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Abstract
The need for optimum design of water conveyance structures provides an active area of study in water resources engi-

neering. A literature review on optimum design of circular channels indicates that variation of Manning’s roughness

coefficient (n) with water depth is not taken into account. In this study, this variation has been implemented in the optimum

design of lined circular channels. The significant discrepancy between the results obtained for constant and variable

roughness scenarios demonstrates the necessity for considering roughness coefficient variability with water depth in

circular sections. Furthermore, a new explicit equation for optimum design of section parameters has been proposed using a

hybrid optimization technique, which combines the Modified Honey Bee Mating Optimization with Generalized Reduced

Gradient algorithms. Solving a typical design problem in the literature by the proposed equation showed not only its

adequate performance but also the necessity for considering variable roughness in circular channels design procedure.

Keywords Circular channel � Optimum design � Variable roughness � Manning’s equation � Explicit design equations �
Hybrid method

1 Introduction

Design of water conveyance structures such as channels

and canals has been an essential part of hydraulic engineers

concerns. Since water conveyance projects usually carry

water to relatively far distances, these projects require

considerable amounts of budget. In this regard, the opti-

mum design of such structures not only can decrease the

total required budget to a minimum possible value, but also

enhance functionality of these structures in securely con-

veying water.

Water shortage problem in many parts of the world and

consideration of water as an economic good provide the

necessity for more rigorous investigation on optimum

design of water conveyance structures. The optimum

design of channels, as a typical water conveyance structure,

can be treated as an optimization problem. In this opti-

mization problem, the aim of the conveyance system dic-

tates what the objective function is. In practical projects,

where budget plays a key role, the objective function is

commonly minimizing the cost of channel construction.

Likewise, the construction cost has been extensively con-

sidered as the objective function in many researches in this

area (Aksoy and Altan-Sakarya 2006; Swamee et al. 2000;

Niazkar and Afzali 2015a). The construction cost, in its

most general definition, comprises three items: (1) exca-

vation cost, (2) lining cost, and (3) additional cost associ-

ated with different costs of earthwork in different depths.

Furthermore, a resistance equation such as Manning’s

equation is usually designated as the constraint for the

optimization problem to control flow field in the channel.

Finally, based on the cross section selected for the channel,

optimum values may be obtained for section parameters

through an optimization process.

In early attempts to optimally design channel sections,

Chow (1959, 1973) and French (1994) presented efficient

relations for the best hydraulic section. Their objective
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function was minimization of flow area subjected to

Manning’s equation as the sole constraint. Swamee and

Bhatia (1972) published design curves for trapezoidal,

rounded bottom, and rounded corner cross sections. Guo

and Hughes (1984) studied optimum design of a trape-

zoidal section with freeboard. Loganathan (1991) investi-

gated the optimal conditions for a parabolic channel

section. Monadjemi (1994) proved that the optimum cross

section achieved by minimizing the flow rate yields the

same results as when minimizing the wetted perimeter.

French (1994) proposed both simple discharge-related

equations and design graphs for design of optimum trape-

zoidal sections. Swamee (1995) suggested explicit corre-

lations for optimum section variables obtained by

minimizing the flow rate. Swamee et al. (2000) introduced

the general form for construction cost and proposed new

equations for optimum design of channel sections. Aksoy

and Altan-Sakarya (2006) recommended two models for

computing the optimal section variables using the general

form for constructional cost. More recently, Niazkar and

Afzali (2015a) applied a powerful optimization algorithm,

invariably called the MHBMO algorithm, to minimize the

generalized form of construction cost. They presented new

accuracy-improved models for optimum design of lined

channel for common cross sections in practice. Similar

researches were also conducted utilizing some other opti-

mization techniques for optimum design of channels (Jain

et al. 2004; Bhattacharjya and Satish 2007; Nourani et al.

2009; Turan and Yurdusev 2011; Kaveh et al. 2012).

Previous experiments show that, in partially filled circular

channels, Manning’s coefficient is a function of the angle

associated with water surface. In other words, the Manning

roughness coefficient varies with flow depth in a circular

channel. Field measurements show that, for a typical cir-

cular channel, this coefficient has a greater value when the

channel is partially full compared to when it is completely

full (Yarnell and Woodward 1920; Wilcox 1924; Zaghloul

1992). Variation of Manning coefficient with relative water

depth, i.e., the ratio of water depth to section diameter, is

depicted in Fig. 1. This figure illustrates two things: (1)

Manning roughness coefficient for a partially filled circular

channel is larger than that for a completely filled pipe, and

(2) maximum and minimum Manning coefficients pertain

to relative depths of 0.25 and close to zero, respectively. In

spite of many efforts conducted in optimum design of

circular channels, variation of roughness coefficient with

water depth was not taken into account. Since this variation

may affect values of the optimum section variables, it

should be considered in an optimal design of circular

channels.

In this study, variation of Manning roughness coefficient

with water depth was implemented in optimization of a

circular channel design. In other words, this paper intends

to investigate its effects, and implement it in new explicit

design equations. In this regard, the generalized form of

construction cost and Manning’s equation were considered

as objective function and hydraulic constraint, in the

optimization process, respectively. A new hybrid method,

which combines two optimization algorithms, the Modified

Honey Bee Mating Optimization (MHBMO) and Gener-

alized Reduced Gradient (GRG) algorithms, were utilized

to solve the defined optimization problem. The results

show that considering variation of roughness coefficient

with water depth noticeably affects the optimum section

variables. In order to simplify design procedure of lined

circular channels, new explicit equations were proposed in

which Manning’s roughness variability was taken into

account. These non-dimensional equations facilitate the

optimum design of cross section parameters for a wide

range of flow rates. A typical problem of channel design

was solved using the new proposed equations. Results

demonstrate that the new equations accurately design the

circular channel compared to the benchmark solution.

2 The Problem of Optimum Design
of Circular Channels

Channels, as one of the common water conveying struc-

tures, mainly aim to properly transfer a certain flow of

water along short or long distances. One of the major

concerns in channels construction is to accomplish the

project in its least possible expenditure form. Therefore,

the channel construction project can be treated as an

optimization problem most of the time. This optimization

problem comprises minimization of total construction cost

subjected to a hydraulic resistance equation.

In the design procedure of channels, the selection of

suitable function for construction cost significantly affects

the final result. The total cost is affected by many factors.

These factors include: (1) the accessibility of ground sur-

face, (2) the geographical condition of the channel route,
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Fig. 1 Variation of relative roughness with the relative depth
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(3) the applicability of contractor’s equipment, (4) the need

for constructing sustainable structures and (5) Haul dis-

tance. (Niazkar and Afzali 2015a). However, all factors

may not be considered in practice, since some of them are

not predictable. Since each project possesses its exclusive

specifications, determining vital factors are required to

address an adequate solution for a certain channel con-

struction project.

In this study, the most generalized form of the cost

function in the literature (Swamee et al. 2000) was adopted.

In this cost function, it is assumed that the ground surface

is the top level of the channel section (Niazkar and Afzali

2015a). This assumption dictates that the earthwork cost is

solely the excavation cost. Based on this cost function, the

total construction cost per unit length of channel consists of

two major costs: (1) the earthwork cost and (2) the lining

cost. The former comprises two items: (1) the earthwork

cost per unit area (bE) and (2) the additional earthwork cost

(bA). The additional earthwork cost, which is the earthwork

cost per unit area per unit depth below the ground surface,

is considered to account for the overburden pressures on

deeper soil strata and the supporting costs in deep exca-

vations (Aksoy and Altan-Sakarya 2006). This cost causes

different cost of earthwork at different depth levels.

Finally, the total channel can be formulated as:

C ¼ bLPþ bEAþ bA

Zyn

0

adg ð1Þ

where C is total construction cost per unit length of a lined

channel section, L is unit cost of lining per unit length, P is

wetted perimeter, A is channel cross section area, yn is

water normal depth, a is flow area at height g and dg is unit

length of earthwork at height g where g represents the

vertical axis of channel geometry (Fig. 2).

In order to relate channel geometry to hydraulic-related

parameters, a resistance equation such as Manning may be

utilized. This resistance equation, which has been

extensively applied for open-channel flows, reassures

applicability of optimization final results from a hydraulic

perspective. Manning equation may be written in SI units

as:

Q� 1

n
AR2=3

ffiffiffi
S

p
¼ 0 ð2Þ

In Eq. 2, Q is the channel flow rate, n is the Manning’s

roughness coefficient, R is the hydraulic radius and S is the

channel bottom slope.

In order to extend applicability of the solution to a wide

range of possible values for involved parameters, dimen-

sionless variables were utilized. The conversion of

dimensional to dimensionless parameters was conducted

using a new parameter, the so-called a length scale (k),

introduced in Eq. 3:

k ¼ Qnffiffiffi
S

p
� �3=8

ð3Þ

Using k, all hydraulic variables with dimensions may be

converted to dimensionless ones. For a circular cross sec-

tion, involving parameters include: (1) the total cost (C),

(2) the earthwork cost per unit area (bE), (3) the additional

earthwork cost (bA), (4) the lining cost per unit length (bL),

(5) the excavated channel area, i.e., A ¼ 0:5r2ðh� sin hÞ
where h is water depth angle, (6) the wetted perimeter

(P ¼ hr), (7) the normal water depth (yn) and (8) the

channel radius (r). These parameters can be converted to

their dimensionless forms using k and bE. The new

dimensionless variables, subscripted by an asterisk sign,

are presented in Eqs. 4 to 10.

C� ¼
C

bEk
2

ð4Þ

bA� ¼
bAk
bE

ð5Þ

bL� ¼
bL

bEk
ð6Þ

A� ¼
A

k2
ð7Þ

P� ¼
P

k
ð8Þ

yn� ¼
yn

k
ð9Þ

r� ¼
r

k
ð10Þ

The objective function and the constraint of this opti-

mization problem may be rewritten as Eqs. 11 and 12,

respectively.

minimize C� ¼ bL�P� þ A� þ
bA�

R yn

0
adg

k3
ð11Þ

Fig. 2 A typical channel cross section (Niazkar and Afzali 2015a)
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subjected to 1 � A5=3
� P�2=3

� ¼ 0 ð12Þ

In the optimization problem defined as Eqs. 11 and 12,

variation of Manning’s coefficient with relative water

depth is not considered. In order to implement this varia-

tion, roughness coefficient in Manning’s equation (Eq. 2),

i.e., n, should be modified. In other words, the Manning’s

coefficient varying with relative water depth in a circular

cross section, which is given in Eq. 13, should substitute n.

n ¼ nf � 0:9987 þ 3:4616
yn

D

� �
� 14:7108

yn

D

� �2
�

þ27:2574
yn

D

� �3

�23:4963
yn

D

� �4

þ7:4909
yn

D

� �5
�

ð13Þ

where D is the circular channel diameter, and n and nf are

the Manning’s roughness coefficients associated with a

partially and completely full cross section, respectively.

Equation 13 is an appropriate equation, obtained by fitting

high order polynomials (reported in Zaghloul 1992) to the

curve shown in Fig. 1. Although this equation indicates the

relation between Manning’s roughness coefficients for par-

tially and completely full cross sections, this relation can be

presented as a function of water depth angle, i.e., h, instead

of relative water depth. Hence, Eq. 13 with the aid of the

geometry relation between the water depth angle and the

relative water depth, i.e., yn

D
¼ 0:5½1 � cosðh

2
Þ�, may be

rewritten as a function of water depth angle (Akgiray 2004).

Equation 13 may be rewritten such that direct calculation of

Manning’s coefficient is possible using water depth angle:

n ¼ nf � ð1 þ 0:18ð2p� hÞ½0:1
þ expð� 0:3hÞ sin2ð0:38hÞ� ð14Þ

Implementing Eq. 14 in Eq. 2, optimum design of a

lined circular channel may be reformulated incorporating a

variable roughness coefficient. Objective function and

constraint of the reformulated optimization problem are

shown in Eqs. 15 and 16, respectively. In order to better

demonstrate the problem, the terms A�, P�, and
R yn

0
adg are

given as a function of r�, yn�, and h in these equations.

minimize C� ¼ bL�hr� þ 0:5r�ðh� sin hÞ þ 0:5bA�r�

ðyn� � r�Þhþ
4r2

� þ 2ðyn� � r�Þ2

3r2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
� � ðyn� � r�Þ2

q" #

ð15Þ

subjected to nf � ð1 þ 0:18ð2p� hÞ½0:1
þ expð� 0:3hÞ sin2ð0:38hÞ� � ½0:5r�ðh
� sin hÞ�5=3ðhr�Þ�2=3

¼ 0 ð16Þ

The only conceptual difference between the design

problem defined by Eqs. 11 and 12 with the one described

by Eqs. 15 and 16 is consideration of a Manning roughness

coefficient which varies with water depth. In other words,

the former considers a constant Manning’s coefficient for

both completely and partially full cross section, while the

results obtained from the latter take into account a Man-

ning’s coefficient which is a function of water depth.

3 The New Hybrid Method

A new hybrid method is developed which is a combination

of search-based and deterministic optimization algorithms

(Niazkar and Afzali 2016a, b, 2017a). The former is the

MHBMO algorithm, which has already been utilized for

solving many problems in water resources engineering

(Niazkar and Afzali 2014, 2015a, 2017b; Afzali et al. 2016;

Afzali 2016) while the latter is the GRG algorithm.

MHBMO algorithm was proved to be applicable in one of

the previous studies in which Manning’s coefficient was

assumed to be invariant with water depth. GRG algorithm

is embedded in any Excel spreadsheet, has been utilized for

solving many engineering problems, and may be conve-

niently used by researchers and engineers (Niazkar and

Afzali 2015b, 2016c, 2017c, d).

Any research-based optimization algorithm may fall into

local optima, while deterministic ones may reach different

solutions based on the utilized initial guess. Therefore,

problems of trapping in a local optimal value and initial

guess requirement are known shortcomings of MHBMO

and GRG algorithms, respectively. The initial guess

requirement restricts users in their selection of a proper

value for decision variables at the beginning of the latter

algorithm. Since the optimum values of these variables are

the objective of optimization process and are definitely

unknown at the beginning, finding appropriate initial

guesses for GRG algorithm is a challenging task. This

shortcoming may be somehow addressed by using a pow-

erful search-based approach to find appropriate initial

values as initial guesses for this algorithm. Consequently,

the new MHBMO–GRG hybrid method not only provides

the suitable initial guesses for the decision variables for its

deterministic algorithm but also enhances the chance of

reaching global optima.

A flowchart for the new hybrid method is depicted in

Fig. 3. According to this figure, the method utilizes the

algorithms in two successive steps. In the first step, the

MHBMO algorithm simulates mating process of honey

bees. The main five stages of the MHBMO algorithm are

(Niazkar and Afzali 2015a):

• At the beginning, the queen as the best solution,

commences the mating flight and probabilistically

selects drones to form the spermatheca. One drone is

randomly selected for creation of the broods,
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• Producing new broods, i.e., trial solutions,

• Performing a local search on new broods by workers,

• Adjusting workers fitness based on achieved improve-

ments on the broods, and

• Comparing the queen with the best brood and replacing

the weaker queen(s) by fitter brood(s).

A comprehensive detail of this algorithm may be seen in

Esmi Jahromi and Afzali (2014) and Niazkar and Afzali

Input data

The first step: The MHBMO algorithm

Generating a random initial population and sorting based on RMSE

Queen selection and generate Queen Spermatheca matrix

Mating process and generate new broods

Feeding generated broods and queen with royal jelly by workers

Calculate objective functions for the new colony 

K < Maximum No. of first step

Use the final queen values as an initial guess for parameters in the second step

Implement the problem in the Excel spreadsheet

Is the best 
solution better 

than the queen?

K=1

K=K+1

Import the train data in the Excel spreadsheet

The second step: The GRG algorithm

Define the problem in the Excel optimization tool

Run the GRG algorithm

Is the termination criterion satisfied?

Results

Yes

No

Fig. 3 Flowchart of the hybrid

MHBMO–GRG algorithm used

in this study (Niazkar and Afzali

2017a)

Iran J Sci Technol Trans Civ Eng (2018) 42:133–142 137

123



(2014, 2015a). Numerical values utilized for algorithm

parameters were the ones used by Niazkar and Afzali

(2015a).

In the second step, GRG algorithm completes the opti-

mization process using final solutions achieved by

MHBMO algorithm as its initial guesses. Although this

algorithm, like other deterministic ones, has a mathemati-

cal background, it requires initial values for the decision

variables. In order to use this algorithm, the problem

should be implemented in an Excel spreadsheet first.

Afterward, the objective function accompanied with the

problem constraint should be introduced in corresponding

part of the Excel spreadsheet.

4 Application and Results

The hybrid MHMO–GRG algorithm was utilized to solve

two different approaches for optimum design of a circular

channel. The obtained results for two approaches were

compared with each other to investigate the effects of

considering variable roughness Manning’s coefficient.

Afterward, the optimum values for section parameters were

computed to present explicit design equations. Finally, a

typical design problem from literature was solved using

proposed explicit equations.

4.1 Constant Versus Variable Roughness

In this section, two approaches for optimum design of a

circular channel are presented. The first approach considers

constant roughness coefficient for flow in a circular section

either completely or partially full, whereas the second one

takes into account variation of Manning’s coefficient with

water depth angle. Here, solutions for the former and latter

are referred to as constant and variable roughness coeffi-

cient solutions, respectively. The former is introduced in

Eqs. 11 and 12, while the latter is defined in Eqs. 15 and

16.

First variations of r�, yn�, and h� (the water depth angle

associated with r� and y�) and C� for different values of bL�
and bA� were computed using the proposed hybrid

MHBMO–GRG algorithm. In other words, the two

approaches defined in Eqs. 11, 12 and Eqs. 15, 16 were

separately solved using the algorithm. Results for both

approaches are shown in Figs. 4 and 5. Utilized ranges for

dimensionless lining and additional costs are the same as

the ones used in previous studies (Aksoy and Altan-

Sakarya 2006; Niazkar and Afzali 2015a). Figure 4(a)

depicts results for zero-additional cost, but variable bL�
when manning coefficient may be constant or variable. As

shown, constant optimum values (for radius and depth)

were obtained for r� and yn� in the constant roughness

approach, whereas these parameters varied with bL� in the

variable roughness approach. The difference between

optimum dimensionless radius of the circular channel for

constant and variable roughness is significant for bA� ¼ 0

and bA� ¼ 0:2 (Fig. 4a, b). This difference becomes

somewhat inconsiderable for bA� ¼ 0:4,bA� ¼ 0:6, bA� ¼
0:8 and bA� ¼ 1:0 (Figs. 4c, 5), especially for larger values

of bL�. On the other hand, the difference between optimum

yn� values for constant and variable approaches is consid-

erably large for almost all bA� and bL� values (Figs. 4, 5).

The existing discrepancy for optimum values of circular

channel parameters, especially yn�, is obviously consider-

able. One may conclude that it is necessary to consider

variation of roughness coefficient with water depth angle in

optimum design of lined circular channels.

4.2 Optimum Values for Circular Channel
Parameters

The design problem for variable roughness coefficient

introduced in Eqs. 15 and 16 was solved utilizing

MHBMO–GRG algorithm by specifying lining and addi-

tional costs. The utilized range for the costs was the same
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as the one utilized in the literature for these parameters

(Aksoy and Altan-Sakarya 2006; Niazkar and Afzali

2015a). Results for r�,yn�,h� and C� variations for different

values of bL� and bA� are shown in Figs. 6, 7, 8 and 9,

respectively. According to Fig. 6, larger optimum dimen-

sionless radii were obtained for larger bA� values, espe-

cially in the lower ranges of bL�. An opposite trend is seen

in Fig. 7 for the optimum dimensionless water depth val-

ues. Based on Fig. 7, smaller dimensionless water depths

were obtained for larger bL� values, especially in the lower

ranges of bA�. Water angle has a similar trend as the

dimensionless water depth with respect to bL� (Fig. 8).

Figure 9 depicts the monotonic increase in dimensionless

total cost with bL� increase for different values of bA�. The

database produced in this section is later utilized to develop

simple explicit design equations and optimize r and y with

respect to the cost.

4.3 Explicit Design Equations

Simple explicit equations are proposed to determine opti-

mum values for r� and y� using MHBMO–GRG algorithm.

As mentioned, variation of Manning’s roughness coeffi-

cient with water depth angle has been taken into account

and these equations may be utilized to conveniently design

an optimum lined circular channel incorporating a variable

roughness. These equations for r� and y� are shown in

Eqs. 17 and 18, respectively.
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r� ¼ 0:9493b0:0202
L� þ 0:3542b1:0351

A� b�0:702
L� ð17Þ

y� ¼ 1:1663b�0:01
L� � 0:1557b0:9322

A� b�0:5489
L� ð18Þ

In order to evaluate performance of these two equations

against classical approaches, similar relations are obtained

using Genetic Algorithm (GA) shown in Eqs. 19 and 20.

r� ¼ 0:9539b0:0175
L� þ 0:3501b1:0352

A� b�0:705
L� ð19Þ

y� ¼ 1:1598b�0:0114
L� � 0:1618b1:0695

A� b�0:5676
L� ð20Þ

Performance of these relations may be evaluated by two

error indices: (1) root-mean-square error (RMSE) and (2)

coefficient of determination (R2). These indices for y� are

defined as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðydatabase � yexplicitÞ2

vuut ð21Þ

R2 ¼

PN
i¼1

ydatabase �
PN

i¼1
ydatabase

N

� �
yexplicit �

PN

i¼1
yexplicit

N

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN
i¼1

ydatabase �
PN

i¼1
ydatabase

N

� �2

yexplicit �
PN

i¼1
yexplicit

N

� �2
" #vuut

0
BBBBBB@

1
CCCCCCA

2

ð22Þ

In these relations, ydatabase and yexplicit are the y� values

from the prepared database and computed y� values using

the proposed explicit equations, respectively. Similar

equations may be written for r�.
Performance of the equations for optimum design of a

lined circular channel is compared in Table 1. As shown,

all error indices are very low, demonstrating that the

equations are all acceptably accurate. Although accuracy of

the equations is quite close, equations obtained using the

MHBMO–GRG algorithm perform relatively better than

the ones achieved by GA based on RMSE criterion.

Comparison of R2 values shown in Table 1 also indicates

that these equations perform acceptably well.

Similar to previous studies, the proposed explicit equa-

tions are applicable for the range of 0� bA�
bL�

� 2 (Aksoy and

Altan-Sakarya 2006; Niazkar and Afzali 2015a). These

equations facilitate the optimum design of a lined circular

channel without any tedious trial-and-error procedure; a

procedure that is conventionally practiced. Moreover,

unlike the available explicit relations in the literature for

optimum design of lined circular channel, these equations

consider a variable Manning’s roughness with water depth

angle. Applicability of the recommended equations was

investigated for a typical problem.

4.4 A Typical Design Problem

A typical design problem was solved for optimum circular

cross section using both constant (Swamee et al. 2000) and

variable (present work) Manning roughness coefficient.

Given information in this problem includes: (1) the flow

rate (Q = 125 m3/s), (2) the Manning’s roughness coeffi-

cient associated with completely full section (nf = 0.015),

(3) the bottom slope (S = 0.0002), (4) the ratio of the unit

excavation cost to the unit additional cost (
bE�
bA�

¼ 7:0 m) and

(5) the ratio of the unit lining cost to the unit excavation

cost (
bL�
bE�

¼ 12:0 m).

A five-step procedure was followed to solve this prob-

lem using suggested equations:

1. Compute the length scale (k) using Eq. 3.

2. Calculate dimensionless unit cost of additional earth-

work (bA�) using Eq. 5.

3. Calculate dimensionless unit cost of lining (bL�) using

Eq. 6.

4. Verify that
bA�
bL�

falls between 0 and 2.

5. Calculate optimum circular variables using equations

proposed in Eqs. 17 and 18.

Results of applying different models are compared

against numerical computation results as the benchmark

solution for both constant and variable roughness approa-

ches (Table 2). Comparing constant to variable roughness

results (parts A and B) of the table, one notices that totally

different results are obtained for the two approaches (up to

22% difference). It reiterates the importance of considering

roughness variation in an optimum design of lined circular

channels. On the other hand, when variable roughness

approach is undertaken, it is shown that results of the

proposed relations are in a very good agreement with the

0.6

5.6

10.6

15.6

20.6

25.6

0 1 2 3 4 5

D
im

en
si

on
le

ss
 to

ta
l c

os
t

Dimensionless unit of lining cost

βA*=0 βA*=0.2 βA*=0.4

βA*=0.6 βA*=0.8 βA*=1.0

Fig. 9 Variation of dimensionless total construction cost with bL� for

different values of bA�
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corresponding benchmark solution, with a maximum dif-

ference of 0.03%. In order to evaluate the proposed equa-

tions by the MHBMO–GRG algorithm (Eqs. 17 and 18),

the problem is also solved using relations achieved by GA

(Eqs. 19 and 20). The obtained results using these equa-

tions shown in Table 2 demonstrate the superiority of the

hybrid MHBMO–GRG algorithm. It may be concluded that

the proposed equations using MHBMO–GRG algorithm

are capable of appropriately designing an optimum circular

channel. Further investigations are required to implement

such roughness variations in optimum design of other

channel sections. Finally, it may be concluded that the

proposed equations would be utilized for optimum design

of lined circular channels in practice.

5 Conclusions

According to the shortage of water in some parts of the

world and the relatively high amount of required budget for

constructing channels, the optimum design of channels

becomes one of the active areas of investigations in water

resources engineering. In this paper, the optimum design of

lined circular channels incorporating a variable roughness

is presented. According to the conducted literature review,

in almost all of the studies on the optimum design of cir-

cular sections, variation of Manning’s coefficient with

water depth angle was not taken into account. Hence, this

variation, which was previously approved based on

experimental studies on the circular channels, was imple-

mented in the optimal design of lined circular channels.

Moreover, a new hybrid optimization algorithm, the so-

called the MHBMO–GRG algorithm, was utilized to solve

the defined optimization design problem. The considerable

discrepancy between the optimum results obtained in

constant and variable roughness approaches obviously

shows the necessity of considering the variation in the

design procedure of circular channels. Based on the results

of the variable roughness approach, a database for various

values of dimensionless unit costs was prepared. New

explicit equations for optimum design of lined circular

channels were proposed using this data base. The proposed

equations perform with acceptable accuracy based on the

prepared database. Furthermore, the performance of the

recommended design equations was investigated in solving

a typical problem in the literature. The results demonstrate

the accuracy and applicability of the new explicit equations

comparing with the ones available in the literature. It can

be concluded that not only is considering variation of

Manning’s roughness in optimum design of circular

channels necessary, but also the proposed explicit design

equations in this study can be used by water resources

engineers and researchers for optimum design of lined

circular channels.

Table 1 Performance of the

proposed explicit equations
Proposed models Explicit equations R2 RMSE

Train data

GA Equation 20 for y* 0.8758 0.0209

Hybrid MHBMO–GRG algorithm Equation 18 for y* 0.8708 0.0195

GA Equation 17 for r* 0.9460 0.0344

Hybrid MHBMO–GRG algorithm Equation 19 for r* 0.9465 0.0343

Test data

GA Equation 20 for y* 0.9270 0.0124

Hybrid MHBMO–GRG algorithm Equation 18 for y* 0.9245 0.0123

GA Equation 17 for r* 0.9357 0.0299

Hybrid MHBMO–GRG algorithm Equation 19 for r* 0.9382 0.0296

Table 2 The optimum results achieved by different models for the

circular design problem

Proposed models Optimum section

variables

Dimensionless

total construction

cost
Channel

radius

Normal

depth

Constant roughness

Swamee et al. (2000) 6.5879 6.1027 7.3955

Aksoy and Altan-

Sakarya (2006)—first

model

6.6044 6.1191 7.4149

Aksoy and Altan-

Sakarya (2006)—

second model

6.5809 6.131 7.4314

Niazkar and Afzali

(2015a)

7.0699 5.8952 7.0871

Numerical computation

for constant roughness

6.9725 5.9388 7.1538

Variable roughness

GA (this study) 7.2578 6.5774 9.0849

Hybrid MHBMO–GRG

algorithm (this study)

7.2583 6.6303 9.1504

Numerical computation

for variable roughness

7.1798 6.6598 9.1472
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