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Abstract Fluid infiltration and imbibition into unsaturated

soil are of vital significance from many perspectives. Mathe-

matically, such transient flows are described by Richards’

equation, a nonlinear parabolic partial differential equation

with limitedanalytical solutions in the literature.However, the

choice of exponential model for water content and hydraulic

conductivity linearizes the nonlinear Richards’ equation,

making it possible to obtain an analytical solution via classical

approaches. In this study, separation of variables and Fourier

series expansion techniques are used to derive new analytical

solutions to 2-D vertical and horizontal infiltration and imbi-

bition into unsaturated soils for nonsymmetrical boundary and

nonuniform initial conditions. A total of 11 cases are con-

sidered, where high water content is imposed on the top, side,

or bottomedges of the sample andwater is infiltrated (from the

top and/or side boundaries) and imbibed (from the bottom

boundary) into the sample. Residual water content and/or no-

flow boundary condition are assumed on other edges of the

sample. Initial conditions include 7 cases of constant residual

water content, 2 cases of sinusoidal, and 2 cases of exponential

water content functions over the sample. Presented analytical

solutions are such that both steady and unsteady solutionsmay

be obtained from a single closed-form solution. Two-dimen-

sional and 3-D plots of water content are presented for the

transient as well as steady-state conditions. To illustrate the

use of the derived equations, water content values from

numerical solutions are compared to those from analytical

solutions for four cases, showing a maximum error of\2 %.

The presented analytical solutions may be used as a bench-

mark for verification and accuracy assessment of numerical

approaches where nonsymmetrical boundary and/or nonuni-

form initial conditions exist.
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1 Introduction

Fluid infiltration into unsaturated soil is of vital signifi-

cance from many perspectives. Hydrogeologists, environ-

mentalists, and water resource planners each view water

and pollutant infiltration into unsaturated zone from their

own viewpoints. A phreatic aquifer is replenished from

above by water from various sources: precipitation, irri-

gation, artificial recharge, etc. In all cases, water moves

downward, from ground surface to the water table, through

the unsaturated zone. The understanding of and, conse-

quently, the ability to calculate and predict the movement

of water in the unsaturated zone is therefore essential when

we wish to determine the replenishment of a phreatic

aquifer (Bear and Chang 2010).

Transient fluid flow through unsaturated soil is usually

described by Richards’ equation derived by combining

Darcy’s law and conservation of mass. The equation is a

nonlinear parabolic partial differential equation (PDE) for

which many numerical and limited analytical solutions

exist.

However, the choice of exponential model for water

content and hydraulic conductivity linearizes the nonlinear
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Richards’ equation, making it possible to obtain an ana-

lytical solution via classical approaches.

In the last two decades, many numerical techniques have

been proposed to investigate water flow infiltration through

unsaturated soils. These techniques include finite differ-

ence method (FDM), finite element method (FEM), finite

volume method (FVM), hp—FEM, and time splitting

method (An et al. 2011, 2012; Diaw et al. 2001; Manzini

and Ferraris 2004; Solin and Kuraz 2011; Paulus et al.

2013; Fahs et al. 2009; Montazeri Namin and Boroomand

2012; Johari and Hooshmand 2015; Akbari et al. 2012).

Analytical solutions, on the other hand, are mainly offered

for one-dimensional flow of water through the soil and for

restrictive boundary and initial conditions. Exact analytical

solutions are desirable because they give a better insight

compared to a discrete numerical solution. As such, ana-

lytical solutions may be used as benchmark or reference

results to test and verify numerical algorithms and codes.

Though useful, analytical solutions to transient water

infiltration into unsaturated soil samples for various

boundary and initial conditions are still lacking.

Parlange et al. (1997) presented a general approximation

for a solution to 1D Richards’ equation. Mollerup (2007)

used Philip equation and showed that the power series

solution may be applied for variable head ponded infiltra-

tion, when the ponding depth is described as a power ser-

ies. Menziani et al. (2007) presented solutions to the

linearized one-dimensional Richards’ equation for discrete

arbitrary initial and boundary conditions. The result was

soil water content at any required time and depth in a

domain of semi-infinite unsaturated porous medium. Tracy

(2006) developed clean two- and three-dimensional ana-

lytical solutions of Richards’ equation for testing numerical

solvers. Also, Tracy (2007) obtained three-dimensional

analytical solutions for Richards’ equation when a box-

shaped soil sample with piecewise-constant head boundary

conditions on the top is utilized.

Chen et al. (2001) are developed multidimensional

infiltration with arbitrary surface fluxes by a Fourier inte-

gral transform. They used exponential model to represent

the hydraulic conductivity and pressure relation and the

soil water release curve.

Wang et al. (2009) developed an algebraic solution for

one-dimensional water infiltration and redistribution with-

out evaporation. They established a relationship between

Green–Ampt model and the algebraic solution to analyze

physical features of the soil parameters. Ghotbi et al. (2011)

applied homotopy analysis method (HAM) to solve the

equation analytically and showed that the method is supe-

rior over traditional perturbation techniques in the sense that

it was not dependent on the assumption of a small parameter

as the initial step. Nasseri et al. (2012) presented three major

cases for the governing PDE solved by traveling wave

solution (TWS) method using general and modified forms

of tanh functions. They used TWS as an initial value

problem and considered the typical forms of diffusivity and

conductivity functions proposed by Brooks and Corey

(1964). Huang and Wu (2012) developed analytical solu-

tions to 1D horizontal and vertical water infiltration in

saturated–unsaturated soils. They considered variations of

influx over time. Asgari et al. (2011) applied exp-function

method to 1D Richards’ equation to evaluate its effective-

ness and reliability and to reach a more generalized solution

to the problem. They used Brooks and Corey (1964) model

for soil properties. Basha (2011) developed approximate

solutions to Richards’ equation for rational forms of the soil

hydraulic conductivity and moisture retention functions by

a perturbation expansion method.

A number of researchers investigated analytical solu-

tions to the 1D Richards’ equation by variational iteration

method (VIM) (He 1998; Moghimi and Hejazi 2007;

Wazwaz 2007), and Adomian decomposition method

(ADM) (Nasseri et al. 2008; Serrano and Adomian 1996;

Serrano 1998, 2004; Pamuk 2005). They used ADM and

VIM in an initial value problem for the equation; however,

the series solution obtained by ADM and VIM often did

not satisfy the PDE. A number of researchers studied

analytical solutions for Richards’ equation in infinite and

semi-infinite domains by TWS, Green function, and

exponential time integration methods (Zlotnik et al. 2007;

Basha 1999; Carr et al. 2011; Jaiswal et al. 2011). Also,

Carr and Turner (2014) presented a new numerical

approach for a Richards’ equation model of infiltration into

unsaturated soils based on an unstructured vertex-centered

finite volume method (FVM) and an exponential time

integration method.

Unlike the literature, the current study presents new

analytical solutions to linearized Richards’ equation for

two-dimensional water infiltration and imbibition subject

to nonsymmetrical boundary and nonuniform initial con-

ditions. A total of 11 cases are considered, where high

water content is imposed on the top, side, or bottom edges

of the sample and water is infiltrated (from the top and/or

side boundaries) and imbibed (from the bottom boundary)

into the sample. Residual water content and/or no-flow

boundary condition are assumed on other edges of the

sample. Initial conditions include 7 cases of constant

residual water content, 2 cases of sinusoidal and 2 cases of

exponential water content functions over the sample. Pre-

sented analytical solutions are such that both steady and

unsteady solutions may be obtained from a single closed-

form solution. Two-dimensional and 3-D plots of water

content are presented for the transient as well as steady-

state conditions. To illustrate the use of the derived equa-

tions, water content values from a numerical solution are

compared to that from an analytical solution for four cases.
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2 Governing Equation

The movement of water flow in unsaturated soil is

described by Richards’ equation. This equation is devel-

oped by the combination of continuity and Darcy’s law as a

momentum equation. This equation is expressed in differ-

ent forms. The 3-D h-based form of the equation is

(Richards 1931):

oh
ot

¼ o

ox
Dx hð Þ oh

ox

� �
þ o

oy
Dy hð Þ oh

oy

� �

þ o

oz
Dz hð Þ oh

oz
þ Kz hð Þ

� �
ð1Þ

where h L3

L3

� �
is the volumetric water content,D hð Þ ¼ K hð Þ oh

oh

is soil water diffusivity for an isotropic media, h(L) is the soil

water pressure head (tension head in unsaturated zone),K L
T

� �
is the hydraulic conductivity, t(T) is the time, and Z(L) is the

vertical space coordinate (upward positive). Water diffu-

sivity, hydraulic conductivity, and water content are func-

tions of soil water pressure head. Various empirical

relationships have been used to relate K and h to h (Brooks

and Corey 1964; Van Genuchten 1980; Haverkamp et al.

1990; Fredlund and Xing 1994). Basha (1999) described K

and h in terms of h by the exponential expression:

h� hr
hs � hr

¼ S ¼ exp ahð Þ ð2Þ

K hð Þ ¼ Ks

h� hr
hs � hr

¼ KsS ¼ Ks exp ahð Þ ð3Þ

where hr is the residual water content, hs is the saturated

water content, Ks
L
T

� �
is the saturated hydraulic conductiv-

ity, and a 1
L

� �
is the pore size distributions index. As stated

by Basha (1999), in most cases, the expressions (2) and (3)

do not fit experimental data very well over the entire range

of h observed. However, they are applicable to situations

where the water content variations are relatively small.

Also, Tracy (2006, 2007) compared Van Genuchten model

(1980) with exponential model (Eqs. 2, 3) for one type of

soil and concluded that the exponential model for

description of properties of unsaturated soils can pass a

physically reasonable criteria.

Substituting (2) and (3) into D(h) gives:

D hð Þ ¼ K hð Þ oh
oh

¼ Ks

a hs � hrð Þ ð4Þ

Replacing Eqs. (2), (3), and (4) into Eq. (1) provides a

linear form of Richards’ equation.

oh
ot

¼ D
o2h
ox2

þ D
o2h
oy2

þ D
o2h
oz2

þ f
oh
oz

ð5Þ

where D and f are:

D ¼ Ks

a hs�hrð Þ ; f ¼ Ks

hs�hrð Þ ð6Þ

In the present work, new two-dimensional analytical

solutions are derived for Eq. (5) subject to nonsymmetrical

boundary and nonuniform initial conditions.

3 Analytical Solutions for 2-D Water Infiltration

Richards’ equation in a vertical 2-D plane (x, z) may be

expressed as (Eq. 5):

oh
ot

¼ D
o2h
oz2

þ f
oh
oz

þ D
o2h
ox2

ð7Þ

where D and f are defined before. Clearly, the equation

contains gravity effect in oh
oz
term, a term that differentiates

z- from x-axis. Two-dimensional vertical water infiltration

has many applications in real world. To find analytical

solutions for such applications, many simplifications shall

be considered. As an example, vertical section of a

homogeneous soil sample may be considered (Fig. 1) and

subjected to various boundary and initial conditions.

Unsteady analytical solutions to different boundary and

initial conditions are sought in this section. Known high

water contents of h0ð� hrÞ and/or no-flow conditions are

applied on the boundaries, and known water content dis-

tributions over the sample are used as the initial conditions.

3.1 Case 1: Infiltration From Top and Side

of the Sample

As a practical case, ponding an initially drained (to hr)
aquifer would cause the ground surface (as a boundary) to

become saturated or close to it (h0). If an intermittent

irrigation stream exists on the side and injects flow into the

Fig. 1 Vertical section of a homogeneous soil sample in a 2-D (x, z)

plane
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aquifer by maintaining a high water content there (h0), then
vertical and horizontal infiltrations would occur from the

ground surface and side of the aquifer. In this case,

boundary and initial conditions may be mathematically

expressed as:

h 0; z; tð Þ ¼ hr; h a; z; tð Þ ¼ h0 ð8aÞ
h x; 0; tð Þ ¼ hr; h x; b; tð Þ ¼ h0 ð8bÞ
h x; z; 0ð Þ ¼ hr ð8cÞ

A schematic view of the problem statement is shown in

Fig. 2.

A single closed-form analytical solution is sought that

encompasses both steady and unsteady solutions. Thus, the

general form of such a solution may be expressed as a

combination of a steady (W) and an unsteady (V) term:

h x; z; tð Þ ¼ V x; z; tð Þ þ w x; zð Þ ð9Þ

Obviously, nonhomogenous boundary conditions are to

satisfy w(x, z), the steady solution, and homogenous

boundary conditions are for V(x, z, t), the unsteady solu-

tion. Substituting (9) into (7) and (8a)–(8c) yields:

D
o2V

oz2
þ f

oV

oz
þ D

o2V

ox2
� oV

ot
¼ 0 ð10aÞ

V x; 0; tð Þ ¼ 0 V x; b; tð Þ ¼ 0 ð10bÞ
V 0; z; tð Þ ¼ 0 V a; z; tð Þ ¼ 0 ð10cÞ
V x; z; 0ð Þ ¼ hr�w x; zð Þ ð10dÞ

Similarly, the PDE for w(x, z) may be written as:

D
o2w

oz2
þ f

ow

oz
þ D

o2w

ox2
¼ 0 ð11aÞ

w x; 0ð Þ ¼ hr w x; bð Þ ¼ h0 ð11bÞ
w 0; zð Þ ¼ hr w a; zð Þ ¼ h0 ð11cÞ

If w(x, z) is assumed to have two components as:

w x; zð Þ ¼ u x; zð Þ þ q xð Þ ð12Þ

then the PDE for u(x, z) and q(x) may be written as:

Dq00 xð Þ ¼ 0 ð13aÞ
q að Þ ¼ h0; q 0ð Þ ¼ hr ð13bÞ

D
o2u

oz2
þ f

ou

oz
þ D

o2u

ox2
¼ 0 ð14aÞ

u 0; zð Þ ¼ 0 u a; zð Þ ¼ 0 ð14bÞ
u x; 0ð Þ ¼ hr � q xð Þ u x; bð Þ ¼ h0�q xð Þ ð14cÞ

Utilizing separation of variables for u(x, z), one would

get w(x, z) as:

w x; zð Þ ¼ e�
f
2D
z
X1
n¼1

sin bxð Þ½A�
nsinhðszÞ þ B�

ncosh szð Þ�

þ h0 � hr
a

xþ hr ð15Þ

where b ¼ np
a
; n ¼ 1; 2; 3; . . .;1, and s ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f
D

� �2þ4b2
q

:

Also, A�
n and Bn

* are defined as:

B�
n ¼

2

a

Za

0

hr � h0
a

x sin bxð Þdx¼ 2 hr � h0ð Þ �1ð Þnþ1

np
ð16aÞ

A�
n ¼

� 2 h0�hrð Þ
np �1ð Þn�1ð ÞþB�

n 1� e�
f
2D
b cosh sbð Þ

� �

e�
f
2D
b sinh sbð Þ

ð16bÞ

Now, utilizing separation of variables for V(x, z, t):

V x; z; tð Þ ¼ Z zð ÞX xð ÞT tð Þ ð17Þ

And substituting (17) into (10a), one would get:

X00

X
¼ � Z 00

Z
� f

D

Z 0

Z
þ 1

D

T 0

T
¼ l ð18Þ

where l is an arbitrary constant. If l\0, say l = -k2,
k[ 0, then considering the boundary conditions of (10c),

X(x) in (18) may be written as:

Xn ¼ C�
n sin kxð Þ; k ¼ np

a
; n ¼ 1; 2; 3; . . .;1 ð19Þ

where Cn
* is a constant. Substituting -k2 into (18) for X00

X

yields:

Z 00

Z
þ f

D

Z 0

Z
¼ k2 þ 1

D

T 0

T
¼ q ð20Þ

where q is an arbitrary constant. If q C 0, then a trivial

solution for Z(z) in (20) would be obtained. If q\ 0, say

q ¼ �c2 � f
D

� �21
4
; c[ 0, then applying the boundary con-

dition of (10b) in (20) would yield Z(z) as:

Zm ¼D�
me

� f
2D
z sin czð Þ; c¼mp

b
; m¼ 1;2;3; . . .;1 ð21Þ

Fig. 2 Boundary and initial conditions for infiltration from top and

side of the sample (case 1)
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where Dm
* is a constant. Also, T(t) in (20) becomes:

T ¼ E�
mne

� k2þc2þ f
Dð Þ

21
4

� �
Dt ð22Þ

where Emn
* is a constant. Substituting (19), (21), (22) into

(17) yields:

V x; z; tð Þ ¼
X1
m¼1

X1
n¼1

Cmne
� f

2D
z sin czð Þ sin kxð Þe� k2þc2þ f

Dð Þ214
� �

Dt

ð23Þ

where Cmn is C�
nD

�
mE

�
mn: Substituting the boundary condi-

tion of (10d) into (23) and using Fourier series properties

for (23), Cmn is written as:

Cmn ¼
4

ab

Za

0

Zb

0

ðhre
f
2D
z � w x; zð Þe

f
2D
zÞ sin czð Þ sin kxð Þdzdx

¼ 4

b
� 1

2

A�
nc sinh sbð Þ �1ð Þmþ1

s2 þ c2

  

þ B�
n

s2 þ c2
c cosh sbð Þ �1ð Þmþ1þc
� ��

þ hr�h0ð Þ �1ð Þnþ1

np
1

f
2D

� �2þc2
e

f
2D
bc �1ð Þmþ1þc

� �!

ð24Þ

Substituting (15) and (23) into (9), h(x, z, t) would be:

h x; z; tð Þ ¼
X1
m¼1

X1
n¼1

Cmne
� f

2Dz sin czð Þ sin kxð Þe� k2þc2þ f
Dð Þ

21
4

� �
Dt

þ e�
f
2D
z
X1
n¼1

sin bxð Þ½A�
nsinhðszÞ þ B�

ncosh szð Þ�

þ h0�hr
a

xþ hr ð25Þ

As seen, the equation consists of four terms: a function

of (x, z, t), a function of (x, z), a function of x only, and a

constant. All boundary and initial conditions of (8a)–(8c),

as well as the PDE (Eq. 7), are satisfied by (25).

As t ? ?, the first term vanishes, and the rest remain as

residuals or the steady-state solution. In Eq. 25, summation

convergence occurs very rapidly, partly because n and

m (showing number of terms in the summation) lie in

denominators of summations coefficients. Furthermore,

due to the presence of a time-dependent exponential decay

term in the first term of Eq. 25, many terms are needed for

summation calculation at early times, while at longer times,

often a handful of terms is sufficient to obtain a reasonable

accuracy.

In order to confirm summations convergence in Eq. 25,

water content at different positions is calculated using

summations truncation with different values of n and m

(Table 1). The table is generated for the following

parameters:

t ¼ 30 min; a ¼ 100 cm; b ¼ 100 cm; h0 ¼ 0:3; hr
¼ 0:0286; hs ¼ 0:3658; a ¼ 0:01 cm�1; Ks

¼ 10�3cm s�1

To be consistent with the literature, h0; hr; hs; a and

Ksvalues studied by Huang and Wu (2012) and Montazeri

Namin and Boroomand (2012) are selected. As seen in

Table 1, change in water content is negligible at n and

m = 1 to 10 and higher. As a consequence, h was calcu-

lated for n = m = 1 to 10 in Eq. 25.

To illustrate the use of the derived equations, water con-

tent values from an explicit scheme finite difference method

(FDM) solution (to Eq. 7) are compared to the analytical

solution (Eq. 25) for t = 30 min and various values of x and

z (columns 7 and 8 in Table 1). Ninth column shows

Table 1 Water content values for the analytical solution (with different summation truncations), FDM solution (with different mesh sizes), and

the relative error for case 1 at t = 30 min

X (cm) z (cm) hAnalytical,
m = n = 5

hAnalytical,
m = n = 10

hAnalytical,
m = n = 15

hAnalytical,
m = n = 20

hFDM, Dt = 15 s,

Dz = Dx = 5 cm

hFDM, Dt = 2 s,

Dz = Dx = 2.5 cm

Error Relative

(%)

20 30 0.0377 0.0376 0.0376 0.0376 0.0343 0.0369 1.86

20 70 0.1037 0.1026 0.1026 0.1026 0.0854 0.1014 1.16

40 30 0.0518 0.0518 0.0518 0.0518 0.0459 0.0508 1.93

40 70 0.1416 0.1399 0.1399 0.1399 0.1170 0.1376 1.64

50 20 0.0535 0.0537 0.0537 0.0537 0.0486 0.0529 1.48

50 80 0.2000 0.2039 0.2039 0.2039 0.1750 0.2001 1.86

60 40 0.1011 0.1011 0.1011 0.1011 0.0907 0.0995 1.58

60 60 0.1425 0.1425 0.1425 0.1425 0.1240 0.1398 1.89

80 20 0.1413 0.1421 0.1421 0.1421 0.1329 0.1411 0.70

80 80 0.2488 0.2489 0.2489 0.2489 0.2357 0.2446 1.72

90 10 0.1674 0.1600 0.1600 0.1600 0.1528 0.1583 1.06

90 50 0.2434 0.2434 0.2434 0.2434 0.2383 0.2388 1.88
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ErrorRelative ¼
hAnalytical � hNumerical

		 		
hAnalytical
		 		 � 100 %

based on columns 4 (incorporating[ 100 summation

terms) and column 8 (FDM for Dt = 2 s, Dz = 2.5 cm and

Dx = 2.5 cm). As shown, errors are all\2 % which may

be deemed reasonable.

Based on Eq. (25), water content contours are drawn in

Fig. 3a–d for t = 5, 15, 60 min and steady state, respectively.

Graphs clearly show the infiltrating water content front

that remains at h0 ¼ 0:3 on the top (z = 100 cm) and right

(x = 100 cm) edges of the soil sample and at the residual

value of hr ¼ 0:0286 on the bottom (z = 0) and left

(x = 0 cm) edges. A 3-D plot of water content–depth–

distance for steady state (corresponding to Fig. 3d) is also

visualized in Fig. 4.

3.2 Case 2: Infiltration from Top and Imbibition

from Bottom of the Sample

As a practical case, ponding an initially drained (to hr)
aquifer would cause the ground surface (as a boundary) to

become saturated or close to that (h0). If a shallow water

table exists at the bottom of the aquifer and maintains a

high water content there (h0), then vertical infiltration from

top and imbibition from bottom of the soil would occur. In

this case, boundary and initial conditions may be mathe-

matically expressed as:

h 0; z; tð Þ ¼ hr h a; z; tð Þ ¼ hr ð26aÞ
h x; 0; tð Þ ¼ h0 h x; b; tð Þ ¼ h0 ð26bÞ
h x; z; 0ð Þ ¼ hr ð26cÞ

Following similar mathematical procedure as before

(case 1), the answer for h x; z; tð Þ would be:

h x; z; tð Þ ¼
X1
m¼1

X1
n¼1

Cmne
� f

2Dz sin czð Þ sin kxð Þe� k2þc2þ f
Dð Þ

21
4

� �
Dt

e�
f
2D
z
X1
n¼1

sin bxð Þ½A�
nsinhðszÞ þ B�

ncosh szð Þ� þ hr

ð27Þ

where Cmn;A
�
n and B�

n in the case are defined as:

Fig. 3 Water content contours

based on Eq. (25) for:

a t = 5 min, b t = 15 min,

c t = 60 min, and d steady state

Fig. 4 3-D plot of water content–depth–distance based on the

analytical solution for case 1 (Eq. 25) for the steady-state condition
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Cmn ¼
4

ab

Za

0

Zb

0

ðhre
f
2D
z � w x; zð Þe

f
2D
zÞ sin czð Þ sin kxð Þdzdx

¼ 4

b
� 1

2

A�
nc sinh sbð Þ �1ð Þmþ1

s2 þ c2

  

þ B�
n

s2 þ c2
c cosh sbð Þ �1ð Þmþ1þc
� ���

ð28aÞ

B�
n ¼

2 h0 � hrð Þð �1ð Þnþ1þ1Þ
np

ð28bÞ

A�
n ¼

B�
n 1� e�

f
2D
b cosh sbð Þ

� �

e�
f
2D
b sinh sbð Þ

ð28cÞ

Also, c; k; b and s are identical to what was defined in

case 1. As seen, Eq. (27) consists of three terms: a

function of (x, z, t), a function of (x, z), and a constant.

All boundary and initial conditions of (26a)–(26c), as

well as the PDE (Eq. 7), are satisfied by (27). As

t ? ?, the first term vanishes, and the rest remain as

residuals or the steady-state solution. Similar to case 1, h
is calculated for n = m = 1 to 10 in Eq. 27. Based on

the equation, water content contours are drawn in

Fig. 5a–d for t = 5, 15, 60 min and steady state,

respectively. Soil parameters used for the problem are

identical to those used in case 1.

Graphs clearly show the infiltrating water content front

that remains at h0 ¼ 0:3 on the top (z = 100 cm) and bot-

tom (z = 0 cm) sides of the soil sample and at the residual

value of hr ¼ 0:0286 on the right (x = 100) and left

(x = 0 cm) sides of the sample. Figures do not have sym-

metry about z ¼ b
2
line due to oh

oz
term in Eq. (7) which

represents the gravity term. Therefore, water content values

on the upper half of the sample (where z[ b/2) are some-

what greater than the values on the lower half. A 3-D plot of

water content–depth–distance for steady-state condition

(corresponding to Fig. 5d) is also visualized in Fig. 6.

Fig. 5 Water content contours

based on Eq. (27) for:

a t = 5 min, b t = 15 min,

c t = 60 min, and d steady state

Fig. 6 3-D plot of water

content–depth–distance based

on the analytical solution for

case 2 (Eq. 27) for the steady-

state condition
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3.3 Case 3: Infiltration from Top and side,

Imbibition from Bottom of the Sample

This case is a combination of two previous cases, whereby

soil sample is initially drained to hr and exposed to a high

water content (h0) on top, bottom, and one side and to a

low water content (hr) on the other side. Boundary and

initial conditions may be mathematically expressed as:

h 0; z; tð Þ ¼ hr h a; z; tð Þ ¼ h0 ð29aÞ
h x; 0; tð Þ ¼ h0 h x; b; tð Þ ¼ h0 ð29bÞ
h x; z; 0ð Þ ¼ hr ð29cÞ

Following similar mathematical procedure as before

(case 1), the answer for h x; z; tð Þ would be:

h x; z; tð Þ ¼
X1
m¼1

X1
n¼1

Cmne
� f

2D
z sin czð Þ sin kxð Þe� k2þc2þ f

Dð Þ
21
4

� �
Dt

þ e�
f
2D
z
X1
n¼1

sin bxð Þ½A�
nsinhðszÞ þ B�

ncosh szð Þ�

þ h0�hr
a

xþ hr ð30Þ

where Cmn, c, k, b, and s are identical to what was defined

in case 1. An
* is identical to case 2; however, Bn

*is defined

as:

B�
n ¼

2 h0 � hrð Þ
np

ð31Þ

Obviously, boundary and initial conditions of (29a)–

(29c), as well as the PDE (Eq. 7), are satisfied by (30).

Similar to previous cases, h is calculated for n = m = 1 to

10 in Eq. 30.

Based on the equation, water content contours are drawn

in Fig. 7a–d for t = 5, 15, 60 min and steady state,

respectively. Soil parameters used for the problem are

identical to those used in case 1.

Graphs clearly show the infiltrating water content front

that remains at h0 ¼ 0:3 on the top (z = 100 cm), bottom

(z = 0 cm), and right side of the soil sample, while the

residual water content of hr ¼ 0:0286 is maintained on the

left (x = 0) side. Again, figures do not have symmetry

about z ¼ b
2
line due to oh

oz
term in Eq. (7) which represents

the gravity term. Therefore, water content values on the

upper half of the sample (where z[ b/2) are slightly

greater than the values on the lower half. A 3-D plot of

water content–depth–distance for steady state (corre-

sponding to Fig. 7d) is also visualized in Fig. 8.

3.4 Case 4: Infiltration from Top with No Flow

on One Side of the Sample

Again, a practical case is considered whereby ground sur-

face ponding occurs on an initially drained (to hr) aquifer,
causing infiltration from the top boundary. If one side of

the aquifer is impervious, then boundary and initial con-

ditions may be mathematically expressed as:

oh
ox

0; z; tð Þ ¼ 0 h a; z; tð Þ ¼ hr ð32aÞ

h x; 0; tð Þ ¼ hr h x; b; tð Þ ¼ h0 ð32bÞ

Fig. 7 Water content contours

based on Eq. (30) for:

a t = 5 min, b t = 15 min,

c t = 60 min, and d steady state
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h x; z; 0ð Þ ¼ hr ð32cÞ

A schematic view of the problem statement is shown in

Fig. 9.

A single closed-form analytical solution is sought that

encompasses both steady and unsteady solutions. Thus, the

general form of such a solution may be expressed as a

combination of a steady (w) and an unsteady (V) term:

h x; z; tð Þ ¼ V x; z; tð Þ þ w x; zð Þ ð33Þ

Obviously, nonhomogenous boundary conditions are to

satisfy w(x, z), the steady solution, and homogenous

boundary conditions are for V(x, z, t), the unsteady solu-

tion. Substituting (33) into (7) and (32a)–(32c) yields:

D
o2V

oz2
þ f

oV

oz
þ D

o2V

ox2
� oV

ot
¼ 0 ð34aÞ

oV

ox
0; z; tð Þ ¼ 0 V a; z; tð Þ ¼ 0 ð34bÞ

V x; 0; tð Þ ¼ 0 V x; b; tð Þ ¼ 0 ð34cÞ
V x; z; 0ð Þ ¼ hr � w x; zð Þ ð34dÞ

Similarly, the PDE for w(x, z) may be written as:

D
o2w

oz2
þ f

ow

oz
þ D

o2w

ox2
¼ 0 ð35aÞ

w x; 0ð Þ ¼ hr w x; bð Þ ¼ h0 ð35bÞ
ow

ox
0; zð Þ ¼ 0 w a; zð Þ ¼ hr ð35cÞ

If w(x, z) is assumed to have two components as:

w x; zð Þ ¼ u x; zð Þ þ q xð Þ ð36Þ

then the PDE for u(x, z) and q(x) may be written as:

Dq00 xð Þ ¼ 0 ð37aÞ

q0 0ð Þ ¼ 0 q að Þ ¼ hr ð37bÞ

D
o2u

oz2
þ f

ou

oz
þ D

o2u

ox2
¼ 0 ð38aÞ

ou

ox
0; zð Þ ¼ 0 u a; zð Þ ¼ 0 ð38bÞ

u x; 0ð Þ ¼ hr � q xð Þ u x; bð Þ ¼ h0�q xð Þ ð38cÞ

The solution to (37a) with boundary condition of (37b)

is q xð Þ ¼ hr: Utilizing separation of variables for u(x, z) as:

u x; zð Þ ¼ Z zð ÞX xð Þ ð39Þ

And substituting (39) into (38a), one would get:

X00

X
¼ � Z 00

Z
� f

D

Z 0

Z
¼ l ð40Þ

where l is an arbitrary constant. If l C 0, then a trivial

solution for X(x) in (40) would be obtained. If l\ 0, say

l ¼ �b2, b[ 0, then applying the boundary conditions of

(38b) in (40) would yield X(x) as:

Xn ¼ An cos bxð Þ; b ¼ 2n� 1ð Þp
2a

; n ¼ 1; 2; 3; . . .;1

ð41Þ

Substituting -b2 into (40) for X00

X
and applying the

boundary condition of u x; 0ð Þ ¼ hr � q xð Þ in (38c) yields:

Z ¼ C1e
� f

2D
z sinh szð Þ; s ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

D

� �2

þ4b2

s
ð42Þ

Substituting (41) and (42) into (39) would give:

u x; zð Þ ¼ e�
f
2D
z
X1
n¼1

A�
n cos bxð ÞsinhðszÞ ð43Þ

where An
* is AnC1. Now, using the boundary condition of

u x; bð Þ ¼ h0�q xð Þ in (38c) and Fourier series properties,

An
* in (43) would be obtained as:

A�
n ¼

4 h0 � hrð Þ �1ð Þnþ1

p 2n� 1ð Þe� f
2D
b sinh sbð Þ

ð44Þ

Utilizing separation of variables for V(x, z, t) as:

V x; z; tð Þ ¼ Z zð ÞX xð ÞT tð Þ ð45Þ

Fig. 8 3-D plot of water content–depth–distance based on the

analytical solution for case 3 (Eq. 30) for the steady-state condition

Fig. 9 Boundary and initial conditions for infiltration from top and

no flow on one side of the sample (case 4)
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And substituting (45) into (34a), one would get:

X00

X
¼ � Z 00

Z
� f

D

Z 0

Z
þ 1

D

T 0

T
¼ l ð46Þ

where l is an arbitrary constant. If l\0, say l = -k2,
k[ 0, then considering the boundary conditions of (34b),

X(x) in (46) may be written as:

Xn ¼ Cn cos kxð Þ; k ¼ 2n� 1ð Þp
2a

; n ¼ 1; 2; 3; . . .;1

ð47Þ

where Cn is a constant. Substituting -k2 into (46) for X00

X

yields:

Z 00

Z
þ f

D

Z 0

Z
¼ k2 þ 1

D

T 0

T
¼ q ð48Þ

where q is an arbitrary constant. If q C 0, then a trivial

solution for Z(z) in (48) would be obtained. If q\ 0, say

q ¼ �m2 � f
D

� �21
4
; m[ 0, then applying the boundary con-

dition of (34c) in (48) would yield Z(z) as:

Zm ¼ Bme
� f

2D
z sin mzð Þ; m¼mp

b
; m¼ 1;2;3; . . .;1 ð49Þ

where Bm is a constant. Also, T(t) in (48) becomes:

T ¼ Ce� k2þm2þ f
Dð Þ

21
4

� �
Dt ð50Þ

where C is a constant. Substituting (47), (49) and (50) into

(45) yields:

V x; z; tð Þ ¼
X1
m¼1

X1
n¼1

Amne
� f

2D
z sin mzð Þ cos kxð Þe� k2þm2þ f

Dð Þ
21
4

� �
Dt

ð51Þ

where Amn is CnBmC. Substituting the boundary condition

of (34d) into (51) and using Fourier series properties for

(51), Amn, is written as:

Amn ¼
4

ab

Za

0

Zb

0

ðhre
f
2D
z � w x; zð Þe

f
2D
zÞ sin mzð Þ sin kxð Þdzdx

¼� 2

b

A�
nm sinh sbð Þ �1ð Þmþ1

s2 þ m2

 !
ð52Þ

Substituting (36), (43) and (51) into (33), h(x, z, t) would
be:

h x; z; tð Þ ¼
X1
m¼1

X1
n¼1

Amne
� f

2D
z sin mzð Þcos kxð Þe� k2þm2þ f

Dð Þ
21
4

� �
Dt

þ e�
f
2D
z
X1
n¼1

A�
n cos bxð ÞsinhðszÞþ hr ð53Þ

Boundary and initial conditions of (32a)–(32c), as well

as the PDE (Eq. 7), are all satisfied by (53). As seen,

Eq. (53) consists of three terms: a function of (x, z, t), a

function of (x, z), and a constant. As t ? ?, the first term

vanishes, and the rest remain as residuals or the steady-

state solution.

In order to confirm summations convergence in Eq. 53,

water content at different positions is calculated using

summations truncation with different values of n and

m (Table 2). The soil parameters used for the problem are

identical to those used in case 1. As seen in Table 2, change

inwater content is negligible at n andm = 1 to 10 and higher.

As a consequence, h is calculated for n = m = 1 to 10 in

Eq. 53. To illustrate the use of the derived equations, water

content values from an explicit scheme finite difference

Table 2 Water content values for the analytical solution (with different summation truncations), FDM solution (with different mesh sizes), and

the relative error for case 4 at t = 30 min

x (cm) z (cm) hAnalytical,
m = n = 5

hAnalytical,
m = n = 10

hAnalytical,
m = n = 15

hAnalytical,
m = n = 20

hFDM, Dt = 15 s,

Dz = Dx = 5 cm

hFDM, Dt = 2 s,

Dz = Dx = 2.5 cm

Error Relative

(%)

20 30 0.0407 0.0407 0.0407 0.0407 0.0347 0.0401 1.47

20 70 0.1404 0.1406 0.1406 0.1406 0.1117 0.1378 1.99

40 30 0.0403 0.0403 0.0403 0.0403 0.0345 0.0401 0.49

40 70 0.1392 0.1391 0.1391 0.1391 0.1105 0.137 1.50

50 20 0.0337 0.0337 0.0337 0.0337 0.0309 0.0331 1.78

50 80 0.1856 0.1860 0.1860 0.1860 0.1575 0.184 1.07

60 40 0.0491 0.0491 0.0491 0.0491 0.0399 0.0485 1.22

60 60 0.0932 0.0932 0.0932 0.0932 0.0720 0.0916 1.71

80 20 0.0314 0.0314 0.0314 0.0314 0.0299 0.0309 1.59

80 80 0.1474 0.1463 0.1463 0.1463 0.1250 0.1435 1.91

90 10 0.0291 0.0291 0.0291 0.0291 0.0288 0.0288 1.03

90 50 0.0418 0.0418 0.0418 0.0418 0.0367 0.0411 1.67
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method (FDM) solution (to Eq. 7) are compared to the

analytical solution (Eq. 53) for t = 30 min and various

values of x and z (columns 7 and 8 in Table 2). Ninth column

shows ErrorRelative based on columns 4 (incorporating[ 100

summation terms) and column 8 (FDM for Dt = 2 s

Dz = 2.5 and Dx = 2.5 cm). As shown, errors are all\2 %

which may be deemed reasonable.

Based on the equation, water content contours are drawn

in Fig. 10a–d for t = 5, 15, 60 min and steady state,

respectively.

Graphs clearly show the infiltrating water content front

from the top side of the soil sample (z = 100 cm) that

remains at h0 = 0.3 there, and the residual value of

hr = 0.0286 is retained on the right (x = 100) and bottom

(z = 0 cm) sides. Evidently, water content contours are

perpendicular to the left side of the sample, confirming a

no-flow boundary condition there. A 3-D plot of water

content–depth–distance for steady state (corresponding to

Fig. 10d) is also visualized in Fig. 11.

3.5 Case 5: Infiltration from Top and One Side

with No Flow on the Other Side of the Sample

This case is similar to the previous case, except for the fact

that the sample is infiltrated from both the top and one side.

Boundary and initial conditions for this case may be

mathematically expressed as:

oh
ox

0; z; tð Þ ¼ 0 h a; z; tð Þ ¼ h0 ð54aÞ

h x; 0; tð Þ ¼ hr h x; b; tð Þ ¼ h0 ð54bÞ
h x; z; 0ð Þ ¼ hr ð54cÞ

Following similar mathematical procedures as before

(case 4), the answer for h x; z; tð Þ would be:

h x; z; tð Þ ¼
X1
m¼1

X1
n¼1

Amne
� f

2D
z sin mzð Þcos kxð Þe� k2þm2þ f

Dð Þ
21
4

� �
Dt

þ e�
f
2D
z
X1
n¼1

cos bxð Þ½A�
nsinhðszÞþB�

ncosh szð Þ�þ h0

ð55Þ

where Amn;A
�
nandB

�
n in the case are defined as:

Fig. 10 Water content contours

based on Eq. (53) for:

a t = 5 min, b t = 15 min,

c t = 60 min, and d steady state

Fig. 11 3-D plot of water content–depth–distance based on the

analytical solution for case 4 (Eq. 53) for the steady-state condition
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Amn ¼
4

ab

Za

0

Zb

0

ðhre
f
2D
z � w x; zð Þe

f
2D
zÞ sin mzð Þ cos kxð Þdzdx

¼ 4

b
� 1

2

A�
nm sinh sbð Þ �1ð Þmþ1

s2 þ m2

  

þ B�
n

s2 þ m2
m cosh sbð Þ �1ð Þmþ1þm
� ���

þ 2 hr�h0ð Þ �1ð Þnþ1

2n� 1ð Þp
1

f
2D

� �2þm2
e

f
2D
bm �1ð Þmþ1þm

� �

ð56aÞ

B�
n ¼

4 hr�h0ð Þ �1ð Þnþ1

p 2n� 1ð Þ ð56bÞ

A�
n ¼ � B�

n

tanh sbð Þ ð56cÞ

Also, m; k; b and s are identical to what was defined in

case 4. All boundary and initial conditions in (54a)–(54c),

as well as the PDE (Eq. 7), are satisfied by (55). As seen,

Eq. (55) consists of three terms: a function of (x, z, t), a

function of (x, z), and a constant. As t ? ?, the first term

vanishes, and the rest remain as residuals or the steady-

state solution. Similar to previous cases, h is calculated for

n = m = 1 to 10 in Eq. 55.

Based on the equation, water content contours are drawn

in Fig. 12a–d for t = 5, 15, 60 min and steady state,

respectively. Soil parameters used for the problem are

identical to those used in case 1.

Graphs clearly show the infiltrating water content front

that remains at h0 ¼ 0:3 on the top (z = 100 cm) and the

right (x = 100 cm) side of the sample, with the residual

value of hr ¼ 0:0286 on the bottom (z = 0 cm) side. Again,

water content contours are perpendicular to the left side of

the sample, confirming no-flow boundary condition there.

3.6 Case 6: Infiltration from Top and One Side,

Imbibition from Bottom, with No Flow

on the Other Side of the Sample

This case is similar to the previous one, except for the fact

that the sample is allowed to imbibe water from the bottom

side, too. Boundary and initial conditions for this case may

be mathematically expressed as:

oh
ox

0; z; tð Þ ¼ 0 h a; z; tð Þ ¼ h0 ð57aÞ

h x; 0; tð Þ ¼ h0 h x; b; tð Þ ¼ h0 ð57bÞ
h x; z; 0ð Þ ¼ hr ð57cÞ

Following similar mathematical procedures as before

(case 4), the answer for h x; z; tð Þ would be:

h x; z; tð Þ ¼
X1
m¼1

X1
n¼1

Amne
� f

2D
z sin mzð Þ cos kxð Þe� k2þm2þ f

Dð Þ
21
4

� �
Dt þ h0

ð58Þ

where in this case Amn is defined as:

Amn ¼
8 hr�h0ð Þ �1ð Þnþ1

b 2n� 1ð Þp
1

f
2D

� �2þm2
e

f
2D
bm �1ð Þmþ1þm

� �
ð59Þ

Also, m; k are identical to what was defined in case 4. All

boundary and initial conditions of (57a)–(57c), as well as

Fig. 12 Water content contours

based on Eq. (55) for:

a t = 5 min, b t = 15 min,

c t = 60 min, and d steady state
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the PDE (Eq. 7), are satisfied by (58). As seen, Eq. (58)

simply consists of two terms: a function of (x, z, t) and a

constant.

As t ? ?, the first term vanishes, and h0 remains as the

residual or the steady-state solution, meaning that, at the

steady state the entire soil sample would have a uniform

constant water content ðh0Þ.
Similar to previous cases, h is calculated for n = m = 1

to 10 in Eq. 58.

Based on the equation, water content contours are drawn

in Fig. 13a–d for t = 5, 15, 60 and 120 min, respectively.

Soil parameters used for the problem are identical to those

used in case 1. Graphs clearly show the infiltrating water

content front that remains at h0 ¼ 0:3 on the top

(z = 100 cm) and right (x = 100 cm) sides and on the

bottom of the sample. Evidently, water content contours

are perpendicular to the left side of the sample verifying

no-flow boundary condition there.

3.7 Case 7: Infiltration from Top, Imbibition

from Bottom, and No Flow on One Side

of the Sample

This case is similar to case 2 except for one side boundary

which is changed to no-flow boundary. Boundary and ini-

tial conditions for this case may be mathematically written

as:

oh
ox

0; z; tð Þ ¼ 0 h a; z; tð Þ ¼ hr ð60aÞ

h x; 0; tð Þ ¼ h0 h x; b; tð Þ ¼ h0 ð60bÞ

h x; z; 0ð Þ ¼ hr ð60cÞ

Following similar mathematical procedures as before

(case 4), the answer for h x; z; tð Þ would be:

h x; z; tð Þ ¼
X1
m¼1

X1
n¼1

Amne
� f

2D
z sin mzð Þcos kxð Þe� k2þm2þ f

Dð Þ
21
4

� �
Dt

þ e�
f
2D
z
X1
n¼1

cos bxð Þ½A�
n sinhðszÞþB�

n cosh szð Þ�þ hr

ð61Þ

where Amn;A
�
nandB

�
n in the case are defined as:

Amn ¼
4

ab

Za

0

Zb

0

ðhre
f
2D
z � w x; zð Þe

f
2D
zÞ sin mzð Þ cos kxð Þdz dx

¼� 2

b

A�
nm sinh sbð Þ �1ð Þmþ1

s2 þ m2

 

þ B�
n

s2 þ m2
m cosh sbð Þ �1ð Þmþ1þm
� ��

ð62aÞ

B�
n ¼

4 h0�hrð Þ �1ð Þnþ1

p 2n� 1ð Þ ð62bÞ

A�
n ¼

B�
n e

f
2D
b � cosh sbð Þ

� �
sinh sbð Þ ð62cÞ

Also, m; k; b and s are identical to what was defined in

case 4. All boundary and initial conditions of (60a) to

(60c), as well as the PDE (Eq. 7), are satisfied by (61). As

seen, Eq. (61) consists of three terms: a function of (x, z, t),

a function of (x, z), and a constant. As t ? ?, the first term

Fig. 13 Water content contours

based on Eq. (58) for:

a t = 5 min, b t = 15 min,

c t = 60 min, and

d t = 120 min
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vanishes, and the rest remain as residuals or the steady-

state solution.

Similar to previous cases, h is calculated for n = m = 1

to 10 in Eq. 61.

Based on the equation, water content contours are drawn

in Fig. 14a–d for t = 5, 15, 60 min and steady state,

respectively. Soil parameters used for the problem are

identical to those used in case 1. Graphs depict the infil-

trating water content front that remains at h0 ¼ 0:3 on the

top (z = 100 cm) and bottom (z = 0 cm) boundaries of the

sample, with the residual value of hr ¼ 0:0286 on the right

(x = 100 cm) side. As shown, water content contours are

perpendicular to the left side of the sample verifying no-

flow boundary condition there. Again, figures do not have

symmetry about z ¼ b
2
line due to oh

oz
term in Eq. (7) which

represents the gravity term. Therefore, water content values

on the upper half of the sample (where z[ b/2) are slightly

greater than the values on the lower half.

3.8 Case 8: Infiltration from Top, Imbibitions

from Bottom, No-Flow on One Side

of the Sample, with A Sinusoidal Initial

Condition

This case is similar to case 7 but with a sinusoidal initial

condition for water content over the domain. Boundary and

initial conditions for this case may be mathematically

written as:

oh
ox

0; z; tð Þ ¼ 0 h a; z; tð Þ ¼ hr ð63aÞ

h x; 0; tð Þ ¼ h0 h x; b; tð Þ ¼ h0 ð63bÞ

h x; z; 0ð Þ ¼ h0 sin
px
a

� �
sin

pz
b

� �
ð63cÞ

The sinusoidal function for initial condition sets a

maximum water content of h0 on the center of the sample,

and a minimum of zero water content on all four edges. A

3-D plot of the initial condition (Eq. 63c) with h0 = 0.3,

a = 100 and b = 100 cm is shown in Fig. 15.

Following similar mathematical procedures as before

(case 7), the answer for h x; z; tð Þ would be:

h x; z; tð Þ ¼
X1
m¼1

X1
n¼1

Amne
� f

2D
z sin mzð Þcos kxð Þe� k2þm2þ f

Dð Þ
21
4

� �
Dt

þ e�
f
2D
z
X1
n¼1

cos bxð Þ½A�
n sinhðszÞþB�

n cosh szð Þ�þ hr

ð64Þ

where Amn in this case is defined as:

where A�
nand B�

n are identical to what was defined in case 7

and H ¼ f
2D
. Also, m; k; b and s are identical to what was

Fig. 14 Water content contours

based on Eq. (61) for:

a t = 5 min, b t = 15 min,

c t = 60 min, and d steady state

Fig. 15 3-D plot of the initial water content distribution (Eq. 63-c)
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defined in case 4. All boundary and initial conditions of

(63a)–(63c), as well as the PDE (Eq. 7), are satisfied by

(64). As seen, Eq. (64) consists of three terms: a function

of (x, z, t), a function of (x, z), and a constant. As t ? ?,

the first term vanishes, and the rest remain as residuals or

the steady-state solution. Similar to previous cases, h is

calculated for n = m = 1 to 10 in Eq. 64.

Based on the equation, water content contours are drawn

in Fig. 16a–d for t = 5, 15, 60 min and steady state,

respectively. Soil parameters used for the problem are

identical to those used in case 1.

At early times (Fig. 16a, b), water content contours

reflect a combination of two distinct water content gradi-

ents: (1) from center of the domain outward due to the

initial sinusoidal (bell shape) water content and (2) from

top to bottom (the infiltrating front) due to the gradient in

water contents on the top and bottom boundaries. As time

elapses, the bell-shaped gradient attenuates, and eventually

water content contours approach a steady-state profile

associated with the last two terms in Eq. (64). Steady-state

contours for this case (Fig. 16d) are exactly the same as

contours for case 7 (Fig. 14d). A 3-D plot of water con-

tent–depth–distance for t = 5 min (corresponding to

Fig. 16a) is also visualized in Fig. 17.

3.9 Case 9: Infiltration from Top, No Flow on One

Side of the Sample, with a Sinusoidal Initial

Condition

This case is similar to case 4 but with a sinusoidal initial

condition for water content over the domain. Boundary and

initial conditions for this case may be mathematically

written as:

oh
ox

0; z; tð Þ ¼ 0 a; z; tð Þ ¼ hr ð66aÞ

h x; 0; tð Þ ¼ hr h x; b; tð Þ ¼ h0 ð66bÞ

Fig. 16 Water content contours

based on Eq. (64) for:

a t = 5 min, b t = 15 min,

c t = 60 min, and d steady state

Amn ¼
4

ab

Za

0

Zb

0

h0 sin
px
a

� �
sin

pz
b

� �
e

f
2D
z � w x; zð Þe

f
2D
z

� �
sin mzð Þ cos kxð Þdz dx

¼ 4

b
h0

4

p 4n2 � 4n� 3ð Þ �
2Hb2p2m 1þ eHb �1ð Þm

� �
H4b4 þ 2H2b2p2 þ 2H2b2p2m2 þ p4 � 2p4m2 þ p4m4

�


þ hr
2mb �1ð Þn� �1ð Þnþm

beHb
� �

2nH2b2 þ 2nm2p2 � H2b2 � m2p2

!
� 1

2

A�
nm sinh sbð Þ �1ð Þmþ1

s2 þ m2
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n

s2 þ m2
m cosh sbð Þ �1ð Þmþ1þm
� � !)

ð65Þ
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h x; z; 0ð Þ ¼ h0 sin
px
a

� �
sin

pz
b

� �
ð66cÞ

The sinusoidal initial function is identical to the one in

the previous case, setting a maximum of theta0 on the

center of the sample, and zero water content on all four

edges. Following a similar mathematical procedure as

before (case 4), the answer for h x; z; tð Þ would be:

h x; z; tð Þ ¼
X1
m¼1

X1
n¼1

Amne
� f

2D
z sin mzð Þ cos kxð Þe� k2þm2þ f

Dð Þ
21
4

� �
Dt

þ e�
f
2D
z
X1
n¼1

A�
n cos bxð Þ sinhðszÞ þ hr

ð67Þ

where Amn in this case is defined as:

where A�
n is identical to what was defined in case 4 and

H ¼ f
2D
. Also, m; k; b and s are identical to what was defined

in case 4. All boundary and initial conditions of (66a)–

(66c), as well as the PDE (Eq. 7), are satisfied by (67). As

seen, Eq. (67) consists of three terms: a function of (x, z, t),

a function of (x, z), and a constant. As t ? ?, the first term

vanishes, and the rest remain as residuals or the steady-

state solution. As t ? ?, the first term vanishes, and the

rest remain as residuals or the steady-state solution.

In order to confirm summations convergence in Eq. 67,

water content at different positions is calculated using

summations truncation with different values of n and

m (Table 3). The soil parameters used for the problem are

identical to those used in case 1. As seen in Table 3,

change in water content is negligible at n and m = 1 to 10

and higher. As a consequence, h is calculated for

n = m = 1 to 10 in Eq. 67. To illustrate the use of the

derived equations, water content values from an explicit

scheme finite difference method (FDM) solution (to Eq. 7)

are compared to the analytical solution (Eq. 67) for

t = 30 min and various values of x and z (columns 7 and 8

in Table 3). Ninth column shows ErrorRelative based on

columns 4 (incorporating[ 100 summation terms) and

column 8 (FDM for Dt = 2 s, Dz = 2.5 cm and

Dx = 2.5 cm). As shown, errors are all\2 % which may

be deemed reasonable.

Based on the equation, water content contours are drawn

in Fig. 18a–d for t = 5, 15, 60 min and steady state,

respectively.

At early times (Fig. 18a, b), water content contours

reflect a combination of two distinct water content gradi-

ents: (1) from center of the domain outward due to the

initial sinusoidal (bell shape) water content and (2) from

top to bottom (the infiltrating front) due to the gradient in

water contents on the top and bottom boundaries. As time

elapses, the bell-shaped gradient attenuates, and eventually

water content contours approach a steady-state profile

associated with the last two terms in Eq. (67). Steady-state

contours for this case (Fig. 18d) are exactly the same as

contours for case 4 (Fig. 10d). A 3-D plot of water con-

tent–depth–distance for t = 5 min (corresponding to

Fig. 18a) is also visualized in Fig. 19.

3.10 Case 10: Infiltration from Top, Imbibitions

from Bottom, No Flow on One Side,

with an Exponential Initial Condition

This case is similar to case 7 except for the constant initial

water content which is changed to a diagonally exponential

distribution over the domain. Boundary and initial condi-

tions for this case may be mathematically written as:

Fig. 17 3-D plot of water content–depth–distance based on the

analytical solution for case 8 (Eq. 64) for t = 5 min
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Zb
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b
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2
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oh
ox

0; z; tð Þ ¼ 0 h a; z; tð Þ ¼ hr ð69aÞ

h x; 0; tð Þ ¼ h0 h x; b; tð Þ ¼ h0 ð69bÞ

h x; z; 0ð Þ ¼ h0e
�x

a
�z

bð Þ ð69cÞ

The exponential function sets a maximum water content

of h0 at the left bottom corner of the sample (at x = z=0)

and a minimum water content at top right corner. A 2-D

contour plot of the initial condition (Eq. 69c) with h0 ¼
0:3; a ¼ 100 and b ¼ 100 cm is shown in Fig. 20.

Following similar mathematical procedures as before

(case 7), the answer for h x; z; tð Þ would be:

Table 3 Water content values for the analytical solution (with different summation truncations), FDM solution (with different mesh sizes), and

the relative error for case 9 at t = 30 min

x (cm) z (cm) hAnalytical,
m = n = 5

hAnalytical,
m = n = 10

hAnalytical,
m = n = 15

hAnalytical,
m = n = 20

hFDM, Dt = 15 s,

Dz = Dx = 5 cm

hFDM, Dt = 2 s,

Dz = Dx = 2.5 cm

Error Relative

(%)

20 30 0.1170 0.1170 0.1170 0.1170 0.1034 0.1154 1.36

20 70 0.2054 0.2056 0.2056 0.2056 0.1925 0.2024 1.55

40 30 0.1235 0.1235 0.1235 0.1235 0.1070 0.1217 1.45

40 70 0.2101 0.2099 0.2099 0.2099 0.1957 0.2068 1.47

50 20 0.0957 0.0957 0.0957 0.0957 0.0801 0.0941 1.67

50 80 0.2342 0.2346 0.2346 0.2346 0.2204 0.2314 1.36

60 40 0.1343 0.1343 0.1343 0.1343 0.1192 0.1318 1.86

60 60 0.1719 0.1719 0.1719 0.1719 0.1579 0.1702 0.98

80 20 0.0658 0.0658 0.0658 0.0658 0.0569 0.0649 1.36

80 80 0.1743 0.1733 0.1733 0.1733 0.1595 0.1715 1.03

90 10 0.0390 0.0390 0.0390 0.0390 0.0359 0.0384 1.53

90 50 0.0690 0.0690 0.0690 0.0690 0.0639 0.0679 1.59

Fig. 18 Water content contours

based on Eq. (67) for:

a t = 5 min, b t = 15 min,

c t = 60 min, and d steady state

Fig. 19 3-D plot of water content–depth–distance based on the

analytical solution for case 9 (Eq. 67) for t = 5 min
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h x; z; tð Þ ¼
X1
m¼1

X1
n¼1

Amne
� f

2D
z sin mzð Þ cos kxð Þe� k2þm2þ f

Dð Þ
21
4

� �
Dt

þ e�
f
2D
z
X1
n¼1

cos bxð Þ½A�
n sinhðszÞ þ B�

n cosh szð Þ� þ hr

ð70Þ

where Amn in this case is defined as:

where A�
n and B�

n are identical to what was defined in case 7

and H ¼ f
2D

: Also, m; k; b and s are identical to what was

defined in case 4. Boundary and initial conditions of (69a)–

(69c), as well as the PDE (Eq. 7), are all satisfied by (70).

As seen, Eq. (70) consists of three terms: a function of (x,

z, t), a function of (x, z), and a constant. As t ? ?, the first

term vanishes, and the rest remain as residuals or the

steady-state solution. Similar to previous cases, h is cal-

culated for n = m = 1 to 10 in Eq. 70.

Based on the equation, water content contours are drawn

in Fig. 21a, b for t = 5, 15 min, respectively. Soil

parameters used for the problem are identical to those used

in case 1. As time elapses, the initial gradient attenuates,

and eventually water content contours approach a steady-

state profile associated with the last two terms in Eq. (70).

Steady-state contours for this case are exactly the same

as contours for case 7 (Fig. 14d). A 3-D plot of water

content–depth–distance for t = 5 min (corresponding to

Fig. 21a) is also visualized in Fig. 22.

3.11 Case 11: Infiltration from Top, No Flow

on One Side, with an Exponential Initial

Condition

This case is similar to case 4 except for the initial condition

which has changed to a diagonally exponential distribution

over the domain. Boundary and initial conditions for this

case may be mathematically written as:

oh
ox

0; z; tð Þ ¼ 0 h a; z; tð Þ ¼ hr ð72aÞ
Fig. 20 2-D contour plot of the distribution of water content (69c)

Fig. 21 Water content contours

based on Eq. (70) for:

a t = 5 min and b t = 15 min

Amn ¼
4

ab

Za

0

Zb

0

h0e
�x

a
�z

bð Þe
f
2D
z � w x; zð Þe

f
2D
z

� �
sin mzð Þ cos kxð Þdz dx

4

b
h0

2 �2þ 2e�1p �1ð Þnn� e�1p �1ð Þnð Þ
4þ 4p2n2 � 4p2nþ p2

�
bmp �1þ eHb�1 �1ð Þm

� �
H2b2 � 2Hbþ 1þ m2p2

�

þhr

2mb �1ð Þn� �1ð Þnþm
beHb

� �
2nH2b2 þ 2nm2p2 � H2b2 � m2p2

!

� 1

2

A�
nm sinh sbð Þ �1ð Þmþ1

s2 þ m2
þ B�

n

s2 þ m2
m cosh sbð Þ �1ð Þmþ1þm
� � !)

ð71Þ

236 Iran J Sci Technol Trans Civ Eng (2016) 40:219–239

123



h x; 0; tð Þ ¼ hr h x; b; tð Þ ¼ h0 ð72bÞ

h x; z; 0ð Þ ¼ h0e
�x

a
�z

bð Þ ð72cÞ

Following similar mathematical procedures as before

(case 4), the answer for h x; z; tð Þ would be:

h x; z; tð Þ ¼
X1
m¼1

X1
n¼1

Amne
� f

2Dz sin mzð Þ cos kxð Þe� k2þm2þ f
Dð Þ

21
4

� �
Dt

þ e�
f
2D
z
X1
n¼1

A�
n cos bxð ÞsinhðszÞ þ hr

ð73Þ

where Amn in this case is defined as:

Fig. 22 3-D plot of water

content–depth–distance based

on the analytical solution for

case 10 (Eq. 70) for t = 5 min

Table 4 Water content values for the analytical solution (with different summation truncations), FDM solution (with different mesh sizes), and

the relative error for case 11 at t = 30 min

x (cm) z (cm) hAnalytical,
m = n = 5

hAnalytical,
m = n = 10

hAnalytical,
m = n = 15

hAnalytical,
m = n = 20

hFDM, Dt = 15 s,

Dz = Dx = 5 cm

hFDM, Dt = 2 s,

Dz = Dx = 2.5 cm

Error Relative

(%)

20 30 0.1417 0.1417 0.1417 0.1417 0.1282 0.1392 1.76

20 70 0.1650 0.1652 0.1652 0.1652 0.1789 0.1669 1.02

40 30 0.1224 0.1224 0.1224 0.1224 0.1096 0.1238 1.14

40 70 0.1514 0.1512 0.1512 0.1512 0.1677 0.1531 1.25

50 20 0.0966 0.0966 0.0966 0.0966 0.0834 0.0948 1.86

50 80 0.1807 0.1811 0.1811 0.1811 0.1944 0.1828 0.93

60 40 0.1031 0.1031 0.1031 0.1031 0.0967 0.1044 1.26

60 60 0.1121 0.1121 0.1121 0.1121 0.1212 0.1102 1.69

80 20 0.0620 0.0620 0.0620 0.0620 0.0586 0.0609 1.77

80 80 0.1406 0.1396 0.1396 0.1396 0.1415 0.1415 1.36

90 10 0.0388 0.0388 0.0388 0.0388 0.0331 0.0382 1.54

90 50 0.0523 0.0523 0.0523 0.0523 0.0509 0.0519 0.76

Amn ¼
4

ab

Za

0

Zb

0

ðh0e �x
a
�z

bð Þe
f
2D
z � w x; zð Þe

f
2D
zÞ sin mzð Þ cos kxð Þdzdx

¼ 4

b
h0

2 �2þ 2e�1p �1ð Þnn� e�1p �1ð Þnð Þ
4þ 4p2n2 � 4p2nþ p2

�
p �1þ eHb�1 �1ð Þm
� �

H2b2 � 2Hbþ 1þ m2p2

�


þhr
2mb �1ð Þn� �1ð Þnþm

beHb
� �

2nH2b2 þ 2nm2p2 � H2b2 � m2p2

!
� 1

2

A�
nm sinh sbð Þ �1ð Þmþ1

s2 þ m2

 !)
ð74Þ

Iran J Sci Technol Trans Civ Eng (2016) 40:219–239 237

123



Also An
*, m; k; b and s are identical to what was defined in

case 4 and H ¼ f
2D

: All boundary and initial conditions of

(72a)–(72c), as well as the PDE (Eq. 7), are satisfied by

(73). As seen, Eq. (73) consists of three terms: a function

of (x, z, t), a function of (x, z), and a constant. As t ? ?,

the first term vanishes, and the rest remain as residuals or

the steady-state solution.

In order to confirm summations convergence in Eq. 73,

water content at different positions is calculated using

summations truncation with different values of n and m

(Table 4). The soil parameters used for the problem are

identical to those used in case 1. As seen in Table 4, change

in water content is negligible at n and m = 1 to 10 and

higher. As a consequence, h is calculated for n = m = 1 to

10 in Eq. 73. To illustrate the use of the derived equations,

water content values from an explicit scheme finite differ-

ence method (FDM) solution (to Eq. 7) are compared to the

analytical solution (Eq. 73) for t = 30 min and various

values of x and z (columns 7 and 8 in Table 4). Ninth col-

umn shows ErrorRelative based on columns 4 (incorporat-

ing[ 100 summation terms) and column 8 (FDM for

Dt ¼ 2s; Dz ¼ 2:5 cm and Dx ¼ 2:5 cm). As shown, errors

are all\ 2 % which may be deemed reasonable.

Based on the equation, water content contours are drawn

in Fig. 23a–b for t = 5, 15 min, respectively.

As time elapses, the initial gradient attenuates, and

eventually water content contours approach to a steady-

state profile associated with the last two terms in Eq. (73).

Steady-state contours for this case are exactly the same

as contours for case 4 (Fig. 10d). A 3-D plot of water

content–depth–distance for t = 5 min (corresponding to

Fig. 23a) is also visualized in Fig. 24.

4 Conclusions

New analytical solutions to 2-D vertical and horizontal

infiltration and imbibition into unsaturated soils were pre-

sented for linearized Richards’ equation under nonsym-

metrical boundary and nonuniform initial conditions.

Separation of variables and Fourier series expansion tech-

niques were used to derive the solutions. Solutions have the

general form of infinite series with exponential terms

whereby both steady and unsteady solutionsmay be obtained

from a single closed-form solution. Solutions were derived

for constant water content and no-flow boundary conditions

along with constant, sinusoidal, or exponential water con-

tents as initial conditions. Two-dimensional and 3-D plots of

water content were presented for the transient as well as

steady-state conditions. A total of 11 different cases were

studied, and analytical solutions were compared to numeri-

cal FDM results for four cases in order to check validity and

accuracy of the numerical solution, where a maximum error

of\2 % was observed. The presented analytical solutions

may be used as a benchmark for verification and accuracy

assessment of numerical approaches where nonsymmetrical

boundary and/or nonuniform initial conditions exist.
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