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Abstract In the recent decades, site layout has been

known as one of the challenging problems among

researchers in the field of construction management. Since

this problem is validated as an NP-complete problem, exact

method cannot find the best solution in particular for the

medium and large-scale problems. Several researches have

been conducted for solving this problem using meta-

heuristics. However, new meta-heuristics may lead to more

accurate solutions in less computational time. In this

research, two new meta-heuristics called CBO and ECBO

have been employed to solve construction site layout

problem. Results show that both of them have capability of

solving this kind of problem. Two case examples are

solved to show the applicability and performance of the

proposed methods.

Keywords Optimization � Site layout �
New meta-heuristics � CBO � ECBO

1 Introduction

Suitable facility layout is believed to be the heart of effi-

cient production (Wong et al. 2010) that should be con-

sidered early in the planning phase (Adrian et al. 2014). An

appropriate construction site layout boosts the effective-

ness and efficiency of works. However, the arrangement of

site facilities is hindered by many constraints such as

limitations on the site area, adjacent buildings, access, the

location and orientation of the building to be constructed

(Lam et al. 2005).

The objective of construction site layout is to arrange

the temporary facilities such as job office, labor residence,

warehouse and batch plants (Adrian et al. 2014), so that all

design requirements are fulfilled and maximize design

quality is achieved in terms of design preferences such as

minimizing the total cost associated with the interactions

between these facilities (Yeh 2006). Based on studies in the

manufacturing industry, materials handling costs can be

reduced by 20–60% if appropriate facility layout is adopted

(Lam et al. 2005).

Since site layout problem is an intricate task, the con-

struction managers often implement this task using previ-

ous experience, ad hoc rules, and first-come-first-serve

approach which leads to inefficiency (Adrian et al. 2014)

and (Said and El-Rayes 2013). Therefore, an effective

construction site layout planning (CSLP) is utmost

important for the success of a construction project (Ning

et al. 2010).

Construction site layout problem can be modeled as a

quadratic assignment problem (QAP) when the costs

associated with flow between departments are assumed to

be linear with respect to distance traveled and quantity of

the flow Tate and Smith (1995). The quadratic assignment

problem is one of the classical combinatorial optimization

problems and is known for its diverse applications and is

widely regarded as one of the most difficult problem in

classical combinatorial optimization problems (Azarbo-

nyad and Babazadeh 2014). QAP problems are known as a

non-polynomial hard problem (NP-hard), and because of

the combinatorial complexity, it cannot be solved exhaus-

tively for reasonably sized layout problems (Yeh 2006). As

an example, for n facilities, the number of possible
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alternatives, that is the number of feasible configurations, is

n! with larger growth than en. This is a huge number, even

for a small n. For 10 facilities, the number of possible

alternatives is already well over 3,628,000. For 15 facili-

ties, we are already in the 12-digit numbers. In real prob-

lems, a project with n = 15 can be considered as a small

project, Yeh (1995).

Due to the complexity of site layout problems, numer-

ous techniques have been proposed to uncover solutions for

site layout problems, but it is nonperforming to obtain the

optimal one by hand calculations. Therefore, optimization

techniques are usually used to search for solutions for site

layout problems (Sanad et al. 2008). The problem has been

solved by researchers using two distinct techniques: exact

algorithms and approximate algorithms. Exact algorithms

such as mathematical optimization procedures have been

designed to find optimum solutions. But it cannot be

adopted for large-scale projects because of the need for

huge calculations and efforts (Sanad et al. 2008). There-

fore, it has been only successful for a single or very limited

number of facilities, as reported by Tommelein et al.

(1993). Approximate algorithms are categorized into two

groups, heuristic and meta-heuristic algorithms, and they

are developed to get the near-optimal solution in the short

and reasonable time for handling complex real-life pro-

jects. When the number of facilities layout departments is

less than 15, these two types of methods are able to reach

an optimal solution. However, when the number of facili-

ties layout departments is more than 15, the problem is

shown to be NP-complete. For definition of NP-complete

problems, the reader may refer to Garey and Johnson

(1979). As the number of departments increases, the

computational time increases exponentially by 2n.

Since the optimal solution is not easy to obtain in large

projects, researchers have tackled the construction site

layout problem (CSLP) utilizing meta-heuristic techniques.

There are many meta-heuristic algorithms that can be used

to address the problem of construction site layouts (Adrian

et al. (2014)).

The use of artificial neural networks was investigated by

Yeh (1995) to improve a predetermined site layout. The

model minimizes a total cost function that includes the cost

of constructing a facility at the assigned location on site

and the cost of interacting with other facilities.

The genetic algorithm (GA) mimics the process of

natural evolution and is routinely used to generate useful

solutions to optimization and search problems. GA gener-

ates solutions to optimization problems using techniques

inspired by natural evolution, such as inheritance, muta-

tion, selection and crossover. Numerous applications of GA

have been proposed to solve the facility site layout problem

(Adrian et al. 2014; Cheung et al. 2002; Li and Love

1998, 2000; Zouein et al. 2002; Mawdesley et al. 2002;

Mawdesley and Al-Jibouri 2003). Li and Love (2000)

presented an investigation applying the genetic algorithm

to attain the optimal solution for single objective CSLP

problem to accommodate facilities of unequal area in

predetermined locations. Osman et al. (2003) proposed a

hybrid CAD-based algorithm using genetic algorithm in

order to optimize the assignment of unequal area facilities

to any unoccupied space at a construction site.

Particle swarm optimization (PSO) is another meta-

heuristic approach that simulates the social behavior of bird

flocking to a desired place, Eberhart and Kennedy (1995).

Zang and Wang (2008) proposed a PSO-based methodol-

ogy. They modeled the CSLP problem to optimize static

layout under single objective function to accommodate

facilities of unequal area in predetermined locations.

Another study related to PSO was developed by Xu and Li

(2012). Their approach uses a multi-objective particle

swarm optimization (MOPSO) algorithm. The approach

has been applied to solve the multi-objective dynamic

CSLP problem. Lien and Cheng (2012) proposed a hybrid

swarm intelligence-based particle-bee algorithm for con-

struction site layout optimization with single objective

function to locate facilities in predetermined locations.

The ant colony optimization (ACO) is a biologically

inspired meta-heuristic that simulates the behavior of ants

searching for food, Dorigo et al. (1996). ACO is employed

to solve facility layout problem in a hypothetical medium-

sized construction site Lam et al. (2007). Gharaie et al.

(2006) and Lam et al. (2007) employed ACO to solve a

static site layout problem for a construction project. Ning

et al. (2010) used Max–Min Ant System (MMAS), which is

one of the standard versions of ant colony optimization

(ACO) algorithms to solve a dynamic construction site

layout planning. Though the CSLP problem has been

tackled by previous researchers, however, the application

of new meta-heuristics is always beneficial and can

improve the solutions.

In this study, two recently developed meta-heuristic

algorithms known as colliding bodies optimization (CBO)

and enhanced colliding bodies optimization (ECBO) are

applied to the solution of construction site layout problems.

Colliding bodies optimization is developed by Kaveh and

Mahdavi (2014) and enhanced colliding bodies optimiza-

tion by Kaveh and Ilchi Ghazaan (2014). CBO and ECBO

are employed for solution of the CSLP problem and results

compared with those of the previous algorithms. Two case

studies are conducted to evaluate the performance and

applicability of the utilized algorithms. The structure of the

paper is as follows: in Sect. 2, the construction site layout

problem is described briefly and the mathematical model is

presented. In Sect. 3, the CBO and ECBO are described in

detail. Section 4 shows the computational results, and

finally the concluding remarks are provided in Sect. 5.
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2 Construction Site Layout Problem

As mentioned construction site layout problems can be

modeled as a quadratic assignment problem in which

costs associated with the flow between facilities are

linear with respect to the distance traveled and quantity

of the flow (Tate and Smith (1995)). The objective of

construction site layout is to assigning a number of

predetermined facilities (n) uniquely into a number of

predetermined locations (m) and number of locations

should be equal or greater than number of facilities. If

the number of predetermined locations (m) is greater

than the number of predetermined facilities (n), then a

m - n dummy facilities will be added to make both

numbers equal. By assigning both the distance and fre-

quency as 0, the ‘dummy’ facilities will not affect the

layout results (Li and Love 2000).

If each of the predetermined places is capable of

accommodating any of the facilities, then the facility

layout problem can be modeled as an equal-area facility

layout problem. If some of the predetermined places are

only able to accommodate some of the facilities, then the

problem becomes an unequal-area facility layout prob-

lem, where predetermined places have differing areas.

Generally, unequal-area layout problems are more diffi-

cult to solve than equal-area layout problems, primarily

because unequal-area layout problems introduce addi-

tional constraints into the problem formulation (Li and

Love 2000).

2.1 Objective Function

The objective function of several models given in Table 1

takes the general form Osman et al. (2003):

Minimize F ¼
Xn

i¼1

Xn

j¼1

Wij � dij ð1Þ

where F is the objective function; n is the number of

facilities and locations. Coefficient Wij representing either

the actual transportation cost per unit distance between

facilities i and j (taking into consideration the number of

trips made) or a relative proximity weight that reflects the

Table 1 Different kind of objective functions in the previous researches Osman et al. (2003)

No. Pseudo-model of the objective function Study References

1 To minimize the frequency of trips made by construction personnel Li and Love (1998, 2000)

2 To minimize the total transportation costs of resources between facilities Cheung et al. (2002) and Tam

et al. (2001)

3 To minimize the cost of facility construction and the interactive cost between facilities Yeh (1995)

4 To minimize the total transportation costs of resources between facilities (presented through a system of

proximity weights associated with an exponential scale)

Hegazy and Elbeltag (1999)

5 To minimize the total transportation costs of resources between facilities and the total relocation costs

(presented through a system of proximity weights and relocation weights)

Zouein and Tommelein (1999)

Table 2 An example of

permutation matrix

representation for CSLP

Number

of facilities

Number of

locations

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

F1 0 1 0 0 0 0 0 0 0 0

F2 0 0 0 0 0 0 0 0 1 0

F3 1 0 0 0 0 0 0 0 0 0

F4 0 0 0 0 1 0 0 0 0 0

F5 0 0 1 0 0 0 0 0 0 0

F6 0 0 0 0 0 0 1 0 0 0

F7 0 0 0 0 0 0 0 0 0 1

F8 0 0 0 1 0 0 0 0 0 0

F9 0 0 0 0 0 1 0 0 0 0

F10 0 0 0 0 0 0 0 1 0 0

Table 3 An example of the sequence-based representation for CSLP

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

2 9 1 5 3 7 10 4 6 8
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required closeness between facilities i and j; and dij is the

distances between facilities i and j.

2.1.1 Layout Representation

Each layout alternative can be represented by a

n 9 n permutation matrix (n is the number of facilities, or

locations), whose rows and columns represent facilities and

locations, respectively. The permutation matrix allows a

single entry of one in each row and each column, with all

remaining entries being zero. Table 2 shows an example of

a permutation matrix with 10 facilities and 10 locations.

A specific solution to the site layout problem as shown

by Table 2 is a very sparse matrix and would therefore

consume considerable computing resources if it is used for

large and practical problems. However, because of the

property of one-to-one correspondences between facilities

and locations, a sequence of integers can be used as a more

efficient alternative, like that in Table 3. Each position or

entry in the sequence represents a facility; the integer

number in the entry represents the location to place the

corresponding facility. However, the sequence-based rep-

resentation may lead to infeasible solutions where multiple

entries in the sequence have the same integer number, i.e.,

the situation of overlay, when adopting the meta-heuristic

methods. Therefore, some modifications should be made to

overcome this infeasibility (Li and Love 1998, Mawdesley

and Al-Jibouri 2003; Zhang and Wang 2008).

3 Meta-Heuristic Algorithms

In this research, two new meta-heuristic algorithms, col-

liding bodies optimization and enhanced colliding bodies

optimization, are used for construction site layout problems

(CSLP). These algorithms are powerful and effective in

finding the best solution for NP-hard problems, which are

utilized for CSLP problem in this paper.

3.1 Colliding Bodies Optimization

Colliding bodies optimization (CBO) is an efficient meta-

heuristic optimization algorithm that is based on one-di-

mensional collisions between bodies and is developed by

Kaveh and Mahdavi (2014). All of the following expla-

nations about this method, including definitions and for-

mulas, are extracted from Kaveh and Mahdavi (2014),

Kaveh et al. (2015) and Kaveh (2014).

In this method, one object collides with other object and

they move toward a minimum energy level. Collisions

between these objects are governed by the two laws of

physics, momentum law and energy law.

In CBO, each solution candidate Xi containing a

number of variables (i.e., Xi = {Xij}) is considered as a

colliding body (CB). The massed objects are composed

of two main equal groups; i.e., stationary and moving

objects (Fig. 1), where the moving objects move to

follow stationary objects and a collision occurs between

pairs of objects. This takes place for two purposes: (1)

to improve the locations of moving objects and (2) to

push stationary objects toward better locations. After

the collision, new locations of colliding bodies are

updated based on new velocity by using the collision

laws.

The CBO procedure can briefly be explained as follows:

Step 1 Initialization

The algorithm starts with a random initial location of a

main number of agents (CBs) in an m-dimensional search

space by the following formula:

x0i ¼ xmin þ random�ðxmax � xminÞ; i ¼ 1; 2; . . .; n ð2Þ

where xi
0 determines the initial value vector of the ith

CB. xmin and xmax are the minimum and the maximum

allowable values vectors of variables; rand is a random

number in the interval [0, 1]; and n is the number of

CBs.

Step 2 Defining mass

Each colliding body (CB), Xi, has a specified mass

defined as:

mk ¼
1

fitðkÞ
1Pn

i¼1

1

fitðiÞ

; k ¼ 1; 2; . . .; n ð3Þ

where fit(i) represents the objective function value of the

ith CB and n is the number of colliding bodies. It seems

that a CB with good values exerts a larger mass than the

bad ones.

Step 3 Creating groups

Then CBs objective function values are arranged in

ascending form. The sorted CBs are divided into two equal

groups:

Fig. 1 Pairs of CBs for collision
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• The lower half of the CBs are stationary CBs that have

lower objective function value. These CBs are good

agents.

• The CBs of the upper half are moving ones. These CBs

move toward the lower, and then the agents with upper

value of each group collide together.

Step 4 Criteria before the collision

The initial velocity of stationary CBs is equal to:

vi ¼ 0; i ¼ 1; 2; . . .;
n

2
ð4Þ

The velocity of moving CBs before collision is equal to:

vi ¼ xi�n
2
� xi; i ¼ n

2
þ 1;

n

2
þ 2; . . .; n ð5Þ

where vi and xi are the velocity and location vector of the

ith CB in this group, respectively; xi�n
2
is the ith CB pair

location of xi in the previous group.

Step 5 Criteria after the collision

After the collision, the velocity of stationary CBs (vi
0
) is

specified by:

v
0

i ¼
ðmiþn

2
þ emiþn

2
Þviþn

2

mi þ miþn
2

i ¼ 1; 2; . . .;
n

2
ð6Þ

Also, the velocity of moving CBs (vi
0
) after the collision

is:

v
0

i ¼
ðmi � emi�n

2
Þvi

mi þ mi�n
2

i ¼ n

2
þ 1;

n

2
þ 2; . . .; n ð7Þ

where e is the coefficient of restitution (COR) that

decreases linearly from unit to zero. Thus, it is expressed

as:

e ¼ 1� iter

itermax

ð8Þ

where iter and itermax are the current iteration number and

the total number of iteration for optimization process,

respectively.

Step 5 Updating CBs

New locations of the CBs are evaluated using their

velocities after the collision in location of the stationaryCBs.

The new locations of stationary CBs are:

xnewi ¼ xi þ rand
�
v
0

i i ¼ 1; 2; . . .;
n

2
ð9Þ

and the new locations of each moving CBs are:

xnewi ¼ xi�n
2
þ rand

�
v
0

i; i ¼ n

2
þ 1;

n

2
þ 2; . . .; n ð10Þ

where xi
new, xi and vi

0
are the new locations, previous

locations and the velocity after the collision of the ith CB,

respectively. rand is a random vector uniformly distributed

in the range of [-1,1] and the sign ‘�’ denotes an element-

by-element multiplication.

Step 6 Terminal criterion check

The process of CBO algorithm is repeated from step 2

until a termination criterion, such as maximum iteration

number, is satisfied.

The flowchart of CBO algorithm is depicted in Fig. 2.

3.2 Enhanced Colliding Bodies Optimization

Enhanced colliding bodies optimization (ECBO) is a

new version of the CBO which improves the CBO to get

faster and to obtain more reliable solutions. This method

is developed recently by Kaveh and Ilchi Ghazaan

(2014). Unlike CBO, the main feature of the ECBO is

that it uses a memory to save some best solutions that

cause an increase in the convergence speed of ECBO

with respect to standard CBO. In order to improve the

exploration capabilities of the CBO and to prevent

Start

Initialize all CBs by Eq. (2)

Objective function is evaluated and masses are 
defined by Eq. (3)

Stationary and moving groups are created and 
velocities are calculated by Eqs. (4) and (5)

The velocity of CBs are updated by Eqs. (6) and (7)

Updated location of each CBs is calculated by Eq. 
(9) and (10)

Is terminating 
criterion 
fulfilled?

Report the best solution found by algorithm

End

No

Yes

Fig. 2 Flowchart of the CBO algorithm (Kaveh and Mahdavi 2014)
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premature convergence, ECBO utilizes a mechanism to

escape from local optimal.

All of the following explanations about this method,

including definitions and formulas, are extracted from

Kaveh and Ilchi Ghazaan (2014). In order to introduce the

ECBO, the following steps are developed:

Step 1 Initialization

The algorithm starts with a random initial location of a

main number of agents (CBs) in an m-dimensional search

space by the follow formula:

x0i ¼ xmin þ random�ðxmax � xminÞ; i ¼ 1; 2; . . .; n ð11Þ

where xi
0 determines the initial value vector of the ith CB.

xmin and xmax are the minimum and the maximum allow-

able values vectors of variables; rand is a random number

in the interval [0, 1]; and n is the number of CBs.

Step 2 Defining mass

The value of mass for each CB is evaluated according to

Eq. (3).

Step 3 Saving

In this step, colliding memory (CM) is utilized to save a

number of historically best CB vectors and their related

mass and objective function values with the aim of

improving the algorithm performance. At each iteration,

solution vectors that are saved in the CM are added to the

population and the same number of the current worst CBs

are deleted. Finally, CBs are sorted according to their

masses in a decreasing order.

Step 4 Creating groups

According to CBs objective function values, CBs are

divided into two equal groups, stationary and moving

group.

Step 5 Criteria before the collision

The velocities of the stationary and moving bodies

before collision are evaluated by Eq. (4), respectively.

Step 6 Criteria after the collision

The velocities of the stationary and moving bodies after

collision are evaluated by Eqs. (6) and (7), respectively.

Step 7 Updating CBs

The new location of each CB is evaluated by Eqs. (9)

and (10).

Step 8 Escape from local optimal

In order to escape from local optimal, a parameter like

Pro within (0, 1) is introduced and it is specified whether a

component of each CB must be changed or not. For each

colliding body, Pro is compared with rni(i = 1, 2, …, n)

which is a random number uniformly distributed within (0,

1). If rni\pro, one dimension of the ith CB is selected

randomly and its value is regenerated as follows:

xij ¼ xj;min þ random � ðxj;max � xj;minÞ ð12Þ

where xij is the jth variable of theith CB. xj,min and xj,max are

the lower and upper bounds of the jth variable, respec-

tively. In order to protect the structures of CBs, only one

dimension is changed.

Step 9 Terminal criterion check

After the predefined maximum iteration number, the

optimization process is terminated. If this criterion is not

satisfied, go to Step 2 for a new round of iteration.

The flowchart of ECBO algorithm is illustrated in

Fig. 3.

Start

Initialize all CBs by Eq. (2)

Objective function is evaluated and masses are 
defined by Eq. (3)

Stationary and moving groups are created and 
velocities are calculated by Eqs. (4) and (5)

The velocity of CBs are updated by Eqs. (6) and (7)

Updated location of each CBs is calculated by Eq. 
(9) and (10)

Report the best solution found by algorithm

End

No

Yes

Update Colliding Memory (CM) and population 

Is terminating
criterion fulfilled?

Fig. 3 Flowchart of ECBO algorithm (Kaveh and Ilchi Ghazaan

(2014))
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3.2.1 Model Application and Discussion of the Results

In CBO and ECBO, each solution candidate Xi containing a

number of variables (i.e., Xi = {Xij}) is considered as a

colliding body (CB). In CSLP problems, each CB is con-

sidered as a sequence of variables that represents a layout

solution and different sequences mean different layout

solutions. Each variable in the sequence represents a

facility, and the value of variable indicates the location that

is assigned to the corresponding facility. Since every

location is capable to receive only one facility, CBs should

not have duplicated value, violation from this point make

infeasible solution. However, all variables of a CB in CBO

and ECBO are independent of each other; thus, updating

the velocity and position of a CB is performed indepen-

dently. Therefore, more than one variable in an updated CB

may have the same value. Thus, some modifications in

updating mechanism should be made to overcoming this

infeasibility. The updating mechanism of CB’s is elaborate

in the following:

3.2.2 CB’s Updating Mechanism

Partially mapped crossover (PMX) in GA considered a

mechanism to overcoming infeasibility in permutation

problems. In PMX method, at each of the selective (i.e.,

randomly) gene, two values in the two parents’ chro-

mosome are exchanged. Then, the repeated value at

another gene in one parent is replaced by the mapped

value at the specified selective gene in the second parent

(the former value of selective gene in first parent), and

then, the same action is performed with second parent,

Zhang et al. (2006).

In this study, inspired by the concept of PMX in gen-

erating feasible layout, an updating mechanism for gener-

ating feasible layout in CBO and ECBO are used. In this

mechanism, the velocity of stationary and moving CBs

after collision is computed and considered as a criterion to

decide which variable of a CB should be updated earlier. A

larger velocity means there is larger gap between that

variable and its goal, and it has higher tendency to be

updated earlier. Therefore, the absolute value of the

velocity is used herein to represent the order of variable

that should be updated Zhang et al. (2006).

Every variable of a CB is selected as current variable

(CV), respectively, according to sorted velocity of variables.

The value of the current variable is updated according to its

reference and according Eqs. (6–10). Reference of moving

CB is its pair stationary CB, and the reference of stationary

CB is itself. Then, the repeated value at another variable in

this CB is substituted by the former value of the current

variable. In this step, if the value of the variable that is

obtained in this step has been selected before (for any of the

previous current variable), updating the CV is ignored and

the next variable is selected for updating until the last vari-

able is updated. The flowchart of a CB’s updating mecha-

nism is presented in Fig. 4.

4 Case Studies of Construction Site Layout

Two case studies have been selected to show the applica-

bility and performance of the CBO and ECBO meta-

heuristics for construction site layout optimization and

their results are compared to those of the PSO. Parameter

values used in this case studies are shown in Table 4. The

algorithms have been coded in MATLAB R2011a, and the

experiments are performed on a personal computer with

Intel�CoreTM i7 processor (1.73 GHz) and 4 GB RAM

under the windows 10 Home 64-bit operating system. The

detailed case studies and the results are as follows:

Start

Sort variables' velocity of CB

N Number of variables 
C 1

Select current variable (CV)

Update CV's value

Find the variable with repeated 
value

Swap the found 
variable with CV

No

Yes

C = C+1

Revert updated value of 
CV to previous value 

End

Yes

No

Fig. 4 CB’s updating mechanism
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4.1 Case Study 1

This case study is a medium-sized project and is taken from

Li and Love (1998). The purpose of this problem is to find the

most appropriate arrangement for placing of 11 facilities into

11 predetermined locations on the site. Table 5 shows the 11

facilities and their corresponding index numbers.

In this case example, construction site layout two

assumption are made:

1. Each of the predetermined locations is capable of

accommodating any of the facilities.

2. The main gate and side gate are treated as special

facilities, which have been fixed on the predetermined

locations.

4.1.1 Objective Function

The objective of this case is to minimizing the total trav-

eling distance of site personnel between facilities. The total

travel distance based on Li and Love (1998) is formulated

as:

Table 4 Parameter values used

in case studies
PSO CBO ECBO

Population size 50 Population size 50 Population size 50

Inertia weight 0.4-0.9 CM size 5

C1 = C2 2 pro 0.3

Table 5 Facilities and their

corresponding index numbers

for case study No. 1

Index number Site facilities Note

1 Site office Not fixed

2 False work workshop Not fixed

3 Labor residence Not fixed

4 Storeroom 1 Not fixed

5 Storeroom 2 Not fixed

6 Carpentry workshop Not fixed

7 Reinforcement steel workshop Not fixed

8 Side gate Fixed to 1

9 Electrical, water and other utilities control room Not fixed

10 Concrete batch workshop Not fixed

11 Main gate Fixed to 10

Table 6 Travel distance between predetermined locations

Distance Location

1 2 3 4 5 6 7 8 9 10 11

Location 1 0 15 25 33 40 42 47 55 35 30 20

2 15 0 10 18 25 27 32 42 50 45 35

3 25 10 0 8 15 17 22 32 52 55 45

4 33 18 8 0 7 9 14 24 44 49 53

5 40 25 15 7 0 2 7 17 37 42 52

6 42 27 17 9 2 0 5 15 35 40 50

7 47 32 22 14 7 5 0 10 30 35 40

8 55 42 32 24 17 15 10 0 20 25 35

9 35 50 52 42 37 35 30 20 0 5 15

10 30 45 55 49 42 40 35 25 5 0 10

11 20 35 45 53 52 50 40 35 15 10 0

Table 7 Trip frequency between facilities

Trip

frequency

Facility

1 2 3 4 5 6 7 8 9 10 11

Facility 1 0 5 2 2 1 1 4 1 2 9 1

2 5 0 2 5 1 2 7 8 2 3 8

3 2 2 0 7 4 4 9 4 5 6 5

4 2 5 7 0 8 7 8 1 8 5 1

5 1 1 4 8 0 3 4 1 3 3 6

6 1 2 4 7 3 0 5 8 4 7 5

7 4 7 9 8 4 5 0 7 6 3 2

8 1 8 4 1 1 8 7 0 9 4 8

9 2 2 5 8 3 4 6 9 0 5 3

10 9 3 6 5 3 7 3 4 5 0 5

11 1 8 5 1 6 5 2 8 3 5 0
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Minimize TD ¼
Pn

i¼1

Pn

j¼1

Pn

l¼1

Pn

k¼1

xik � xjl � fij � dkl

Subjected to
Pn

i¼1

xij ¼ 1;
Pn

j¼1

xij ¼ 1
ð13Þ

where n = number of facilities. xik = 1 when the facility

i is assigned to location k otherwise it is equal to 0, xjl has

the same concept as well. Coefficient fij is the frequencies

of trips made by construction personnel between facilities

i and j per day. Coefficient dkl is the distances between

location k and l. Therefore, TD calculates the total travel-

ing distance made by construction personnel per day.

4.1.2 Travel Distance Between Site Locations

The travel distance between predetermined locations is

measured and presented in Table 6 fromLi and Love (1998).

4.1.3 Trip Frequency Between Facilities

Trip frequency between facilities influences site layout

planning and proximity between predetermined site facili-

ties. Therefore, the frequencies of trips made between

facilities on a single day are presented in Table 7 fromLi and

Love (1998).

Table 8 Comparison of the results of 50 independent runs for the first case example

Algorithm Best Average Worst Difference best–average solution % Difference best–worst solution % STD

PSO 12,546 12,560 12,756 0.112 1.647 47.39

CBO 12,546 12,558 12,768 0.096 1.769 45.51

ECBO 12,546 12,555 12,746 0.072 1.594 32.11

Fig. 5 Convergence history of

the proposed meta-heuristics

Table 9 A comparison

between the final solution of the

present work and those of the

previously reported researches

Algorithms Total distance Best layout

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

PSO* 12,546 9 11 5 6 7 4 3 1 2 8 10

CBO* 12,546 9 11 6 5 7 4 3 1 2 8 10

ECBO* 12,546 9 11 4 5 7 6 3 1 2 8 10

GA (Li and Love 1998) 15,090 11 5 8 7 2 9 3 1 6 4 10

ACO (Gharaie et al. 2006) 12,546 9 11 6 5 7 2 4 1 3 8 10

* Current study

Iran J Sci Technol Trans Civ Eng (2016) 40:263–275 271

123



4.1.4 Results and Discussion

This example was solved by carrying out 50 independent

optimization runs through 200 iterations to obtain statisti-

cally significant results by PSO, CBO and ECBO. Statis-

tical results of 50 independent runs are compared in

Table 8. As it can be seen from Table 8, the average, worst

and standard deviation for ECBO are 12,555, 12,746 and

32.11, respectively, which are better than CBO and PSO.

This indicates that ECBO not only finds a better best

solution but also is more stable. The convergence curves

for the ECBO, CBO and PSO in terms of the number of

iterations are shown in Fig. 5. A comparison of the present

work and those of the previously reported researches for

Case 1 is shown in Table 9. The results show that in this

case study the best result is 12,546 which is better than that

of the GA and it is the same as that of the ACO.

4.2 Case Study 2

In the optimization of construction site precast yard

layout, the efficiency of a site precast yard is very much

affected by positioning of the various facilities, Wong

et al. (2010). The hypothetical site precast yard in this

section is taken from Cheung et al. (2002). There are 11

facilities that should be assigned to 11 predetermined

locations on the yard. The facilities and their corre-

sponding index numbers are listed in Table 10. Four

types of resources and transport costs per unit distance

are also presented in Table 11.

4.2.1 Objective Function

The objective function is considered as the total cost per

day for transporting all resources necessary to achieve the

anticipated output. The objective function based on Cheung

(2010) is calculated as follows:

Minimize TC ¼
Pn

k¼1

Pq

i¼1

Pq

j¼1

TCLMk;i;j

TCLMk;i;j ¼ MLMij � CMk

MLMij ¼ FLMkij � Dij

ð14Þ

where: Dij = Rectangular distance between location i and

location j.

CMk = Cost per unit distance for resources Mk flow.

TCLMk,i,j = Total cost of resource Mk flow between

locations i and j.

Table 10 Facilities and their corresponding index numbers

Index number Site facilities

1 Main gate

2 Side gate

3 Batching plant

4 Steel storage yard

5 Formwork storage yard

6 Bending yard

7 Cement and sand and aggregate storage yard

8 Curing yard

9 Refuse dumping area

10 Casting yard

11 Lifting yard

Table 11 Four types of resources and transport costs per unit

distance

MK Resources Cost per Unit

1 Aggregate, sand and cement/concrete 5

2 Reinforcement bars 4

3 Formwork 8

4 Completed precast units 8.5

Table 12 Distance between

locations in case example 2
Distance Location

1 2 3 4 5 6 7 8 9 10 11

Location 1 0 12 17 30 35 33 55 53 38 30 19

2 12 0 9 22 27 21 47 45 40 18 31

3 17 9 0 13 22 30 38 36 31 27 22

4 30 22 13 0 15 23 25 23 38 20 29

5 35 27 22 15 0 8 20 38 53 25 44

6 33 21 30 23 8 0 28 46 61 17 52

7 55 47 38 25 20 28 0 18 33 45 40

8 53 45 36 23 38 46 18 0 15 43 38

9 38 40 31 38 53 61 33 15 0 58 23

10 30 18 27 20 25 17 45 43 58 0 49

11 19 31 22 29 44 52 40 38 23 49 0
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MLMki,j = Distance traveled of resource Mk flow per

unit time between locations i and location j.

FLMk,i,j = Frequency of resource Mk flow between

location i and j per unit time.

4.2.2 Travel Distance Between Site Precast Yard

Locations

The rectangular distance between locations is measured

and presented in Table 12.

4.2.3 Frequency of Resources Flow Between Facilities

The flow frequency of the four types of resources between

the facilities are presented in Table 13.

4.2.4 Results and Discussion

This example was solved by carrying out 30 independent

optimization runs through 1000 iterations to obtain statis-

tically significant results by PSO, CBO and ECBO. Sta-

tistical results of 30 independent runs are compared in

Table 14. As it can be seen from Table 14, the average,

worst and standard deviation for ECBO are, respectively,

92,758, 102,920 and 2733.5, which are better than those of

CBO and PSO. This indicates that ECBO not only finds a

better best solution but also is more stable. The conver-

gence curves for the ECBO, CBO and PSO in terms of the

number of iterations are shown in Fig. 6 indicates that

ECBO has better convergence rate than others. Table 15

summarizes the results obtained by the present work and

those of the previously reported researches. In this case

study, the best result is 92,758 which is better than that of

GA, Multi-searching TS, MIP, and it is the same as that of

the harmony search.

5 Conclusion

In this study, the application of two recently developedmeta-

heuristic algorithms, known as colliding bodies optimization

(CBO) and enhanced colliding bodies optimization (CBO),

Table 13 Flow frequency of the four types of resources between the

facilities

Flow Frequency Facility

1 2 3 4 5 6 7 8 9 10 11

1. Aggregate, Sand and Cement

Facility 1 20

2 15

3 35 35

4

5

6

7 20 15 35

8

9

10 35

11

2. Reinforcement

Facility 1 30

2 20

3

4 30 20 50

5

6 50 50

7

8

9

10 50

11

3. Formwork

Facility 1

2

3

4

5 48

6

7

8

9

10 48

11

4. Completed Precast Units

1 28

2 20

3

4

5

6

7

8 48 48

Table 13 continued

Flow Frequency Facility

1 2 3 4 5 6 7 8 9 10 11

9

10 48

11 28 20 48
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is introduced to solve construction site layout problem. The

governing laws from the physics initiate the base of the CBO

and ECBO algorithms, where these laws determine the

movement process of the objects. CBO utilizes simple for-

mulation to find minimum of objective functions and does

not depend on any internal parameter. In order to improve the

exploration capabilities of theCBOand to prevent premature

convergence, ECBO utilizes a mechanism to escape from

local optimal. Colliding memory is also utilized to save a

number of the so far best solutions to reduce the

computational cost. To validate the models, two case studies

are considered. The results verify that the proposed approach

performed very well both in finding better results and in the

number of evaluations to find the optimum. Comparison of

the results with some other well-known meta-heuristics

shows the suitability and efficiency of the proposed algo-

rithms in construction site layout planning, and it is highly

competitive with other meta-heuristic algorithms in quality

of solution and convergence speed of finding the optimal

solution.

Table 14 Comparing of the results of 30 independent runs for second case example

Algorithm Best Average Worst Difference best–average solution % Difference best–worst solution % STD

PSO 92,758 97,667 106,630 5.292 14.955 3363.1

CBO 92,758 97,504 103,038 5.117 11.083 3149

ECBO 92,758 96,670 102,920 4.217 10.955 2733.5

Fig. 6 Convergence history of

the proposed meta-heuristics

Table 15 A comparison between the final solution of the present work and those of the previously reported researches

Algorithms Total cost Best layout

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

PSO* 92,758 5 7 9 6 1 10 8 3 11 2 4

CBO* 92,758 5 7 9 6 1 10 8 3 11 2 4

ECBO* 92,758 5 7 9 6 1 10 8 3 11 2 4

GA (Cheung 2002) 99,788 1 10 9 6 8 5 11 3 7 4 2

Multi-searching TS Liang and Chao (2008) 94,858 5 7 10 8 1 9 6 3 11 2 4

Harmony search Kaveh et al. (2012) 92,758 5 7 9 6 1 10 8 3 11 2 4

MIP (Wong et al. 2010) 98,424 1 10 8 6 7 5 9 3 11 4 2

*Current study
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