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Abstract In recent years, a conditionally stable explicit

time integration scheme using cubic B-spline function has

been proposed for solving the problems in structural

dynamics. The current paper presents a scheme where this

method is developed to an efficient implicit uncondition-

ally stable time integration method. In this research, in

order to apply the stabilization process, first, a series of

implicit standard formulas were derived from previous

explicit formulation. Then after inserting two controlling

parameters c and b in the standard formulas, unconditional

stability is guaranteed. The values of these two parameters

have been determined to not only maintain the stability but

also ensure the desired accuracy. Finally, for the new

method, a simple step-by-step algorithm is presented.

Stability and accuracy analysis of the proposed algorithm

has been completely investigated. The efficiency and

computational cost of the proposed method are demon-

strated through two numerical simulations. Compared with

those from some of the existing numerical methods in the

literature, such as the Bathe method, the proposed method

has higher computation efficiency with less time

consumption.

Keywords Cubic B-spline � Time integration � Implicit �
Unconditional stability � Consistency � Dissipation �
Dispersion

1 Introduction

Step-by-step direct time integration algorithms are widely

used in the computational analysis of structural dynamics and

transient wave propagation problems. Efficient and accurate

numerical integration methods have been and continue to be

the focus of considerable attention because they have an

inherent simplicity in solving problems of structural dynam-

ics and are the only tools to obtain solutions to general non-

linear structural dynamics problems. For reliable solution, a

stable and efficient integration algorithm is desirable.

Generally, there are two basic categories of step-by-step

integration methods. A time integration method is implicit

if the solution procedure requires the factorization of an

‘effective stiffness’ matrix and is explicit otherwise

(Dokainish and Subbaraj 1989; Subbaraj and Dokainish

1989). Both explicit and implicit methods have their own

advantages and disadvantages. Implicit methods require a

much larger computational effort per time step when

compared with explicit methods.

Stability is the most important characteristic of a time

integration method. Depending on the stability character-

istic, integration algorithms are classified as either uncon-

ditionally or conditionally stable, where unconditional

stability implies that the numerical solution of a free-vi-

bration problem with any arbitrary initial conditions does

not grow without bound for any integration time step size

(Bathe 1996). The implicit methods can be designed to

have unconditional stability, in linear analysis, so that the

time step size can be selected only based on the charac-

teristics of the problem to be solved. On the other hand,

explicit methods when using a diagonal mass matrix may

require only vector calculations. Hence, the computational

cost per time step is much lower. However, an explicit

method can only be conditionally stable. Therefore,
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explicit methods may be effective when the time step size

required by the stability limit is about the same as the time

step size needed to describe the physical problem, and this

is frequently the case in wave propagation analyses. More

details of time integration methods can be found in Bathe

(1996) and Chopra (2007) and the references therein.

Various different time integration algorithms have been

proposed. The oldest and most powerful algorithms include

the Newmark family of integration algorithms (Newmark

1959), Wilson method (Wilson et al. 1973; Wilson 1986) and

Hilber-Hughes-Taylor a-method (Hilber et al. 1977). Today

also new efficient methods are being developed. For example,

Kolay and Ricles (2014) developed a family of uncondi-

tionally stable direct integration algorithms with controllable

numerical energy dissipation as the explicit KR-amethod and

Soleymani et al. (2009) proposed a time integration algorithm

for linear transient analysis based on the reproducing kernel

method. Recently, Bathe (2007) proposed an efficient time

integration method for solving the problems in structural

dynamics and wave propagation. Desirable performance of

the Bathe method was demonstrated in a series of research

papers (Bathe 2007; Bathe and Noh 2012; Noh and Bathe

2013). Bathe (2007) developed a simple implicit time inte-

gration method which can remain unconditionally

stable without the use of adjustable parameters. This implicit

method shows very desirable calculation accuracy and high-

frequency dissipation characteristics. However, this method

consists of two sub-steps within each time step and thus

consumes much more computation time than other conven-

tional methods. Subsequently, Noh and Bathe (2013) pre-

sented an explicit time integration method which possesses

second-order accuracy for systems with and without damp-

ing. By use of two sub-steps within each time step, this

scheme can achieve a desired numerical damping to suppress

undesirable spurious oscillations of high frequencies.

The analysis of integration algorithms is typically carried

out in the time domain. In accuracy evaluation of the time

integration methods, usually two quantities are determined:

dispersion and dissipation (Hilber and Hughes 1978). Dissi-

pation (amplitude decay) and dispersion (period elongation)

are two criteria used to evaluate the performance of an inte-

gration algorithm. Apart from numerical dissipation, it is

desirable for the algorithms to possess unconditional stability

so that time increment of any size can be adopted without

introducing numerical instability. The stability and accuracy

of different integration algorithms have been extensively

studied using the amplification matrix and its associated

eigenvalues (Belytschko and Hughes 1983). An efficient

method is one which, despite the ability of high-frequency

dissipation, neither causes loss of accuracy, nor introduces

excessive algorithmic damping in important low frequency

modes. Indeed, efficient algorithm creates some damping in a

time integration method by use of adjustable parameters.

Most of present-day time integration methods, such as the

higher-order mixed method (Wang and Au 2004), the two-

step lambda method (Leontyev 2010) and the Newmark-type

integration schemes (Newmark 1959;Wood et al. 1981), have

parameters that can control the degree of numerical dissipa-

tion as well as the stability and accuracy.

Application of cubic and quartic B-spline functions for the

numerical solution of dynamic systems has been presented by

Rostami and Shojaee in a series of papers (Shojaee et al.

2011, 2015; Rostami et al. 2012, 2013). Implementation of

cubic B-spline for the numerical solution of SDOF dynamic

systems was introduced by Shojaee et al. (2011). Then in

another work (Rostami et al. 2013), the proposed method was

generalized for MDOF systems. The proposed method oper-

ates well, but its shortcomingwas its conditional stability. This

paper introduces a new version of previous work (Rostami

et al. 2013) and resolves the above mentioned shortcoming by

creating controllable damping in the algorithm. In this study,

the proposed method is regenerated and developed to an

unconditionally stable state. The proposed method has

appropriate convergence, accuracy and low time consump-

tion.Accuracy and stability analysis has been done profoundly

in that paper. This time integration method benefits from a

high order accuracy compared to the methods in the literature.

As it is well known, the cost of an analysis is directly

related to the size of the time step which has to be used for

stability and accuracy. In this paper, an unconditionally

stable scheme is presented which allows a relatively large

time step to be used. Wen et al. (2014, 2015) proposed an

explicit method by utilizing a family of uniform septuple

and quintic B-splines. Wen’s method possesses high cal-

culation accuracy, but has complicated algorithm and

consumes more computation time compared to other con-

ventional methods due to its complex formulations, espe-

cially for the dynamic system with very large DOFs.

This paper is formed as follows. In the next section, we

have a brief review of the cubic B-spline time integration

method. Section 3 is devoted to derivation of new and stan-

dard form of formulas from previous formulation. Section 4

is allocated to developed method using stabilization process.

Section 5 is assigned to properties analysis of the proposed

implicit time integration method such as stability, conver-

gence, dissipation and dispersion, and finally a step-by-step

algorithm of the proposed method has been introduced at the

end of this section. Finally in Sect. 6 the efficiency of the

proposed method is demonstrated with two examples.

2 Cubic B-Spline Direct Time Integration Method

A conditionally stable explicit time integration scheme using

cubic B-spline function was proposed by Shojaee et al. (2011)

and Rostami et al. (2013), for solving the problems in structural
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dynamics. In the first paper (Shojaee et al. 2011), by use of

periodic cubic B-spline interpolation polynomial, the authors

proceeded to solve the differential equation of motion gov-

erning single-degree-of-freedom (SDOF) systems and later in

the second paper (Rostami et al. 2013) proposed method was

generalized for multi-degree-of-freedom (MDOF) systems.

Finally after doing a series of algebraic operations, a straight-

forward formulationwas derived from the approximation of the

response of the system with B-spline basis. In order to access

more content about this method, see (Rostami et al. 2013).

In the following, the complete step-by-step algorithm of

this proposed method for dynamic analysis of SDOF sys-

tems is given in Table 1.

3 New Formulation

Before entering the stabilization stage of the proposed

method, it is necessary to change the previous explicit form

of formula into the new implicit formulation. To achieve

this goal, it is required to perform a series of algebraic

operations on previous formulas. At first, we solve the

following equations in order to obtain Ci�3 to Ci�1. These

equations are derived from Table 1.

uðtiÞ ¼
1

6
Ci�3 þ 4Ci�2 þ Ci�1ð Þ ð1aÞ

_uðtiÞ ¼
1

2Dt
Ci�1 � Ci�3ð Þ ð1bÞ

€uðtiÞ ¼
1

Dt2
Ci�3 � 2Ci�2 þ Ci�1ð Þ ð1cÞ

So, having Eq. (1) in hand, it is possible to solve the

system equations and write these three unknowns in terms

of displacement, velocity, acceleration as

Ci�1 ¼ ui þ Dt _ui þ
Dt2

3
€ui ð2aÞ

Ci�2 ¼ ui �
Dt2

6
€ui ð2bÞ

Ci�3 ¼ ui � Dt _ui þ
Dt2

3
€ui ð2cÞ

Setting Eq. (2a) at the current time ðtÞ equal to Eq. (2b)

at the next time ðt þ DtÞ, we will get to

Ci�1 ¼ ui þ Dt _ui þ
Dt2

3
€ui ¼ uiþ1 �

Dt2

6
€uiþ1 ð3Þ

Table 1 Step-by-step solution

using cubic B-spline direct

integration method (for SDOF

systems)

A. Initial calculation

Determine stiffness k, mass m and damping ratio n of the system

Specify the force value applied to the system in each time instant

Determine initial value of displacement u0 and velocity v0

Select appropriate time step (Dt\Dtcritical) and calculate constant parameters a; b and c as

a ¼ 1

Dt2
� nx

Dt
þ x2

6

� �

b ¼ �2

Dt2
þ 2x2

3

� �

c ¼ 1

Dt2
þ nx

Dt
þ x2

6

� �
where x ¼

ffiffiffiffi
k

m

r

Using the terms below determine the values of three unknown coefficients (C�3;C�2 and C�1);

C�3 ¼
Dt2

6
�3bu0 � Dtð4c� bÞv0 þ

2Fðt0Þ
m

� �

C�2 ¼
Dt2

6
3ðcþ aÞu0 þ Dtðc� aÞv0 �

Fðt0Þ
m

� �

C�1 ¼
Dt2

6
�3bu0 þ Dtðb� 4aÞv0 þ

2Fðt0Þ
m

� �

B. For each time step (i ¼ 0,1,. . .,n)

Calculate displacement, velocity and acceleration simultaneously, by

uðtiÞ ¼
1

6
Ci�3 þ 4Ci�2 þ Ci�1ð Þ

_uðtiÞ ¼
1

2Dt
Ci�1 � Ci�3ð Þ

€uðtiÞ ¼
1

Dt2
Ci�3 � 2Ci�2 þ Ci�1ð Þ

Calculate unknown coefficient Ci from i ¼ 0 to ðn� 1Þ by

Ci ¼ 1
c

Fðtiþ1Þ
m

� aCi�2 � bCi�1

� �
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Then if we arrange the above equation in terms of uiþ1,

it can be expressed as

uiþ1 ¼ ui þ Dt _ui þ
Dt2

6
ð€uiþ1 þ 2€uiÞ ð4Þ

Similarly, if we do this process for Eq. (2b) at the cur-

rent time ðtÞ and Eq. (2c) at the next time ðt þ DtÞ and then

arrange the outcome in terms of _uiþ1, we get to

_uiþ1 ¼ _ui þ
Dt
2
ð€uiþ1 þ €uiÞ ð5Þ

Now, having Eqs. (4) and (5) we can rewrite this

equation in terms of D€ui as follows:

Dui ¼ Dt _ui þ
Dt2

2
€uþ Dt2

6
D€ui ð6Þ

D _ui ¼ Dt€ui þ
Dt
2
D€ui ð7Þ

The formulas obtained in the end of the above algebraic

calculation have the same format as those standard equa-

tions of the methods in the literature. These new derived

formulas are shorter than the similar formulas in the pre-

vious papers but have exactly the same performance as

before. Having the new implicit equations, i.e., Eqs. (6)

and (7), it is possible to implement stabilization process in

order to provide unconditional stability.

4 The Proposed Method; Modified Cubic B-Spline

Existence of one or two independent parameters in time

integration methods can control the behavior of numerical

method, so by adjusting the values of these parameters,

stability of integration method is satisfied even in a large

time step. Meanwhile, these independent parameters, in

addition to stability, control the rate of accuracy and con-

vergence compared to the exact solution.

Here we multiply two independent parameters c and b in

the last term of Eqs. (6) and (7), i.e., D€uiþ1. As ut and _ut are
the functions of €utþDt, independent parameters b and c for

controlling stability and accuracy are multiplied in accel-

eration term and, as a result, these adjustable parameters

control stability and accuracy of the proposed method.

Indeed, it causes some damping in the algorithm. So we

rewrite Eqs. (6) and (7) as,

uiþ1 ¼ ui þ Dt _ui þ
Dt2

2
€ui þ

bDt2

6
D€uiþ1 ð8Þ

and

_uiþ1 ¼ _ui þ Dt€ui þ
cDt
2

D€uiþ1 ð9Þ

In the above equations, D€uiþ1 ¼ €uiþ1 � €ui.

In order to write a computer code, Eqs. (8) and (9) can

be written in an implicit form as below. In these equations,

term D€uiþ1 is omitted.

uiþ1 ¼ ui þ Dt _ui þ Dt2
1

2
� b

6

� �
€ui þ

bDt2

6
€uiþ1 ð10aÞ

_uiþ1 ¼ _ui þ Dt 1� c
2

� �
€ui þ

cDt
2

€uiþ1 ð10bÞ

5 Analysis of Proposed Method

Stability, numerical dissipation and dispersion character-

istics of an integration algorithm are generally analyzed by

two approaches, namely, (1) recurrence relations using an

amplification matrix or (2) discrete control theory (Be-

lytschko and Hughes 1983). In this study, the first method

will be used.

By investigating the properties of a numerical method

such as convergence, stability, accuracy, the most favorable

values of independent parameters such as c and b can be

obtained so that high accuracy is achieved while uncondi-

tionally stability is maintained. To establish the convergence

of an algorithm in addition to stability, consistency and

accuracy must be also considered. Measure of accuracy can

be evaluated by investigating the numerical dissipation and

dispersion (Belytschko and Hughes 1983; Volgers 1997).

5.1 Stability Analysis

Stability analysis of an integration algorithm applied to

linear elastic systems is generally carried out by the

amplification matrix approach. An amplification matrix is

formed for an integration algorithm, and the algorithm is

considered to be unconditionally stable if the spectral radius

of the amplification matrix does not exceed the value of 1.0

for any value of xnDt, where xn is the highest natural fre-

quency of the structure and Dt is the time step size used in

the integration algorithm (Bathe 1996). Otherwise, the

integration algorithm is considered to be conditionally

stable. To this end, the equations of the proposed algorithms

for a SDOF system under free-vibration can be represented

by the following matrix recursive relationship:

X̂tþDt

� �
¼ A½ � X̂t

� �
þ Lf g f̂tþt ð11Þ

where X̂tþDt and X̂t are vectors storing the solution quan-

tities (e.g., displacements, velocities) and f̂tþt is the load at

time t þ m. The m may be 0, Dt or any other value that is

different for each integration method. The matrix A is

called amplification matrix (Bathe 1996).

Now, having Eqs. (10a) and (10b) in hand, it is possible

to make the amplification matrix. The amplification matrix
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of each method can be ascertained by considering the

SDOF model in the discrete time domain in t þ Dtðiþ 1Þ
time instant as follows

€uiþ1 þ 2nx _uiþ1 þ x2uiþ1 ¼ fiþ1 ð12Þ

where n and x are the damping ratio and natural frequency

of the system, respectively and fiþ1 ¼ Fiþ1=m. So that m is

the mass of the system and Fiþ1 is external force applied to

the system.

Inserting Eqs. (10a) and (10b) in Eq. (12), we get to an

equation with €uiþ1 as the only unknown. After simplifica-

tion, this equation can be written as it is shown below

€uiþ1 ¼ 2j
c
2
� 1

� �
þ l

b
6
� 1

2

� �� �
€ui þ

�2j
Dt

� l
Dt

� �
_ui

� l
Dt2

þ lfiþ1

x2Dt2
ð13Þ

where l ¼ 1
x2Dt2 þ

nc
xDt þ

b
6

� ��1

and j ¼ nl
xDt.

Equation (13) represents the acceleration at time instant

iþ 1 in terms of all responses at time i. If we replace this

equation with terms €uiþ1 in Eq. (10), two equations will be

obtained. These two equations and Eq. (13) make a rela-

tionship of the form of Eq. (11) as,

€utþDt

_utþDt

utþDt

0
@

1
A ¼ ½A�

€ut
_ut
ut

0
@

1
AfLgftþDt ð14Þ

According to the fact that the stability of an integration

method is determined by examining the behavior of the

numerical solution for arbitrary initial conditions, we

consider the integration of Eq. (14) when no load is satis-

fied, i.e., f ¼ 0 (Bathe 1996).

It can be shown mathematically that the response pro-

duced by the recursive relation in Eq. (14) for any arbitrary

initial conditions and Dt will be bounded if the magnitude

of all the eigenvalues of the amplification matrix in A are

less than or equal to unity. In other words, the spectral

radius of the amplification matrix qðAÞ ¼ maxðkiÞ where ki
are the eigenvalues, is strictly less than unity, ensure

bounded response, where the eigenvalues ki can be deter-

mined by solving the following eigenvalue problem.

Since the changes of damping ratio do not have much

impact on variation of spectral radius, here, assume n ¼ 0

in amplification matrix. So amplification matrix A in

Eq. (14) is obtained as

A ¼

l
b
6
� 1

2

� �
� l
Dt

�l
Dt2

Dt 1� c
2

� �
þ lc

2

b
6
� 1

2

� �� �
1� cl

2

�cl
2Dt

Dt2
1

2
� b

6

� �
þ lb

6

b
6
� 1

2

� �� �
Dt 1� cl

2

� �
1� bl

6

2
6666664

3
7777775

ð15Þ

where l ¼ 1
x2Dt2 þ

b
6

� ��1

and x is a natural frequency of

the system.

A� kIj j ¼ k3 � 2A1k
2 þ A2k� A3 ¼ 0 ð16Þ

where I is the identity matrix of dimension 3 9 3, A1 ¼
trace of A, A2 ¼ sum of 2� 2 principal minors of A, and

A3 ¼ determinant of A. In the characteristic equation

A3 ¼ 0, thus the vanished eigenvalue is k3 ¼ 0 and the

characteristic equation can be written as the following

form:

k2 þ a1kþ a2 ¼ 0 ð17Þ

where

a1 ¼
l
2
ð1þ cÞ � 2 ð18Þ

and

a2 ¼
l
2
ð1� cÞ þ 1 ð19Þ

Stability of the proposed algorithm depends on the

behavior of Eq. (17) (Belytschko and Hughes 1983).

According to Rough–Horwitz criteria, in order for a

dynamic system to be stable, all the roots of the charac-

teristic equation of the eigenvalue problem must have

negative real parts (Dorf and Bishop 1995). For Eq. (17),

that roots of this equation are k1;2 ¼ ð�a1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a2

p
Þ=2.

Rough–Horwitz criteria are confirmed when a1 and a2 are

positive. So if the roots of the characteristic equation are

real, both of them should be negative and if these roots are

complex, both of them should have negative real parts.

Considering a1 [ 0 complex conjugate roots of character-

istic equation leads to a21 � 4a2 � 0. According to the polar

space, inserting a1 and a2 in a
2
1 � 4a2 � 0 helps to conclude

that the characteristic equation has a pair of complex con-

jugate roots if

l� 16

cþ 1ð Þ2
ð20Þ

Due to the definition of l, the above inequality is

determinate when

1

16
cþ 1ð Þ2� b

6
� 1

x2
i Dt2

i ¼ 1. . .N ð21Þ

so, N is the number of system degrees of freedom. Due to

the above conditions, solving the characteristic Eq. (17),

the eigenvalues will be obtained as,

k1;2 ¼ ~A� i~B ð22Þ

where

~A ¼ l
4
ðcþ 1Þ � 1 ð23Þ
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and

~B ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlc2 þ 2lcþ l� 16Þ

p
ð24Þ

The eigenvalues k1 and k2 in polar space can be written

as,

k1; k2 ¼ reih; h 2 ½0; 2p� ð25Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~A2 þ ~B2

p
and h ¼ arctanð~B=~AÞ.

In order to have a stable numerical solution the spectral

radius r must be less than 1.0, i.e., r� 1. So the stability

condition is achieved as

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l

2
ð1� cÞ

r
� 1 ð26Þ

Thus it is concluded that c� 1. So the algorithm is

stable if these conditions are satisfied. Meanwhile,

according to Eq. (21), when xDt ! 1, unconditional

stability can be obtained when,

b� 3

8
ðcþ 1Þ2 ð27Þ

According to the conditions obtained from the above

equations, Fig. 1 depicts stability bounds and regions for

the proposed method. Figure 2 shows the variation of

spectral radius in terms of variation of time step Dt=T for

different values of c and b. As indicated in the graph, the

proposed method is stable when the parameter c is more

than unity. However, parameter b is dependent on c.
Figure 3 compares spectral radius of modified cubic

B-spline method with previous version, conditionally

stable cubic B-spline methods (Shojaee et al. 2011; Ros-

tami et al. 2013). As it is clear, stability limit of cubic

B-spline method is 0.55, while after stabilization, the

spectral radius is less than unity for all values of Dt=T .

5.2 Consistency and Convergence

A time integration scheme is said to be consistent if (Rio

et al. 2005):

lim
Dt!0:0

utþDt � ut

Dt
¼ _ut; lim

Dt!0:0

_utþDt � _ut
Dt

¼ €ut ð28Þ

Checking the above relation for the proposed method

will result in

lim
Dt!0

_utþDt � _ut
Dt

utþDt � ut

Dt

2
64

3
75 ¼ lim

Dt!0

1� c
2

� �
€ut þ

1

2
€utc

_ut þ Dt
1

2
� b

6

� �
€ut þ

Dt
6
€utb

2
664

3
775

¼
€ut

_ut

	 

ð29Þ

It is shown that the proposed method is consistent for all

values of c and b parameters but order of accuracy should

be determined for this new scheme.

The algorithm is convergent if for a fixed tn ¼ nDt the
displacement value un equals the true solution of Eq. (12)

(when no load is satisfied, i.e.,f ¼ 0) in the limit n ¼ 1,

Dt ¼ 0.

Many important properties of an integration algorithm

can be determined from the spectral properties of its

amplification matrix A. Equation (16) represents the char-

acteristic equation for A, as the invariants of A are:

A1 ¼ 1� l
4
ð1þ cÞ ð30Þ

A2 ¼ 1þ l
2
ð1� cÞ ð31Þ

Expanding Eq. (14), in form X̂tþDt
� �

¼ A½ � X̂t

� �
, for

three consecutive time steps of equal length Dt, velocities
and accelerations may be eliminated leading to difference

equation in terms of the displacements:

unþ1 � 2A1un þ A2un�1 � A3un�2 ¼ 0 n 2 2; 3; . . .;N � 1f g
ð32Þ

Comparison of Eq. (32) with (16) demonstrates that the

discrete solution has the representation

un ¼
X3
i¼1

cik
n
i ð33Þ

where c1 to c3 depend on the initial conditions.

The local truncation error of (32) is

r¼ uðtþDtÞ� 2A1uðtÞþA2uðt�DtÞ�A3uðt� 2DtÞ½ �=Dt2

ð34Þ

where u satisfies the equilibrium equation.

Using derivation of u and Taylor expanding u about t,

Eq. (34) can be written as:

Fig. 1 Stability bounds and regions
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r ¼
Xm
i¼0

TiDt
i�2uðiÞðtÞ þ OðDtm�1Þ ð35Þ

where

T0 ¼ 1� 2A1 þ A2 � A3 ð36Þ

Ti ¼ 1� ð�1ÞiA2 � ð�2ÞiA3

� �
=i! ð37Þ

The difference Eq. (32) is said to be consistent with the

differential Eq. (12) if r ¼ OðDtÞk in which k is called the

order of accuracy.

Since u satisfies homogeneous SDOF model equation

m€uþ ku ¼ 0 (i.e., Eq. (12) with f ¼ 0 and n ¼ 0), all

derivatives in (35) of second and higher order can be

eliminated. Setting m ¼ 4 in (35) and eliminating higher-

order derivations yields

r ¼ X�2T0 � T2 þ X2T4
 �

x2uþ X�1T1 � XT3
 �

x2 _uþ OðDt3Þ
ð38Þ

In which X ¼ xDt, T0 ¼ l and T1 � T4 are defined by

T1 ¼ � l
2
ð1� cÞ ð39aÞ

T2 ¼ 1þ l
4
ð1� cÞ ð39bÞ

T3 ¼
T1

3!
ð39cÞ

T4 ¼
1

4!
ð2T2Þ ð39dÞ

Employing the above in Eq. (38) reveals that

r ¼ � l
2
ð1� cÞ 1

Dt
� x2Dt

3!

� �	 

_uþ ODt2 ð40Þ

It is clear from Eq. (40) with no restrictions on c and b
the difference equation is consistent and first-order accu-

rate. However, if c ¼ 1 the order of accuracy is at least 2,

i.e., ODt2. Assuming this is the case, Eq. (38) becomes
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r ¼ l
Dt2

� x2 þ X2

4!

� �
uþ ODt3 ð41Þ

Thus the order of accuracy is at least 3, i.e., ODt3, if

b ¼ 6

X
1

ð1� Dt2=24Þ � 1

� �
ð42Þ

So the above equation indicates that, to have second-

order order accuracy, b should be selected based on model

frequency and specified time step.

5.3 Dissipation and Dispersion

Evaluation of dissipation and dispersion error is another

factor for determination of the efficiency of a method. That

is, we should evaluate the amplitude decay and period

elongation for a periodical dynamics. The solution of

Eq. (16) or (32) may has two conjugate complex roots.

Denote the complex roots by k1 and k2 are principal. They
can be expressed as follows [see also (Hilber 1976)]:

k1;2 ¼ ~A� i~B ¼ exp � �X �n� i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� �� �
ð43Þ

where ~A and ~B are real [defined in Eq. (22)] and i ¼
ffiffiffiffiffiffiffi
�1

p
.

The coefficients �X and �n are defined by

�X ¼ arctgð~B=~AÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
ð44Þ

�n ¼ � lnð~A2 þ ~B2Þ=2 �X ð45Þ

Substituting Eq. (43) in (33), the following expression

for u is obtained

un ¼ exp ��n �xtn
 �

c01 cos �xdtn þ c02 sin �xdtn
� �

þ c3k
n
3 ð46Þ

where �x ¼ �X=Dt and �xd ¼ �x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
. The constant c01

and c02 are determined from the initial conditions. As the

influence of the spurious root k3 vanishes in the limit Dt ¼
0 for convergent algorithms, Eq. (46) shows that the

quantity �n can be used as a measure of the numerically

dissipated energy. �n will be called the algorithmic damping

ratio (dissipation) in analogy to the physical damping ratio

n. Some references used amplitude decay (AD) instead of �n
so that �n ¼ AD=2p. The parameter s also defined by

s ¼
�T � T

T
¼ x

�x
� 1

� �
ð47Þ

T ¼ 2p=x, and �T ¼ 2p= �x are convenient measures of

frequency distortion (dispersion) numerically introduced

by the algorithm. s will be called the relative period error

(TD).

According to Eq. (45), ~A2 þ ~B2 ¼ 1 leads to no dissi-

pation for method, i.e., AD ¼ 0. The result will be c ¼ 1

for the proposed method. The error related to the numerical

damping or, in other words, the rate of amplitude decay,

has been investigated for the proposed method. Figure 4

shows algorithmic damping ratio in terms of Dt=T for

different values of c higher than one. As it is clear from the

graphs, for c ¼ 1 the proposed method behaves without

numerical damping.

In order to achieve maximum accuracy, relative period

error (TD) has been determined while no algorithmic

damping exists (c ¼ 1). In this case, TD depends on both

the independent parameter b and time step Dt. Figure 5

plots the curves of the relative error of period versus the

ratio of Dt=T for different parameter b in the region of

0.1–1.5.

The data in Figs. 4 and 5 show that for the integration

methods, the magnitude of error measurements usually

increases when the time step Dt increases. The most

favorable value of b is 1.5 and it is obtained when algo-

rithmic damping is nonexistent (i.e., c ¼ 1) because it leads

to the minimum value of relative period error. Although

choosing b less than 1.5 leads to decrease in dispersion

error, it should be noted that lower values do not guarantee

the unconditional stability. It should be noted that, the

results in the proposed method with c ¼ 1 and b ¼ 1:5 are

perfectly adapted to results of Newmark method with c ¼
1=2 and b ¼ 1=4. Figures 6 and 7 show this issue clearly.

In these figures, ‘MCB-Spline’ is the abbreviation standing

for proposed modified cubic B-spline method.

5.4 Solution Algorithm

In order to write a computer code, the complete algorithm

used in this proposed method is summarized in Table 2.

This algorithm was obtained after doing a series of alge-

braic calculations on Eq. (10) which are not presented here.

If we compare this algorithm with the same algorithm

presented for cubic B-spline method in Rostami et al.

(2013), it will be recognized that the new procedure is

summarized and much simpler.

6 Numerical Evaluation

In this section, the validity of the proposed method is

confirmed with examination of several results. Two

examples are considered, including a three degrees-of-

freedom spring system and a triple layer space truss

structure. The first example is a special ‘model problem,’
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which is very convenient to test the accuracy of numerical

methods and studying the behavior of the numerical solu-

tion when obtaining via the direct integration method is

desired. The second example is a large scale problem to

test computational cost of the integration methods.

6.1 Three Degrees-of-Freedom Spring System

The objective of this section is to present the solution for a

simple linear system that has been evaluated by use of

Bathe and Noh (2013). The calculated solution shows the

value of the method. The solution of the three degrees-of-

freedom spring system is considered and shown in Fig. 8

for which node 1 is subject to the prescribed displacement

over time. The governing equation can be rewritten to

solve only the unknown displacements u2 and u3. For this

system, k1 ¼ 107, k2 ¼ 1, m1 ¼ 0, m2 ¼ 1, m3 ¼ 1 are

considered and the displacement is prescribed at node 1 to

be u1 ¼ sinxpt with xp ¼ 1:2.

The important point to note is that this simple problem

as a ‘model problem’ represent the stiff and flexible parts

of a much more complex structural system. In a mode

superposition solution, the response within these stiff parts

(a response that corresponds to very high artificial fre-

quencies) would naturally not be included. In fact, the

system shown in Fig. 8 is used as a ‘model system’ of such

complex structural systems of many thousands of degrees

of freedom and studying the behavior of the numerical

solution when obtained by the direct integration method is

desired. In this example, the spring system is considered

using zero initial conditions for the displacements and

velocities at nodes 2 and 3 (as must typically be done in a

complex many degrees-of-freedom structural analysis) and

is solved for the response over 10 s. Time-stepping algo-

rithm for the solution of this system is used. The time step

used is Dt ¼ 0:2618; hence, Dt=T1 ¼ 0:0417 and

Dt=T2 ¼ 131:76, where T1 ¼ 6:283, T2 ¼ 0:002 are the

natural periods of the system with two degrees of freedom.

Figures 9, 10, 11, 12, 13 and 14 show the calculated

solutions of node 2. Because for solutions of node 3 the

responses of all numerical methods are to close, here only the

node 2 is investigated. These figures also give the response

obtained in a mode superposition solution, referred to as

‘reference solution’ using only the lowest frequency mode

plus the static correction (Bathe and Noh 2012).

Figures show that in all time-stepping schemes, the pro-

posed and theBathemethods performverywell; particularly,

the velocity and acceleration at node 2 are very well pre-

dicted. But it should be noted that the Bathe method is a two-

stepmethodwhere for each time step, trapezoidal rule is used

Table 2 Proposed step-by-step

implicit algorithm (modified

cubic B-spline method)

A. Initial calculation

Form stiffness matrix K, mass matrix M and damping matrix C of the system

Specify the vector of applied forces to the system F, in each time instant

Initialize U0 and _U0

Select time step Dt and parameters c and b, then calculate integration constants

c� 1; b� 3
8
ðcþ 1Þ2

a0 ¼
6

bDt2
; a1¼

3c
bDt

; a2¼Dta0; a3¼
3

b
� 1;

a4¼a1Dt � 1; a5 ¼ Dt
3c
2b

� 1

� �
; a6 ¼ Dt 1� 2

c

� �
; a7¼

Dt
2
c;

Form effective stiffness matrix K̂

K̂ ¼ K þ a0M þ a1C

Triangularize K̂ : K̂ ¼ LDLT

B. For each time step (i ¼ 0,1,. . .,n)

Calculate effective loads at time t þ Dt

F̂tþDt ¼ FtþDt þM a0ut þ a2 _ut þ a3 €utð Þ þ C a1ut þ a4 _ut þ a5 €utð Þ
Solve for displacements at time t þ Dt:

K̂ utþDt ¼ F̂tþDt

Calculate velocities, accelerations at time t þ Dt

€utþDt ¼ a0 utþDt � utð Þ � a2 _ut � a3 €ut

_utþDt ¼ _ut þ a6 €ut þ a7 €utþDt

Fig. 8 Model problem of three degrees-of-freedom spring system
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in the first half-step and three point backward difference

method is used in the second half-step (Bathe 2007; Bathe

and Noh 2012). However, all other methods under study in

this paper are one-step. In fact, the trapezoidal rule displays

large errors and instability in the calculation of the acceler-

ation at node 2, see Fig. 12. Some methods were omitted in
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Figs. 11, 13 and 14 in order tomake the comparison easier. In

Fig. 14, the first step error in the proposedmethod is less than

that in the Bathe method. Solving this example with the

proposed method, unlike the basic method which was the

subject of researches developed by Shojaee et al. (2011) and

Rostami et al. (2013), shows that themodified cubic B-spline

Fig. 15 Configuration of triple layer spatial structure (section, plan and 3-D view)
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method always maintains its stability and shows high

accuracy.

6.2 Triple Layer Grid (TLG) Structure Under

Earthquake Load

The configuration and dimensions of a structure shown in

Fig. 15 are plan and 3D view of a space truss that has been

retrieved from Mashayekhi et al. (2016). The model is a

triple layer spatial structure with 76 supports in the edges

of the bottom layer. The structure is composed of 5888

members connected by 1325 nodes (joints). The total depth

of the structure is 5 m, while the node spacing of top,

middle and bottom chords is 3 m. The total length of the

lower, middle and upper layers is 57, 60 and 63 m in both

directions, respectively. All members in the structure are

steel pipes with 16.4 cm as outside diameter and 0.45 cm

thickness. The elastic modulus is 2.06 9 1010 kg/m2 and

mass density is 7850 kg/m3. The El-Centro earthquake

record as shown in Fig. 16 is used as vertical ground

motion input data.Dt ¼ 0:02 s has been selected as the time

increment. In the analysis, the damping matrix is derived

based on the mass matrix and the damping ratio of all 3474

modes of the structure so that the equivalent viscous

damping ratio is equal to 5% for all modes (Paz and Leigh

2003). The maximum and minimum period of this system

is 0.702 and 0.0088 s, respectively.

This example has been also analyzed by the methods

which were used in the previous example. The ‘Reference’

is the mode superposition method with considering all

modes in which the separated equations are being solved

through the numerical solution of Duhamel integration

method (Paz and Leigh 2003). An accuracy analysis with

computational time consumption has been performed by

use of a computer (Core i7 CPU @ 2.2 GHz). These

analyses have been performed for 30 s after the earthquake

is applied. The results including the values of vertical

displacements, velocity and acceleration of the joint in the

center of the middle layer have been depicted in Figs. 17,

18 and 19. All results are in terms of meter and second.

Because the time step Dt is small, the results of all

numerical methods are close together. Although the pur-

pose of choosing this issue unlike the previous example is

evaluation of time consumption rate for all methods, for the

sake of accuracy, we investigate the percentage error in the

computed extreme response values. Table 3 shows peak

value computational percentage error and time consump-

tion analysis. It is clear from the table that Bathe method,

trapezoidal rule and the proposed method bring a high

accuracy; meanwhile, the Bathe method takes twice as

much time as the proposed method to solve this problem.

The results obtained from this analysis are demonstrated in

Table 3. This example shows the efficiency and speed of

the proposed method.
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7 Summary and Conclusions

The purpose of this paper was to present a scheme where the

recent proposed conditionally stable cubic B-spline explicit

time integration method is developed to an unconditionally

stable state. A series of new formulas are extracted and by

inserting two controlling parameters c and b in the formulas,

unconditional stability is guaranteed. The values of these two

parameters have been determined to not only maintain the

stability but also ensure the desired accuracy. It is found that

the new scheme can achieve lower numerical amplitude dis-

sipation and period dispersion compared to Wilson’s method

and trapezoidal rule. The new implicit scheme is simple and

effective, and certainly practical when the trapezoidal rule is

not effective or even fails. Numerical evaluations showed that

the proposedmethodmaintains its stability even in analysis of

structures with high frequencies so that in the field of accu-

racy, the proposed method operates as well as the Bathe

method. In addition, time consumption is reasonable in the

proposed method; for a large scale problem, the proposed
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method solved the problem in less than half the time taken by

the Bathe method. Due to its unconditional stability, the pro-

posed implicit technique is an excellent option for the time

integration of a wide range of dynamic problems.
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