrix games with fuzzy

payoffs are utilized to resolve the existing conflict between

the owner and the contractor in our case study. The first

approach translates the original fuzzy game into a family of

its a-cut equivalents, and a decomposition scheme is used

to translate the original bilinear model into a set of a-
parameterized linear optimization models. The second

model considers fuzzy goals for players and assumes that

players try to maximize the degree of attainment of their

fuzzy goals. Details of the fuzzy games are presented in the

following sections.

3.1 Model 1: A a-Cut-Based Fuzzy Bimatrix Game

A point ðx�; y�Þ 2 X � Y is a fuzzy Nash equilibrium

strategy if and only if x� is an optimal solution to the

following fuzzy linear programming problem with param-

eter y�:

max
x

x~Ay�

St : x 2 X
ð7Þ

and y� is an optimal solution for the following fuzzy linear

programming problem with parameter x�:

max
y

x� ~By

St : y 2 Y
ð8Þ

In this model, fuzzy Nash equilibrium strategies are

evaluated by simultaneously solving both optimization

problems (7) and (8). Therefore, the following fuzzy

bilinear programming problem should be solved:

max
x;y

x~Ay� þ x� ~By

St : x 2 X

y 2 Y

ð9Þ

The fuzzy bilinear optimization problem (8) cannot

be solved using the conventional optimization meth-

ods. So we have to solve the equivalent following

bilinear fuzzy optimization problem (Basar and Olsder

1999):

max
x;y;p;q

x~Ayþ x~By� p� q

St : ~Ay� pem

~BTx� qen

Xm

i¼1

xi ¼ 1

Xn

j¼1

yj ¼ 1

xi � 0; i ¼ 1; . . .;m

yj � 0; j ¼ 1; . . .;m

ð10Þ

where em and en are m- and n-dimensional vectors whose

elements are all ones. In this paper, the a-cut method is

used to translate the fuzzy bilinear problem in a set of a-
parameterized conventional bilinear problems (details of a-
cut method can be found in Kerachian et al. 2010). The a-
cut of a fuzzy number ~a can be represented by the interval

~aLa ; ~a
U
a

	 


. Similarly, we can represent the a-cut of a fuzzy

matrix ~Am�n by ~Aa ¼ AL
a ;A

U
a

� �

. Therefore, the bilinear

model (9) becomes:

max
x;y;p;q

x AL
a ;A

U
a

	 


yþ x BL
a ;B

U
a

	 


y� p� q

St : AL
a ;A

U
a

	 


y� pem

BL
a ;B

U
a

	 
T
x� qen

Xm

i¼1

xi ¼ 1

Xn

j¼1

yj ¼ 1

xi � 0; i ¼ 1; . . .;m

yj � 0; j ¼ 1; . . .;m

ð11Þ

Given values for a 2 0; 1½ �, equilibrium solutions

ðx�; y�Þ can be found by solving the problem (10) for each

a. To solve the bilinear problem (9), for each value of a,
the a-cut values of the fuzzy numbers can be used instead

of the original fuzzy numbers ~aij and ~bij, and the bilinear

optimization model can be solved by using a decomposi-

tion algorithm suggested in Bazaraa and Shetty (1979).

This algorithm decomposes the bilinear problem into two

linear programming optimizations. In the first one, a vari-

able is optimized through the first LP model, while the

other variable is constant. Consequently, in the next step,

the optimized variable is kept constant and the second one

optimized by the second LP model. This procedure is

repeated until changes in the variables become less than a

predefined value.

In our case study, we use a-cut method considering the a
values of 0; 0:2; . . .; 0:8 and 1. For example, Figs. 2 and 3,

respectively, depict the owner and the contractor payoffs in

Iran J Sci Technol Trans Civ Eng (2018) 42:371–379 375

123



a status in which the owner accepts to pay partially (status

P) and the contractor threatens to stop working (status S).

3.2 Model 2: A Fuzzy Bimatrix Game with Fuzzy
Goals

In this model, fuzzy goals are considered for players and it is

assumed that players try to maximize the degree of attainment

of their fuzzy goals. It is assumed that player I specifies the

finite value a of the payoff for which the degree of satisfac-

tion is 0 and the finite value �a of the payoff for which the

degree of satisfaction is 1. Let first player fuzzy goal ~G1 for

the payoff p be fuzzy set on the set of real numbers R char-

acterized by the membership function l ~G1
: R ! 0; 1½ �:

l ~G1
ðpÞ ¼

0 if p� a
p� a

�a� a
if a\p� �a

1 if �a\p

8

><

>:

ð12Þ

The fuzzy goal ~G2 of player II is a similar fuzzy set

characterized by the membership function l ~G2
. A mem-

bership function value of the fuzzy goal can be interpreted

as a degree of attainment of the fuzzy goal. Then it is

assumed that for any pair of payoffs, a player prefers the

payoff having the larger degree of attainment of his fuzzy

goal.

For any pair of mixed strategies x; yð Þ, let the fuzzy

expected payoff and the fuzzy goal of player I be,

respectively, denoted by ~E1 x; yð Þ and ~G1. As shown in

Fig. 4, the degree of attainment of the fuzzy goal is defined

as the maximum of the intersection of the fuzzy expected

payoff ~E1 x; yð Þ and the fuzzy goal ~G1.

It is assumed that the membership functions of the fuzzy

goals and payoffs of both players have the following linear

form (Nishizaki and Sakawa 2000):

l~aijðpÞ ¼ hðpÞ ¼

0 if p\a� aij
p� aij þ a0ij

a0ij
if aij � a0ij � p\aij

aij þ 8aij � p
8aij

if aij � p� aij þ 8aij

0 if aij þ 8aij\p

8

>>>>>><

>>>>>>:

ð13Þ

Therefore, for a pair of strategies x and y of players I and

II, player I’s degree of attainment of fuzzy goal (d1ðx; yÞ)
can be represented by (Nishizaki and Sakawa 2000):

d1ðx; yÞ ¼
xTðAþ 8AÞy� a

�a� aþ xT 8Ay
: ð14Þ

Player II’s degree of attainment can also be presented in a

similar way. Therefore, equilibrium with respect to the

degree of attainment of the fuzzy goal and necessary

conditions of Kuhn and Tucker is optimal solutions x� and
y� to the following mathematical programming problems

(Nishizaki and Sakawa 2000):

max
x;y;u;q

�axTðAþ 8AÞyþ �bxTðBþ 8BÞy� axTAy� bxTBy

� �a� aþ xT 8Ay
� �2

u� �b� bþ xT 8By
� �2

q

s:t : �a� aþ xT 8Ay
� �

Ayþ �a� xTAy
� �

8Ay

� �a� aþ xT 8Ay
� �2

uem � 0m; �b� bþ xT 8By
� �

BTx

þ �b� xTBy
� �

8BTx� �b� bþ xT 8By
� �2

qem � 0m;

emTx� 1 ¼ 0; x� 0m

enTy� 1 ¼ 0; y� 0m

ð15Þ

0.2

0.6

1

0.8

6256 68
Score

0.4

Fig. 2 The owner’s payoffs in PS status (~aPS)

0.2

0.4

0.6

1

0.8

65.559 72
Score

Fig. 3 Contractor’s payoffs in PS status (~bPS)

aa

)(),(1 pyxEµ )(
1
pGµ

Fig. 4 Degree of attainment of fuzzy goal. Source: Adapted

from (Nishizaki and Sakawa 2000)
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In the next section, the fuzzy games are applied to the

case study, and the results are presented.

4 Results and Discussion

To find an equilibrium solution using the a-cut-based
bilinear programming (Model 1), we implement the bilin-

ear model (9) by finding both upper and lower values of ~aij

and ~bij for a ¼ 0; 0:2; . . .; 0:8 and 1. Then, the problem is

decomposed into a dual linear programming (LP). In the

first LP model, vector x is optimized, while vector y is

constant. Consequently, in the next step, optimized vector x

is kept constant, and y is optimized by the second LP

model. This procedure is repeated until changes in vectors

x and y become less than a predefined value, which is

considered to be equal to 0.001. For each value of a, the
equilibrium mixed strategies ðx�; y�Þ and payoffs (E1 and

E2) can be calculated. For example, the values for a ¼ 1

are as follows:

x� ¼ ð0:0308; 0:0; 0:9692Þ
y� ¼ ð0:0; 0:0; 0:3333; 0:6667Þ
E1 ¼ 67:6667

E2 ¼ 66:4077

The opponents’ expected payoffs in an equilibrium

status for each a value are represented in Fig. 5.

To test the robustness of an equilibrium status, by

changing in the opponents’ priority and then re-executing

the analysis, one can observe how equilibrium varies from

those obtained previously. In our case study, the owner was

under time pressure, and he was ready to compromise his

benefit to meet the existing deadline for project comple-

tion. Despite his apparent refusal to pay the contractor in

full, his preference to save time was clear in his payoffs

and consequently in the results. To do a sensitivity analy-

sis, decision makers from the owner’s project management

department were asked to disregard the project completion

time in their assessment of statuses. The owner’s new

payoffs are presented in Table 3. Figure 6 presents the

membership function of opponents expected payoffs based

on the revised payoffs for different statuses.

By revising the payoffs by the owner, he can put more

pressure on the contractor as the length of the negotiation

period is not important for him. The new values of x� and

y� indicate that the possibility of the contractor stopping

the work will increase when the owner neglects the time

value in the negotiation process. Moreover, y4 for a ¼ 1 in

the first analysis was 0.6667, while in the second one it was

0.9381. So we can conclude that the contractor’s inclina-

tion to become noncooperative by stopping the work will

increase. The results of the analysis for a ¼ 1 are as

follows:

x� ¼ ð0:0; 0:0417; 0:9583Þ
y� ¼ ð0:0; 0:0; 0:0619; 0:9381Þ
E1 ¼ 62:1968

E2 ¼ 66:4792

Table 3 The reassessed owner’s fuzzy payoffs

Status Owner selected

option (i)

Contractor

selected option

(j)

Estimated fuzzy

payoffs (aij; a
0
ij;

8aij)

1 F N (95.3, 2.5, 2.5)

2 P N (96.7, 2.5, 2.5)

3 R N (97.3, 2, 2)

4 F 1 (72.7, 6.5, 6.5)

5 P 1 (80.7, 5, 5)

6 R 1 (88.7, 2.5, 2.5)

7 F 2 (65.3, 7, 7)

8 P 2 (75.3, 6.5, 6.5)

9 R 2 (85.3, 3, 3)

10 F S (60.7, 7, 7)

11 P S (61.3, 6, 6)

12 R S (60.7, 5.5, 5.5)

Fig. 5 The membership

functions of the expected

payoffs of the opponents

obtained using the Model 2

Iran J Sci Technol Trans Civ Eng (2018) 42:371–379 377

123



To find an equilibrium solution using the second model,

we have to consider all functions l ~G1
ðpÞ, l ~G2ðpÞ, l~aijðpÞ

and l~bij
ðpÞ. It is assumed that a and �a, similarly, b and �b

can be set by each player. Let us assume a ¼ 60 and

�a ¼ 95, and then l ~G1
ðpÞ according to Eq. 12 is as follows:

l ~G1
ðpÞ ¼

0 if p� 60
p� 60

95� 60
if 60\p� 95

1 if 95\p

8

><

>:

ð16Þ

A similar function is considered for l ~G2ðpÞ. The mem-

bership functions l~aijðpÞ and l~bij
ðpÞ are also evaluated

using the fuzzy payoffs, presented in Table 1. For instance,

l~apsðpÞ has been estimated using Eq. 13 as follows:

l~aPSðpÞ ¼

0 if p\56
p� 56

6
if 56� p\62

72� p

6
if 62� p� 72

0 if 72\p

8

>>>><

>>>>:

ð17Þ

Then, we use optimization model (15) in order to find an

equilibrium solution in which both sides gain their maxi-

mum satisfaction. To solve optimization model (15), we

use the genetic algorithm toolbox in Matlab. The optimal

values for decision variables for a population size of 65 and

a generation number equal to 150 are as follows:

a ¼ 60; �a ¼ 95; b ¼ 50; �b ¼ 90

The equilibrium mixed strategy and degrees of satis-

faction are also obtained as follows:

x� ¼ ð0:1463; 0:0034; 0:8503Þ
y� ¼ ð0:1299; 0:5431; 0:2111; 0:2111Þ
d�

1
x; yÞð ¼ 0:6757

d�2 x; yÞð ¼ 0:5273

A sensitivity analysis is performed to test the robustness

of the equilibrium status against changes in preferences. By

changing the preferences of opponents and then re-

executing the analysis, one can observe how equilibrium

status varies from those obtained previously. In the first

model, the owner was under a deadline constraint for

completion of the project, and he was ready to compro-

mise. Despite his apparent refusal to pay the contractor in

full, his preference to save time was clear. In the sensitivity

analysis, decision maker from the owner’s project man-

agement department is asked to disregard the time value in

their assessment of statuses.

The new payoff, which reflects changes in the owner’s

attitude from being a good team player to a noncooperative

individual, causes an increase in the owner’s degree of

satisfaction and decreases the contractor’s satisfaction

level. As it was expected, the new values of x� and y�

indicate that the possibility of choosing to pay nothing by

the owner will be increased when the owner neglects time

value in the negotiation process. Moreover, in the first

analysis, the contractor is more likely to choose y2 as it has

a maximum possibility (0.5431), while in the second

analysis, y3 has the maximum value (0.5032). So we can

conclude that the contractor’s inclination to compromise

will be increased when the duration of the negotiation

process is not considered in providing the payoffs by the

owner. The equilibrium mixed strategy and degree of

opponents’ satisfaction in the second analysis are as

follows:

x� ¼ ð0:0675; 0:0344; 0:8981Þ
y� ¼ ð0:1209; 0:2375; 0:5032; 0:1384Þ
d�

1
x; yÞð ¼ 0:6876

d�
2
x; yÞð ¼ 0:5096

5 Summary and Conclusion

In this paper, we dealt with a contractual conflict in a large

construction project. As it is usually difficult to exactly

assess the payoffs of owners and contractors in contractual

Fig. 6 The expected payoffs of

the opponents obtained using

the Model 2, considering the

revised payoffs of the owner
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conflicts, the payoffs were assumed to be fuzzy numbers.

The fuzzy versions of two matrix games were also pro-

posed for resolving the conflict considering the fuzzy

payoffs of the owner and contractor. The first fuzzy game

transforms the original matrix game into a family of its a-
cut equivalents. A decomposition scheme was used to

translate the original bilinear model into a set of a-pa-
rameterized linear optimization models. In the second

fuzzy game, a fuzzy goal was considered for each player,

and the player tries to maximize the degree of attainment of

his fuzzy goal.

To evaluate the applicability and efficiency of the fuzzy

games, they were applied to a large oil project in the

Persian Gulf. The fuzzy games provided the optimal mixed

strategies for the negotiation of the owner and contractor.

The expected values of the payoffs were also calculated

based on the optimal strategies. It is also shown that the

optimal strategies directly depend on the payoff matrices

and the proposed games can be effectively utilized for

incorporating the existing uncertainties in the payoff

matrices. The fuzzy games can be applied to more com-

plicated contractual or constructional conflicts.
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