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Abstract Stepped spillway is an effective approach to

remove the potential occurrences of cavitation in chute of

spillways and also to significantly reduce the size of energy

dissipators at the toe of dam. In this study, to predict the

energy dissipation ratio of flow over stepped spillways,

artificial neural network, support vector machine, genetic

programming (GP), group method of data handling

(GMDH), and multivariate adaptive regression splines

(MARS) were developed. MARS, GMDH, and GP are

smart function fitting methods that assign more weight to

the most effective parameters on the output. These models,

in addition to predicting the desired phenomena, present a

mathematical expression between independent and depen-

dent variables. Results of applied models indicated that all

models have suitable performance; however, MARS model

with coefficient of determination close to 0.99 in training

and testing stages is more accurate compared to others.

This model also has a high ability to present the mathe-

matical expression between involved parameters in energy

dissipation. To derive the most influential parameters on

efficiency of stepped spillways in terms of energy

dissipation of flow, a review on the structure of models

derived from GP, GMDH, and MARS was carried out.

Results indicated that drop number, ratio of critical depth

to the height of steps, and Froude number are the most

effective parameters on energy dissipation of flow over

stepped spillways.

Keywords Genetic programming � Energy dissipators �
Artificial neural network � Drop number � Support vector
machine

List of symbols

ANFIS Adaptive neuro-fuzzy inference system

ANN Artificial neural network

AVEG Average

bi Bias

DN Drop number

E Specific energy

EDR Energy dissipation ratio

Fr Froude number

g Gravity acceleration

GA Genetic algorithm

GEP Gene expression programming

GMDH Group method of data handling

GP Genetic programming

h Height of steps

Hw Dam height

l Length of steps

LM Least square

MARS Multivariate adaptive regression splines

Max Maximum

Min Minimum

MLP Multilayer perceptron neural networks

PSO Partcle swarm optimization

RBF Radial basis function
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S Slope of stepped spillway

STDEV Standard deviation

SVM Support vector machine

V Flow velocity

wi Weight

y Flow depth

Yc/h Critical depth to the height of steps

C Error penalty factor

w Normal vector

e Loss function

1 Introduction

Stepped spillway is a spillway where steps are installed on

the surface. Installing steps starts close to the crest and

continues to the toe of dams (Chen 2015). Stepped spill-

ways have two main features: high efficiency for energy

dissipation and dramatic decrease in the probability of

cavitation occurrence (Chanson 2002; Frizell et al. 2013;

Pfister and Hager 2011). In terms of energy dissipation, the

feature causes a significant decrease in the size of energy

dissipator structure at the toe of dam (Felder and Chanson

2011). This characteristic considerably reduces the cost of

construction, since energy dissipators are among the most

costly parts of dam construction projects (Sorensen 1985).

Due to the high efficiency of stepped spillways in terms of

energy dissipation and removing cavitation, several

investigations including experimental and numerical

methods have been conducted on hydraulic behavior of

flow over them (Dehdar-Behbahani and Parsaie 2016;

Husain et al. 2014; Morovati et al. 2016; Nikseresht et al.

2013; Parsaie et al. 2015; Zhan et al. 2016). In experi-

mental studies, flow pattern on stepped spillways and the

effect of geometry of steps on energy dissipation have been

evaluated (Mohammad Rezapour Tabari and Tavakoli

2016). By observing the pattern of flow over stepped

spillways, investigators have proposed three classes for

flow regime on these structures. They proposed that flow

regimes can be divided into three classes as napped flow,

transition flow and skimming flow. Napped flow occurs at

low discharge values. In this condition, flow leaves the

upper step and falls down onto the lower step (Fen et al.

2016; Tabbara et al. 2005). Energy dissipation in this

condition is due to the collision of the jet of flow with steps

and hydraulic jump that may occur completely or incom-

pletely. Skimming flow occurs in large discharge value,

and in this status a pseudo-bottom is created between steps

and passing flow. Transition regime is a condition between

napped and skimming flow. For more information on flow

regime over stepped spillways, refer to Boes et al. 2000;

Tatewar and Ingle 1996. Nowadays, by advances in com-

puter facilities and due to the high cost of experiments,

investigators have encouraged the use of numerical method

for simulation of hydraulic phenomena. In this regard,

computational fluid dynamic (CFD) methods for simulation

of flow over steeped spillways have been conducted

(Chatila and Jurdi 2004; Parsaie and Haghiabi 2015a, b;

Zare and Doering 2012). Using CFD techniques is required

to solve Navier–Stokes equations along turbulence models.

Fortunately, powerful open source codes such as Open

Foam and commercial packages such as Flow3D and

Fluent have been proposed (Attarian et al. 2014; Cheng

et al. 2006). Recently, by developing soft computing

techniques in most areas of engineering, investigators have

tried to use them for accurate presentation of results of

experiments (Noori et al. 2015; Samadi et al. 2015; Zahiri

and Azamathulla 2014). Some of the soft computing tech-

niques such as artificial neural networks (ANNs) (Noori

et al. 2010b), adaptive neuro-fuzzy inference system

(ANFIS) (Noori et al. 2010a) and support vector machine

(SVM) (Azamathulla and Wu 2011; Noori et al. 2009)

developed a network for modeling and predicting desired

phenomena. Other types of soft computing techniques also

have been proposed. In the last few decades, in addition to

developing a network, smart functions have also been pre-

sented. In this regard, genetic programming (GP) (Aza-

mathulla and Ghani 2011), gene expression programming

(GEP) (Azamathulla 2013; Azamathulla and Mohd. Yusoff

2013; Emamgholizadeh et al. 2016; Emamgolizadeh et al.

2015; Guven and Kişi 2011; Sattar and Gharabaghi 2015),

group method of data handling (GMDH), and multivariate

adaptive regression splines (MARS) technique can be

mentioned. In these methods, during development process,

more weight is attributed to inputs that have more influence

on the output. Using multilayer perceptron neural network

(MLP), ANFIS (Salmasi and Özger 2014) and GEP

(Roushangar et al. 2014) have been reported for modeling

energy dissipation of flow over stepped spillways. In this

paper, mathematical expression of the relation between

parameters involved in energy dissipation of flow over

stepped spillways using the GMDH, MARS, and GP is

considered. To developed mentioned techniques, results of

a series of experiments that were conducted by authors on

the hydraulic laboratory of soil conservation and watershed

management research institute (Tehran, Iran) are used. To

increase the reliability of modeling the results of similar

experiments were collected and used, as well.

2 Materials and Methods

To define the effect of geometrical parameters involved in

efficiency of stepped spillways, several investigations have

been conducted. Figure 1 shows a sketch of stepped spill-

ways. In this figure, height and length of steps are shown
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by h and l, respectively. Depth of flow over stepped

spillways is shown by y0; upstream specific energy is

defined with E0. Depth of flow at the toe of the dam is

shown by y1, and y2 is the conjugate depth of flow at

hydraulic jump. To calculate energy dissipation of flow

over stepped spillways, Bernoulli equation is applied

between the upstream and downstream of stepped spillway.

Equations (1, 2) are used for calculation of upstream and

downstream specific energies of flow.

E0 ¼ Hw þ y0 þ
V2
0

2g
¼ Hw þ y0 þ

q2

2g Hw þ y0ð Þ ð1Þ

E0 ¼ y1 þ
V2
1

2g
¼ y1 þ

q2

2gy21
ð2Þ

In these equations, q is the discharge per weir length, V0

is the velocity of approached flow, and g is the acceleration

gravity. Energy dissipation ratio (EDR) is calculated using

Eq. (3).

DE
E0

¼ E0 � E1

E0

¼ 1� E1

E0

ð3Þ

Geometrical and hydraulic parameters involved in

energy dissipation are arranged in Eq. (4) to determine

those that affect EDR.

DE
E0

¼ f q; l; h;Hw; g;Nð Þ ð4Þ

where Hw is the height of dam and N is the number of steps.

Salmasi and Özger (2014) used the Buckingham P theory

as the most famous dimensional analysis technique and

derived dimensionless parameters effective on EDR as

Eq. (5).

DE
E0

¼ f
q2

gH3
w

;
h

l
;N;

yc

h
;Fr1

� �
ð5Þ

In Eq. (5), q2/gHw
3 is named drop number and shown by

DN and h/l is declared as the slope of stepped spillway, and

Fig. 1 Main parameters involved in energy dissipation in skimming flow over stepped spillways
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therefore, it is shown by S. Equation (5) can be rewritten

as:

DE
E0

¼ f DN; S;N;
yc

h
;Fr1

� �
ð6Þ

Equation (6) is the foundation for developing soft

computing methods. To develop soft computing methods

including ANN, SVM, GMDH, MARS, and GP, in addi-

tion to obtained results of experiments conducted by

authors, related datasets were collected from Salmasi and

Özger (2014). The histogram of collected dataset is shown

in Fig. 2.

Physical laboratory models of stepped spillways were

constructed from the galvanized iron sheets. The main

channel was 12 m long whose cross section was rectan-

gular with 0.90 m depth and 0.60 width. The side walls of

the channel were made of Plexiglas and its bed was made

from well-pointed steel sheet. In order to control the for-

mation of hydraulic jump, a sluice gate was set at down-

stream. The longitudinal slope of main channel was equal

to 0.001. The depths of flow at upstream and downstream

of the structure were measured by point gage with ±0.1

mm sensitivity. Discharge of flow was measured with a V

notch weir that was installed at downstream for this

Fig. 2 Histogram of collected datasets related to energy dissipation
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purpose. Figure 1 shows a laboratory model. The properties

of models are given in Table 1.

2.1 Review on ANN

Artificial neural network is a common type of soft com-

puting technique composed of a number of neurons

arranged in input, hidden, and output layers. Each neuron is

an independent unit in the network where each input is

multiplied by a specific weight and then introduced to it.

Inputs for the first layer are the original dataset, and inputs

for the second and next layers are the output of each neuron

in previous layer. As stated earlier, inputs are multiplied by

the weights and passed through transfer function that is

given on each neuron. The most common types of transfer

functions are Gaussian, sigmoidal and tansing. The output

of each neuron is summed by a constant value called bias.

The most famous types of ANNs are multilayer perceptron

neural networks (MLP) that have been widely used in most

areas of engineering, especially in hydraulic engineering.

MLP usually includes three layers: the input layer used for

introducing dataset, hidden layer(s) where main network

computation is conducted, and output layer where the

results of computation in hidden layer(s) are accumulated

and presented. As stated, each input is multiplied by a

weight for being introduced to a neuron, and then, results

of acting transfer function on them are summed by a bias;

the values of weights and biases for all neurons available in

networks are validated using training algorithm. Training

means adjusting the variables (weights and biases) to

achieve the lowest difference between model output and

observed data. Training MLP model can be performed

using conventional methods such as Levenberg–Marquardt

method. This subject can also be assumed as an opti-

mization problem where modern optimization techniques

can be applied to solve it. In this study, an MLP model was

developed; the structure of which is shown in Fig. 3. In this

model, tangent sigmoid and pure line functions were cho-

sen as governing functions on neurons of hidden and output

layers, respectively (Emamgholizadeh et al. 2014a, b),

Emamgholizadeh et al. 2016.

2.2 Review on SVM

Support vector machine is a Kernel-based technique that

represents a major advance in machine learning algorithm.

Support vector machine (SVM) is based on machine

learning concept to maximize predictive accuracy; that is,

Minimize: Rsvm x; n�ð Þ ¼ 1

2
xk k2þC

Xn
i¼1

ni þ n�i
� �

Subject

di � xu xið Þ þ bi � eþ ni
xu xið Þ þ bi � di � eþ ni
ni; n

�
i � 0; i ¼ 1; . . .; l;

ð7Þ

where w is a normal vector, (1/2)kxk2 is the regularization
term, C is the error penalty factor, b is a bias, e is the loss

function, xi is the input vector, di is the target value, l is the

number of elements in the training dataset, u(xi) is a fea-

ture space, and ni and ni
* are upper and lower excess

deviations. The architecture of SVM is shown in Fig. 4.

Famous kernel functions are denoted as follows.

1. Linear kernel: K(xi, xj) = xi
Txj

2. Polynomial kernel: K xi; xj
� �

¼ xTi xj þ c
� �d

; c[ 0

3. RBF kernel: K xi; xj
� �

¼ exp �c xi � xj
�� ��� �2

; c[ 0

Table 1 Summary of models of stepped spillways and flow rates

Models hs (m) Ls (m) N Q (l/s)

Model 1 0.05 0.05 16 1–40

Model 2 0.05 0.10 16 1–40

Model 3 0.05 0.15 16 1–40

Model 4 0.08 0.5 10 1–40

Model 5 0.10 0.10 8 1–40

Model 6 0.10 0.15 8 1–40

Model 7 0.10 0.20 8 1–40

Input Layer Hidden Layer

Output Layer

tan-sigmoid transfer function

Linear transfer function

DN

S

N

cy h

1Fr

0E EΔ

Fig. 3 Structure of multilayer

perceptron neural network
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4. Sigmoid kernel: k xi; xj
� �

¼ tanh cxTi xj þ r
� �

; c[ 0

where variables xi and xj are vectors in the input space,

and c is the regularization parameter. Lagrange multipliers

are presented as ai = ai - ai*. The accuracy of prediction

is based on selection of three parameters, i.e., c, e, and C:

the values of which are determined using firefly algorithm

(Parsaie et al. 2016; Azamathulla and Wu 2011).

2.3 Review on GP

Genetic programming (GP) technique is a machine learn-

ing approach used for modeling input–output complex

nonlinear systems that are based on dataset. Developing GP

is based on the concept of genetic algorithm (GA). It means

that the concepts used in genetic algorithm (GA) are

repeated in GP such as genes, multigene, mutation. GP is

also used to build a semiempirical formula from the input–

output dataset; therefore, it often known as symbolic

regression. GP creates the formula that consists of inputs

variables and several mathematical operators, namely (?,

-, /, and *) and functions, namely (ex, x, sin, cos, tan, lg,

sqrt, ln, power). GP performs this process by randomly

generating a population of computer programs (represented

by tree structures) and then mutating and crossing over the

best performing trees to create a new population. This

process is continued until the formula is achieved with a

suitable accuracy. Unlike classical regression analysis

where the designer defined the structure of the empirical

formula, GP automatically generates both the structure and

the parameters of empirical formula. An individual

multigene is comprised of one or more genes and is called

GP tree. To improve the performance of fitness (e.g., to

reduce a model’s sum of squared errors on a dataset), the

genes are obtained incrementally. The final formula may be

a weighted linear or nonlinear combination of each gene.

The optimal weights for the genes are automatically

obtained using ordinary least squares to regress genes

against the output data (Azamathulla et al. 2010; Aza-

mathulla et al. 2008).

2.4 Review on MARS

MARS, proposed by Friedman (1991), is a pliable method

to amp the relationship between independent and depen-

dent variables in a desired system. MARS method is used

to recognize the hidden pattern in dataset in complex sys-

tems. Recognition of pattern is defined via proposing a

number of coefficients and basic functions. These coeffi-

cients and basic functions are justified during regression

operation on the used dataset. The main advantage of

MARS includes its high ability for mapping input param-

eters and desired outputs, developing a simple but robust

model and its being rational in terms of computational cost.

MARS technique is based on simple basis functions

defined as follows:

x� tj jþ¼ max 0; x� tð Þ ¼ x� t x[ t

0 x� t

	
ð8aÞ

t � xj jþ¼ max 0; t � xð Þ ¼ t � x x\t

0 x� t

	
ð8bÞ

where t denotes the knot. Basic functions are sometimes

called mirrored pair functions. These functions are defined

for each input variable such as Xj at observed dataset

related to them. Sets of basic functions are defined as

C ¼ xj � t
� �

þ; t � xj
� �

þ

n o
; x1j; x2j; . . .; xnj

 �

;

j ¼ 1; . . .; p
ð9Þ

The general form of function derived from MARS

model is written as an adaptive function as

y ¼ b0 þ
XM
i¼1

biBFi Xð Þ ð10Þ

where b0 is constant, BFi(X) is known as basic function,

and bi is the coefficient of basic functions. The constant

and coefficient of derived function in MARS model are

justified using least square error technique.M is the number

of basic functions derived from the final stage of model

development. Developing MARS model includes two

stages. The first one is forward stage. In this stage, the

number of basic functions increases to decrease the

Σ

1α

2α

3α

4α

5α

Fig. 4 Network architecture of SVM
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difference between the results of model and observed data.

In the next step of model development, to avoid over-pa-

rameterization and over-fitting, pruning some of the basic

functions is considered. In this stage, regarding cross-val-

idation (GCV) criteria given below, basic functions are

pruned.

GCV ¼ SSE

n 1� C Bð Þ
n

� �� �2
ð11:aÞ

C Bð Þ ¼ Bþ 1ð Þ þ dB ð11:bÞ

where SSE is the sum of square of residuals, n denotes the

number of records, and C(B) defines difficulty criteria,

which increases by the number of basic functions. For more

information, see (Parsaie et al. 2016; Emamgolizadeh et al.

2015; Haghiabi 2016)

2.5 Review on GMDH

GMDH is a soft computing approach categorized in self-

organizing methods developed by Ivakhnenko (1971). In

this model, complex networks are gradually developed

with regard to the performance of a combination of pairs of

inputs and desired output. Each pair of inputs is introduced

to a neuron in GMDH network. In the first hidden layer, all

combinations of input pairs are evaluated. The number of

neurons in the first hidden layer is calculated as shown

below.

Ninp Ninp � 1
� �

2
ð12Þ

As stated, in the first hidden layer, each pair of inputs is

introduced to a neuron in the governing equation on which

is a quadratic polynomial function. In other words, each

pair of inputs is passed through a quadratic polynomial

function as

y ¼ G xi; xj
� �

¼ w0 þ w1xi þ w2xj þ w3x
2
i þ w4x

2
j þ w5xixj

ð13Þ

where �y is the output of each neuron; xi and xj are the

inputs; w1,…,5 are the weights (coefficients); and w0 is a

bias (constant). G(xi, xj) means that the governing function

on neurons is only a proportional pair of inputs. Values of

weights and biases are justified in training stage. Training

means minimizing the difference between output of each

neuron with observed data by adapting coefficients and

constant of governing equation. To this end, conventional

algorithms such as least square (LM) method can be

applied. Training can be assumed as an optimization

problem, and advanced modern optimization algorithms

such as genetic algorithm (GA), particle swarm optimiza-

tion (PSO) can be used to this end. The idea of using the

quadratic polynomial function as transfer function gov-

erning neurons was taken from the Volterra functional

series, which states a complete system can be estimated via

infinite series of polynomial of inputs. This series is also

known as Kolmogorov–Gabor polynomial; the general

form of which is given below.

y ¼ w0 þ
Xn
i¼1

wixi þ
Xn
i¼1

Xm
j¼1

wijxixj þ
Xn
i¼1

Xm
j¼1

Xk
k¼1

wijxixjxk

þ � � �
ð14Þ

In development of GMDH, some concepts of GA

algorithm, namely seeding, rearing, crossbreeding, selec-

tion, and rejection, have been used. In other words, only for

developing the first hidden layer do all inputs participate.

For developing the second hidden layer in GMDH network,

inputs are selected based on their performance. This means

that neurons with more accurate answer are selected. Fig-

ure 5 shows a sketch of GMDH model. As shown here, for

developing the second and next hidden layer(s), neu-

ron(s) with suitable performance in the previous layer are

selected (Karbasi and Azamathulla 2016; Najafzadeh 2016;

Najafzadeh and Azamathulla 2015; Najafzadeh and Barani

2011; Najafzadeh and Bonakdari 2016; Najafzadeh et al.

2016; Najafzadeh and Sattar 2015; Najafzadeh and

Tafarojnoruz 2016; Najafzadeh and Zahiri 2015).

3 Results and Discussion

Development of soft computing techniques is based on

dataset. This means that the basic stage of modeling is data

preparation. In this stage, dataset should be divided into two

groups as training and testing. Assigning dataset to each

group is performed with regard to random approach. It is

notable that it is better to choose a range of groups near each

other. The range of training and testing dataset is given in

Table 2. Training encompasses 80% of dataset, and the rest

(20%) is considered as testing dataset. Training and testing

datasets are used for developing models given in materials

and methods section. The next step of preparation of some

models such as ANNs is designing the structure of model.

Designing the structure includes choosing the number of

hidden layer(s), the number of neuron(s) in each hidden

layer, types of transfer functions on neuron, and learning

algorithm. Learning means justifying the weights and biases

in order to minimize the difference between the model out-

puts and observed desired data.

Developing ANN model is based on designer’s

experiment. However, recommendations of a researcher

who conducted similar studies are also very useful. In this

study, preparing the multilayer perceptron neural network

Iran J Sci Technol Trans Civ Eng (2018) 42:39–53 45
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as a common type of ANN was developed based on rec-

ommendations of Azamathulla et al. (2016). They stated

that to develop MLP model, after data preparation,

designing the structure should be considered step by step.

Based on these recommendations, initially one hidden

layer is considered and then a number of neurons are

chosen. There are different types of transfer functions. In

this study, different types of transfer functions created in

MATLAB software were tested. In the next step and after

finding the proper transfer function, the number of neu-

rons in the same hidden layer may increase in order to

improve the performance of developed model. Another

way to increase the performance of MLP is to increase the

number of hidden layers. A summary of the development

process is presented in Table 3. As given in this table, the

tansig as transfer function has the best and most suit-

able performance compared to other tested functions.

Models shown in row number four are chosen for pre-

dicting energy dissipation of flow over stepped spillways.

As shown in this table, increasing the number of hidden

layers does not have a significant effect on increasing the

model accuracy. It is notable that the proposed MLP

model was trained using LM method. Results of MLP

model in training and testing stages are shown in Figs. 6

and 7. In these figures, the outcome of MLP model is

shown versus the observed data.

Table 2 Range of dataset

assigned to stages of preparing

soft computing models

Stage Range Fr1 Yc/h DN N S EDR

Training Min 0.234 0.094 0.000 3.000 15.000 15.136

Max 9.339 13.781 0.104 50.000 45.000 96.580

AVEG 4.128 2.556 0.012 18.309 33.943 59.292

STDV 1.401 2.566 0.022 14.202 13.465 23.133

Testing Min 0.307 0.233 0.000 3.000 15.000 13.145

Max 6.883 6.327 0.109 50.000 45.000 96.441

AVEG 4.438 2.344 0.014 17.839 34.032 56.412

STDEV 1.500 1.799 0.028 15.323 14.226 23.534

Table 3 Summary of performance of MLP model during develop-

ment stage

Row N-H-L F-HL&TF R2* RMSE* R2** RMSE**

1 1 5-Purelin 0.63 8.47 0.57 10.85

2 1 5-radbas 0.84 6.58 0.81 7.36

3 1 5-logsig 0.93 4.83 0.92 5.25

4 1 5-tansig 0.987 2.65 0.95 3.98

5 1 9-tansig 0.99 2.52 0.96 3.68

N-H-L number of hidden layer(s), F-HL&TF First hidden layer and

transfer function

* error indices of MLP during training stage, ** error indices of MLP

during testing stage

Fig. 5 Schematic of GMDH model development
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Development of SVM is similar to MLP model. This

means that to prepare SVM, the first step is data prepa-

ration. In this study, the same dataset used for developing

MLP was used for preparation of SVM. The next step of

preparing SVM is designing the structure. One subroutine

of designing is choosing transfer function. In this study,

the structure of SVM developed for prediction of energy

dissipation is given in Fig. 4. Four kernel functions are

given in the review on SVM section were tested. Training

SVM can be used as optimization problem. To perform

this task, quadratic optimization method is used. A sum-

mary of testing kernel functions is given in Table 4. As

illustrated in this table, RBF has the best performance

among tested transfer functions. The value of parameters

of kernel function including Gamma value = 33,391.97

and C = 47.61 was obtained in preparation stages.

Results of SVM in training and testing stages are given in

Figs. 6 and 7.

As stated in the review on GP section, GP is a smart

function fitting method. The main point in smart function

fitting is related to assigning more weight to inputs that are

more effective on output. To develop GP model for mathe-

matical expression of involved parameters on energy dissi-

pation ratio, input parameters regarding Eq. (6) (i.e., inputs:

DN, S, N, yc/h, Fr and output: DE/E0) were used. It is

notable that in this study, training dataset used for develop-

ment of ANN and SVM was used for developing GP and

testing dataset is used for evaluating the derived model. To

develop GP, mathematical operations including [summation

(?), mines (-), multiply (9), and division (7)] and a

number of mathematical functions such as (times, minus,

plus, square, tanh, exp) were applied. To derive a suit-

able model, several generations were performed. To derive a

suitable model based on GP, the same approach considered

for developing ANN was considered for using GP. The

number of genes increased one by one and mathematical

functions were added one by one. Results of values of jus-

tified parameters in GP are given in Table 5.

General form of derived model from GP is

DE=E0 ¼ wþ
Pn

i¼1 aigenei. In this equation, w is the bias

and ai is the weight of each gene. Results of derived model

are expressed as Eq. (15). The structure derived from GP is

given in Fig. 8. As shown in this figure, there are five genes

available in derived model. Results of derived model from

GP in training and testing stages are given in Figs. 6 and 7.

As stated in GP model description, GP is a smart fitting

function method. Reviewing the structure of derived model

genes shows that the ratio of critical depth to step height,

drop number, and the number of steps and drop number

appear in most genes. Comparing the performance of MLP

and SVM shows that GP has accuracy close to MLP; how-

ever, the performance of SVM is slightly better than GP.

DE
E0

¼ 87:75þ 3:095
yc

h
þ 3:095N

� 0:02761 square N þ 9:532ð Þ. . .

� 49:14 tanh
yc

h

� �
þ 3:095DN� S� 8:666Fr1DN

� square Fr1ð Þ. . .

� 1:963Fr1
yc

h
tanh Fr1ð Þ

ð15Þ

Fig. 6 Results of proposed applied models in training stage

Fig. 7 Results of proposed applied models in testing stage

Table 4 Summary of performance of kernel functions

Kernel function Train Test

R2 RMSE R2 RMSE

Linear 0.78 10.70 0.85 10.16

Polynomial(3) 0.98 3.13 0.85 9.14

RBF 0.99 1.22 0.98 2.61

Sigmoid 0.96 4.18 0.93 6.17
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Developing GMDH as smart fitting function similar to

other types of soft computing techniques such as MLP,

SVM, and GP is based on dataset. The same dataset used

for preparation of MLP, SVM, and GP was used to

develop GMDH. As stated in the review on GMDH

section, the number of neurons in the first layer is equal

to 10. However, some of them do not deserve to attend

the next layer. Each neuron is trained using training

dataset and then assessed using testing dataset. Being

selected to attend in the next layer is according to per-

formance of neurons in the previous layer. Results of

selected neuron in each layer are shown in Fig. 9. Values

of justified coefficients and biases of equation of selected

neurons are presented in Table 6. As shown in Fig. 9,

proposed model includes three hidden layers. Reviewing

the structure of developed model indicated that the most

effective parameters for modeling energy dissipation of

flow over stepped spillways are Fr1, DN, and yc/h. Results

of developed GMDH model in training and testing stages

are presented in Figs. 6 and 7. Comparing the perfor-

mance of developed GMDH model with MLP, SVM, and

GP shows that the accuracy of GMDH is slightly better

than MLP and GP; SVM is more accurate compared to

GMDH.

Preparation of MARS model similar to MLP, SVM, GP,

and GMDH is based on dataset. The same dataset used for

developing applied models was used to prepare MARS

model. Developing MARS model, as stated in the section

of review on MARS, includes two stages of growing and

pruning. In growing stage, 30 basic functions were con-

sidered and in the next stage (pruning stage) 17 basic

functions were pruned. At the end, optimal MARS model

with 13 basic functions was derived. The inclusive form of

obtained MARS model is given in Eq. (16). Extended form

of MARS model is given in Table 7. The pruning criteria

Table 5 Justified parameters of

GP model
Parameter Description of parameter Setting of parameter

P1 Function set Times, minus, plus, square, tanh, exp

P2 Population size 200

P3 Mutation frequency % 0.94

P4 Crossover frequency % 50

P5 Number of replications 10

P6 Block mutation rate % 30

P7 Instruction mutation rate % 30

P8 Instruction data mutation rate % 40

P9 Homologous crossover % 95

P10 Program size Initial 64, maximum 256

Fig. 8 Structure of derived model from GP

48 Iran J Sci Technol Trans Civ Eng (2018) 42:39–53

123



introduced with GVC parameter in development of MARS

model were derived equal to 0.0021. As mentioned in the

review on MARS model, each basic function has a coef-

ficient and a constant which is adjusted in MARS model

development process and derived using least square

method.

EPR ¼ �2321:246þ
X13
M¼1

bmhm xð Þ ð16Þ

Fig. 9 Structure of developed

GMDH model

Table 6 Results of adjusting

parameters of transfer function

of GMDH model

Layer Neuron b0 b1 b2 b3 b4 b5 RMSE

Layer-1 N1-1 102.999 -7.096 630.329 0.012 9487.0912 -637.271 8.0246

N1-2 65.173 -19.268 2.384 1.170 -0.023 -0.053 10.429

N1-3 83.209 -8.004 -1429.212 0.429 9570.685 35.425 12.39

N1-4 44.125 -1657.141 2.185 13,193.853 -0.035 -1.896 13.143

N1-5 76.830 -1782.860 -0.649 13,414.217 0.012 4.163 13.187

N1-6 116.779 -11.968 -24.768 0.904 0.983 2.342 14.198

Layer-2 N2-1 10.401 0.330 0.101 -0.003 -0.001 0.010 5.33

N2-2 24.276 0.436 -0.766 -0.001 0.007 0.008 7.099

N2-3 44.209 0.349 -1.902 -0.009 0.008 0.029 7.237

N2-4 -0.854 0.073 0.777 0.006 -0.008 0.005 7.994

Layer-3 N3-1 -0.445 0.512 0.486 -0.005 -0.007 0.012 4.987

N3-2 -0.786 0.888 0.121 -0.005 -0.004 0.009 5.203

N3-3 -2.699 2.446 -1.323 -0.002 0.015 -0.014 5.697

Layer-4 N4-1 -0.462 1.809 -0.793 -0.018 0.004 0.014 4.979

Table 7 Basic functions and

related coefficients of MARS

model

Basic function Equation Coefficient (bm)

h1(x) BF1 = max(0, 0.001 -DN) 7615.681

h2(x) BF2 = max(0, Fr1 -2.791) -6.162

h3(x) BF3 = BF2 * max(0, DN -0.016) 435.211

h4(x) BF4 = max(0, DN -0.047) 237.326

h5(x) BF5 = BF2 * max(0, 0.0002 -DN) 13,201.877

h6(x) BF6 = max(0, 0.006 -DN) 1672.668

h7(x) BF7 = max(0, DN -0.0005) 82,585.675

h8(x) BF8 = BF2 * max(0, DN -0.003) 1705.908

h9(x) BF9 = max(0, DN -0.024) -99,006.358

h10(x) BF10 = max(0, 0.024 -DN) 99,310.281

h11(x) BF11 = max(0, DN -0.0005) 10,659.370

h12(x) BF12 = BF7 * max(0, Fr1 -5.225) -4324.478

h13(x) BF13 = BF7 * max(0, 5.225 - Fr1) 2194.232
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Input parameters were considered regarding Eq. (5).

This implies that DN, S, N, yc/h, and Fr1 were consid-

ered as inputs and DE/E0 as output. Results of MARS

model during model development (preparation and test-

ing) are shown in Figs. 6 and 7. As seen in these figures,

MARS model has a high ability for modeling energy

dissipation over stepped spillways. Comparing the results

of MARS with MLP, SVM, GP, and GMDH shows that

MARS is more accurate. Reviewing Table 7 shows that

Fr1 and DN are the most important parameters for

modeling and predicting energy waste of flow over

stepped spillways. This obtained point also upheld the

results of GP.

Evaluation of performance of applied models regarding

standard error indices provided an average value of errors

of models. To provide more information about the distri-

bution of errors through the dataset two famous approaches

including histogram of errors and calculating the developed

discrepancy ratio (DDR) index have been proposed. In this

study, the histogram of errors of each model in develop-

ment and evaluation stages of preparation are proposed, as

shown in Figs 10 and 11. Histogram of errors of MLPNN

shows that most errors are accumulated in the range of -20

to 20 percent in training and -15 to 25 percent for testing

stage. Results of histogram of errors of SVM show that

most errors are accumulated in the range of -20 to 20

percent for training and -10 to 10 percent for testing.

Histogram of errors of GMDH shows that errors are

accumulated in the range of -20 to 20 percent in training

and -12 to 10 percent in testing stage. Our assessment of

histogram of errors of applied models shows that the

minimum range of error is related to MARS model. To

provide an introductory view about the reliability of

applied models, it is better to calculate the DDR index. The

DDR index is defined as the ratio of outcome of models to

the observed data. Ranges of DDR index for applied

models in training and testing are given in Figs 12 and 13.

As shown, the lowest DDR index is for the MARS model.

This indicates that the results of MARS model are more

reliable compared with others.

4 Conclusion

In this paper, energy dissipation of flow over stepped

spillways was modeled and predicted using powerful soft

computing techniques including multilayer perceptron

Fig. 10 Histogram of errors of applied models in training stage
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neural network, support vector machine (SVM), genetic

programming (GP), group method of data handling

(GMDH), and multivariate adaptive regression splines

(MARS). MARS, GP, and GMDH were categorized as

smart function fitting techniques which, in addition to

developing a network, also propose a smart function.

Properties of MARS, GP, and GMDH in terms of smart

fitting function cause more weight to be assigned to

inputs that are more affective on output. Results of all

developed models indicated that those with suitable per-

formance predict the ratio of energy dissipation. However,

MARS model is more accurate compared to others.

Reviewing the structure of obtained models from GP,

GMDH, and MARS techniques revealed that drop

Fig. 11 Histogram of errors of applied models in testing stage

Fig. 12 Results of DDR index

of applied models in training

stages
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number, number of steps, and ratio of the critical depth to

the height of steps are the most effective parameters on

energy dissipation ratio.
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