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Abstract In this paper, a new modified particle swarm

optimization (PSO) algorithm is utilized in optimal design

of large-span prestressed concrete slabs. The modification

is performed by adding some probabilistic coefficients to

the velocity of particles, and it is called probabilistic par-

ticle swarm optimization (PPSO). These coefficients pro-

vide simultaneous exploration and exploitation for the

algorithm, and decrease dependency of PSO on its con-

stants. To examine the robustness of the enhanced algo-

rithm, the model of a large-span prestressed concrete slab

is generated using SAP2000 and is linked to the considered

metaheuristic code to provide an optimal design. Results of

PPSO are compared to those of the PSO and harmony

search. A better performance of the PPSO is shown com-

pared to the metaheuristics considered. PPSO is shown to

converge faster and results in lower weight. Furthermore, a

parametric study shows that the PPSO is less sensitive to

the inertia weight.

Keywords Optimal design � Prestressed concrete slab �
Long span � PSO � HS � PPSO

1 Introduction

Prestressed concrete slabs are efficient systems for cover-

ing the long spans where placing columns interrupts the

serviceability of the structure. For instance, audiences,

parking lots, hotels, airports, etc., are examples of such

structures in which columns may cause problems for the

users. Prestressed concrete slabs provide floor scheme with

smaller thickness which not only reduces the cost of the

structure, but also decreases the mass of the structure; as a

result, the earthquake effects can be decreased.

In recent decades, metaheuristic algorithms have been

applied to many structural problems, and floor systems are

no exception. Kaveh and Shakouri Mahmud Abadi (2010)

utilized IHS for optimal design of composite floor systems;

in the case of optimal design of prestressed concrete floor

systems, the work of Rozvany and Hampson (1963) is one

of the pioneering attempts. MacRae and Cohn (1987) used

a nonlinear programming and conjugate direction method

as optimization algorithm along with equivalent load

method as the analysis method to achieve this goal.

Kuyucular’s (1991) attempt was to minimize the weight of

prestressing cables by considering several predefined cable

profiles for each section. He also used a combined finite

element method and equivalent load method for structural

analysis. Lounis and Cohn (1993) considered two objective

functions to be minimized consisting of the cost and initial

camber. One of these functions was used as the objective

function, and the other was treated as a constraint for e-
constraint approach. In sum, they employed a projected

Lagrangian algorithm for optimization and a sectional

stress analysis and force-in-tendon method for analysis of

floor slabs. Based on the work of Semelawy et al. (2012), a

concrete slab was modeled using a consistent triangular

shell element that was originally developed by Koziey and
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Mirza (1997). Steel tendons are modeled as a discrete

integral part of the shell element. Direct search heuristic

optimization techniques, such as genetic algorithms, and

multiobjective optimization techniques are utilized. Sharafi

et al. (2012) considered a heuristic approach for optimum

cost and layout design of 3D reinforced concrete frames.

Sharafi et al. (2013) worked on the cost optimization of

column layout design of reinforced concrete buildings.

Kaveh et al. (2014) used PSO and recently developed

PSOHS algorithms for performance-based optimal design

of RC shear walls. Based on the work of Sharafi et al.

(2014), a continuous reinforced concrete beam by consid-

ering geometric design optimization for its dynamic

response was modeled.

Metaheuristic optimization algorithms, due to fewer

limitations of application, have attracted many researchers

(Kaveh 2014). One of the robust metaheuristic algorithms

is particle swarm optimization, PSO, proposed by Eberhart

and Kennedy (1995). The capability of searching in a

continuous feasibility space, easy implementation, and not

being trapped in a local minimum are the main character-

istics of this algorithm. Other applications of PSO can be

found in Kaveh and Malakouti Rad (2010) and Kaveh and

Laknejadi (2011). However, the lack of balanced explo-

ration and exploitation and shortcoming in dealing with the

violated particles from feasibility boundaries reduce its

robustness significantly. To remove these problems, a lin-

early varying inertia weight was introduced by Shi and

Eberhart (1998) that provided a balanced exploration and

exploitation, and a harmony search (Geem et al. 2001)-

based algorithm for violation handling was proposed by

Kaveh and Talatahari (2009). Some other applications of

HS can be found in Kaveh and Shakouri (2010) and Kaveh

and Ahanghran (2012).

The capability of searching in a continuous feasibility

space, easy implementation, and not being trapped in local

minima are the main characteristics of this algorithm.

However, the velocity updating scheme utilized in the

classical PSO has a steady form and hence does not provide

exploration and exploitation which are necessary to most of

the optimization processes. To remove this problem, Kaveh

and Nasrollahi (2014) and Kaveh and Nasrollahi 2014)

proposed a probabilistic PSO algorithm, called PPSO. The

PPSO performs global or local search with a predefined

probability and thus provides two phases of search for the

algorithm simultaneously in all the iterations.

The main objective of the present study is to apply

PPSO to the design of large-span prestressed concrete

slabs. The commercial SAP2000 analysis package is

employed to facilitate the analysis procedure. Furthermore,

to examine the efficiency of the improvements, results of

the PPSO are compared with those of PSO and HS

algorithms.

2 A Probabilistic Particle Swarm Optimization
Algorithm

2.1 Background

Great effort has been put into creating and improving

various metaheuristic optimization algorithms, and this has

led to various powerful tools in this field. Many biological

and social interactions between natural systems and many

physical laws are utilized in optimization algorithms

(Kaveh 2014). On the other hand, many special concepts

such as how to deal with violated variables from feasible

search space, balancing global and local searches, and how

to handle the constraints are developed to enhance the

quality of the obtained solution. Each algorithm has its own

characteristics, and none of them is perfect. Utilizing these

useful tools in one algorithm can lead to a better opti-

mization algorithm. Elements of an optimization problem

are: (a) cost function, (b) design variable (solution),

(c) constraints, and (d) search space. The relations between

the above-mentioned elements are as follows:

Minimize: f ðxÞ ð1aÞ

X ¼ x1; x2; . . .; xp
� �

ð1bÞ

Subjected to:

g1ðXÞ� 0

g2ðXÞ� 0

. . .
gmðXÞ� 0

8
>><

>>:
; Subjected to

h1ðXÞ� 0

h2ðXÞ� 0

. . .
hnðXÞ� 0

8
>><

>>:

ð1cÞ
Inwhich:Xmin �X�Xmax ð1dÞ

where f(X) is the cost function; X is the design vector

(solution) consisting of p independent variables x1, x2, …,

and xp; g1ðXÞ, g2ðXÞ, …, and gmðXÞ are m unequal con-

straints; h1ðXÞ, h2ðXÞ, …, and hnðXÞ are n equal con-

straints; and Xmin and Xmax are minimum and maximum

feasible design vectors; therefore, Eq. (1d) denotes the

feasible search space of the problem. Note that there is no

relation between p, n, and m.

Steps of most of the metaheuristic algorithms are as

follows:

1. Initialization Most of the metaheuristic algorithms

need a population of initial solutions. Usually, these

initial solutions are produced randomly in the search

space.

2. Searching for a better solution in the feasible search

space Having random initial solutions, the existing

solutions should be updated using a logical manner.

This process is called searching. In this step, solutions

are updated iteratively using a search engine which is

inspired from nature or physics.
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To reach a good solution, search engine of each algo-

rithm should provide two main phases which are (a) explo-

ration (diversification or global search) and (b) exploitation

(intensification or local search). At initial iterations, the

algorithm should perform a global search and cover the

whole search space. In this stage, some points that are

expected to be near the global minimum of the cost function

are found. Then at the latest iterations, the algorithm should

perform a local search using the solution vectors found so

far to increase the precision of the solution. In every

metaheuristic algorithm, there should be a balance between

exploration and exploitation. Further exploration diversifies

the optimization process and brings down the precision of

the solution. On the contrary, further exploitation intensifies

the optimization process and the risk of finding a local

optimum instead of a global optimum increases.

3. Stopping criteria There are some criteria to finish the

iterative process. Some of these are:

• Maximum number of iterations: The optimization

process is terminated after a fixed number of

iterations, for example 1000 iterations.

• Number of iterations without improvement: The

optimization process is terminated after some fixed

number of iterations without any improvement.

• Minimum objective function error: The difference

between the values of the best objective function

and the global optimum is less than a prefixed

anticipated threshold.

• Difference between the best and the worst solu-

tions: The optimization process is stopped if the

difference between the objective values of the best

and the worst solutions becomes less than a

specified accuracy (Geem et al. 2001).

2.2 Standard PSO

Particle swarm optimization (PSO) is a multiagent meta-

heuristic algorithm. It uses a velocity vector to update the

current position of each particle in the swarm. The velocity

vector is updated using a memory in which the best posi-

tion of each particle and the best position among all par-

ticles are stored, and it can be considered as an

autobiographical memory. Therefore, the position of each

particle in the swarm adapts to its environment via flying in

the direction of the previous velocity vector, the best

position of whole particles, and the best position of particle

itself. This mechanism provides the search of the PSO. The

position of the ith particle at iteration k ? 1 can be cal-

culated as:

xikþ1 ¼ xik þ vikþ1 � Dt ð2Þ

where xikþ1 is the new position; xik stands for the ith par-

ticle’s position at iteration k; vikþ1 represents the updated

velocity vector of the ith particle; and Dt is the time step

which is considered as unity. The velocity vector of each

particle is determined as:

vikþ1 ¼ w � vik þ c1 � r1 �
pik � xik
� �

Dt
þ c2 � r2 �

p
g
k � xik

� �

Dt
ð3Þ

where vik is the velocity vector at iteration k; r1 and r2 are

two random numbers between 0 and 1; pik represents the

best ever position of ith particle, local best; p
g
k is the global

best position in the swarm up to iteration k; c1 is the

cognitive parameter; c2 is the social parameter; and w is a

constant named inertia weight.

With the above description of PSO, the algorithm can be

summarized as follows:

1. Initialization

Initial position, xi0, and velocities, vi0, of particles are

distributed randomly in feasible search space using

Eqs. (4) and (5).

xi0 ¼ xmin þ r � xmax � xminð Þ ð4Þ

vi0 ¼
xmin þ r � xmax � xminð Þ

Dt
ð5Þ

where r is a random number uniformly distributed between

0 and 1; xmin and xmax are minimum and maximum possible

variables for the ith particle, respectively.

2. Solution evaluation

Evaluate the objective function value for each particle,

f ðxikÞ, using the design variables correspond to iteration k.

3. Updating memory

Update the local best of each particle, pik, and the global

best, p
g
k , at iteration k.

4. Updating positions

Update the position of each particle utilizing its previous

position and updated velocity vector as specified in

Eqs. (2) and (3).

5. Stopping criteria

Repeat steps 2–4 until the stopping criteria are met.

2.3 Probabilistic Particle Swarm Optimization

Algorithm

This section presents a recently developed variant of the

PSO algorithm including probabilistic global and local

search mechanisms. For this purpose, some probabilistic

functions are added into the standard PSO formulation.
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Doing this, three various searches are performed in all

iterations: (1) global search; (2) local search toward the

global best; and (3) local search toward the combination of

global and local bests. The new optimization algorithm

utilized in this research is termed probabilistic particle

swarm optimization (PPSO). In PPSO, the velocities of

particles are updated as follows:

vikþ1 ¼ a � w � vik þ b � c1 � r1 �
pik � xik
� �

Dt
þ c � c2 � r2

�
p
g
k � xik

� �

Dt
ð6Þ

where a, b, and c are probabilistic functions and are defined
as:

a ¼ r and b ¼ 1; c ¼ 1: if p\p1
a ¼ 0; b ¼ 1; c ¼ 0: if p1 � p� p2
a ¼ 0; b ¼ 0; c ¼ 1: if p[ p2

8
<

:
ð7Þ

where p is a random number in the interval [0, 1]; p1 and p2
are predefined levels of probabilities set by the user, and

they can be determined using a trial-and-error or para-

metric study; b and c are parameters for selection of the

type of search. b ¼ 1 provides local search toward local

best, and c ¼ 1 provides local search toward global best.

Thus, the values of b and c are selected to be 0 or 1. On the

other hand, a controls the amount of global search and it

should be chosen randomly from a range of real numbers

rather than 0 or 1.

PPSO can simultaneously perform global and local

searches. This approach is a step further toward the com-

mon belief that metaheuristic algorithms should perform

only global search in the initial iterations and only local

search in the final iterations. However, if a particle is close

to the global optimum in the early stages of the opti-

mization process, global search may force that particle to

fly away from such a good position. As a result, the opti-

mization algorithm becomes less robust. By setting a as a

random number, exploration and exploitation can simul-

taneously be performed in all iterations: Global search will

be performed for some particles, while other particles will

perform local search. Therefore, if a better location is

found, it is saved as the local or global best, and in the

subsequent iterations that particle may commit in a global

search, while it has a better local best; as a result, the

overall performance of the algorithm will be improved

using this search strategy. Furthermore, b and c provide

two different local searches toward local best and global

best, respectively. This variety in exploitation may lead to

finding better points when near optimum is being searched.

3 Formulation for Optimal Design of Prestressed
Concrete Slabs

In general, cost function, constraints and feasible search

space are three main components of an optimization

problem. In optimal design of prestressed concrete slabs, it

is desirable to minimize the cost of materials and con-

struction which in this paper consists of the costs of con-

crete and tendon. Therefore, the cost function is defined as:

FðXÞ ¼ Cc � Vc þ
Xn

i¼1

Cs � Ls ð8Þ

where FðXÞ is the cost function; Cc stands for the cost of

concrete per volume including the cost of material and

forming; Vc represents the total volume of the concrete; n is

the number of tendons in two directions; Cs is the cost of

steel per unit meter including the cost of material and

forming; and Ls is the total length of tendons.

In Eq. (8), X is the design variable vector and consists

of: (1) thickness of slab (t), (2) number of tendons in x-

direction (Nx), (3) number of tendons in y-direction (Ny),

(4) diameter of tendons in the x-direction (dx), (5) diameter

of tendons in y-direction (dy), (6) tendon eccentricity at one

end of the slab (e1), (7) tendon eccentricity at the other end

of the slab (e2), (8) tendon eccentricity at middle of the slab

(e3), (9) allowable tensile stress of tendons (Stendon). These

variables are delineated in Figs. 1 and 2.

Fig. 1 Eccentricity of tendons in the considered problem
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In order to meet Canadian Standard Association (CSA)

requirements, constraints are based on those provided in

Table 1. A penalty function approach is employed to meet

the constraints.

4 Numerical Example

A large-span prestressed concrete slab example is consid-

ered to be designed using the PPSO and the above-men-

tioned formulation. This problem is solved using PSO,

PPSO, and HS algorithms to examine the PPSO both in

terms of performance of the PPSO compared to some other

algorithms and formulation proposed for prestressed con-

crete slab. The considered problem is optimal design of a

10 m 9 10 m prestressed concrete slab with an edge beam

of 100 cm depth and 80 cm width. The slab is supported by

columns at four corners with dimensions of

80 cm 9 80 cm. Moreover, the concrete cover on tendons

is considered to be equal or more than 40 mm. The

geometry of the slab is schematically shown in Fig. 3, and

the positions of the tendons are also illustrated in Fig. 4.

The applied loads are determined based on a typical resi-

dential structure as: slab and other elements self-weight

made of reinforced concrete with specific weight of 24 kN/

Fig. 2 Cross section: tendons located between A and B, and the

considered cover dc

Table 1 Constraints of

prestressed concrete design

based on CSA

Symbol Constraint Clause (in CSA) Limit

C1 Stress in concrete (initial stage) 18.3.1.1 �0:6f 0c \ Sconc \ 0:5
ffiffiffiffi
f 0c

p

C2 Stress in concrete (final stage) 18.3.2 �0:6f 0c \ Sconc \ 0:5
ffiffiffiffi
f 0c

p

C3 Stress in tendons 18.4 Stendon \ 0:7fpu

C4 Ultimate bending moment 18.6.2 (a) Mr [Mf

C5 Minimum factored resistance 18.7 Mr [ 1:2Mcr

C6 Punching sheara 13.3 vr [ vf

C7 Maximum/minimum eccentricityb 7.9 and 6.6.6 ej j � 1� 2dc=t

f 0c is the specified compressive strength of concrete; Sconc is the stresses in concrete (obtained from

SAP2000 analysis) for initial and final stages; fpu is the specified tensile strength of prestressing tendons;

Stendon is the stresses in prestressing tendon (obtained from the algorithm written in MATLAB); vr is the

factored shear stress resistance; vf is the factored shear stress; Mr is the factored moment resistance; Mf is

the factored moment; Mcr is the cracking moment; e is the eccentricity of the prestressing tendon at a

specified key point—defined as a ratio to the thickness ranging from -1 to 1; dc is the distance from

extreme fiber to the center of the longitudinal prestressing tendon located close to it (see CSA); and t is the

thickness of the concrete slab
a Punching shear will also depend on the column dimension, which is taken as a constant in this study
b Directly related to the specified minimum concrete cover and tendon diameter (see CSA)

Fig. 3 Schematic view of slab and edge beams
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m3, and dead and live surplus loads of 2.40 kN/m2 imposed

on the slab. The concrete compressive strength, f 0c, is

40 MPa, and tensile yielding stress of tendons, fy, is

186 MPa. The cost of concrete and tendons are included in

Table 2; moreover, the feasible range of each variable is

presented in Table 3.

Since all metaheuristic algorithms are sensitive to the

constant parameters and random initialization, in order to

reach the best result, several values are considered for

inertia weight, w, which are 0.5, 1.0, 1.5, and 2. Also, all

algorithms are run 20 times for each value to compensate

the effect of random initialization. Both c1 (cognitive

parameter) and c2 (social parameter) are set to one in both

PSO and PPSO algorithms.

The best result obtained by PPSO is compared with

those of PSO and HS in Table 4. It is observed from the

table that the best result associated with PPSO is $3787.6,

while the best result of PSO and HS is 3998.8 and

4678.51, respectively. Moreover, the convergence history

of the PSO, HS, and PPSO shows that although PSO and

HS need fewer analyses to achieve the optimum design,

these do not provide designs as good as PPSO. This fact is

due to a lack of exploitation in PSO and HS. Based on

Fig. 5, PSO and HS stop searching when the number of

analyses is less than 200, while PPSO continues searching

in more than 400 analyses in the form of local search

Fig. 4 Positions of tendons in the considered problem

Table 2 Cost of materials

Concrete cost

130 $/m3

Prestressing tendons

Diameter (mm) Area (mm2) Cost $/m

20 314.16 2.363

21 346.36 2.56

22 380.13 2.757

23 415.48 2.954

24 452.39 3.151

25 490.87 3.348

26 530.93 3.545

27 572.56 3.742

28 615.75 3.939

29 660.52 4.136

30 706.86 4.333

Table 3 Upper and lower limits for variables

Variable Lower limit Upper limit

t (mm) 100 500

Nx 10 63

Ny 10 63

dx (mm) 20 30

dy (mm) 20 30

e1 No lower limit

is considereda
No upper limit

is consideredb

e2 No lower limit

is considered

No upper limit

is considered

e3 No lower limit

is considered

No upper limit

is considered

Stendon (mm) 400 1860

a,b The only considered constraint is the concrete cover (40 mm)

Table 4 The best results for HS, PSO, and PPSO

Variable HS PSO PPSO

Method

t (mm) 284 289 255

Nx 10 5 10

Ny 10 5 10

dx (mm) 29 28 20

dy (mm) 29 28 20

e1 0.6429 0.7232 0.6863

e2 0.6429 0.7232 0.6863

e3 0.6429 0.7232 0.6863

Cost ($) 4678.51 3998.8 3787.6

Constraints

C1 0.9232 0.8456 0.999

C2 0.8994 0.6691 0.7507

C3 0.7961 0.629 0.9916

C4-X 0.1684 0.1211 0.2627

C4-Y 0.1684 0.1211 0.2627

C5-X 0.2063 0.2755 0.4665

C5-Y 0.2063 0.2755 0.4665

C6 0.0018 0.0014 0.0016
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which can be seen through Figs. 5 and 6; as a result, it

provides better results. Small variations of the results in

the middle and the end of convergence history graph

denote local search, which is observed only in PPSO’s

diagram. Moreover, as we can see in Figs. 7 and 8, the

results of the PPSO are less parameter dependent than

those of the PSO and this can be the reason of the existing

difference between the final penalized cost value for the

best result of PSO and for the average of 20 of the best

results of PSO which is clearly visible from Fig. 7.

Considering Table 4, the obtained penalized cost using

PSO is $3998.80. In the case of PPSO, the penalized cost is

$3787.60 for all values of w, which is 5.28 % less than the

best result of PSO. Among the considered algorithms, HS

has the worst result which is $4678.51. Also, the active

constraint is the stress in concrete.

The ratios of penalized cost function to the best obtained

cost function of each algorithm are presented in Table 5 for

different values of w. According to this table and Fig. 9, it

can be concluded that the dependency of PPSO on w is far

less than that of the PSO; as a result, PSO necessitates

examining the algorithm with different values for w to

ensure an optimum result, while all values of w secure a

desirable design scheme when PPSO is utilized as the

optimization algorithm.

To examine the impact of P1 and P2 on the results, a

parametric study is performed using w = 1.0 and different

values of P1 and P2, and the results are presented in

Table 6. It can be observed from this table that P1 in the

range of 0.2–0.4 and P2 in the range of 0.7–0.8 provide the

best results.

Fig. 5 Convergence history of the best runs of the PPSO, PSO, and

HS

Fig. 6 Logarithmic convergence history of the best runs of the PPSO,

PSO, and HS

Fig. 7 Average of 20 of the best independent runs of the PSO and the

best run of the PSO

Fig. 8 Average of 20 of the best independent runs of the PPSO and

the best run of the PPSO

Table 5 The ratio of PSO/PSObest and PPSO/PPSObest for different

values of w

Method PSO PPSO

w Run 1 Run 2 Run 3 Run 1 Run 2 Run 3

0.5 13.5176 16.5544 8.5271 1.0172 1.0430 1.0000

1 1.0013 1.0000 1.0121 1.0000 1.0000 1.0000

1.5 1.3843 1.0224 1.3763 1.0000 1.0034 1.0000

2 16.9992 17.9176 15.9168 1.0034 1.0069 1.0000

Iran. J. Sci. Technol.Trans. Civ. Eng. (2016) 40:33–40 39

123



5 Conclusion

In this study, optimal design of prestressed concrete slabs is

performed using PSO and its recently modified version,

PPSO. The results obtained by PSO depend significantly on

the constant value of inertia weight (w), which controls the

diversity (global search) of the algorithm, and there is no

unified approach to determine w. On the other hand, PPSO

uses a variety of w in each iteration via probabilistic

function a; therefore, it is not necessary to determine w to

achieve the best results. Moreover, probabilistic functions

b and c provide various local searches; as a result, both

global and local searches are improved using these func-

tions. To examine the efficiency of the PPSO in design

procedure of long-span prestressed concrete slabs, a large-

scale slab is considered for optimal design based on the

CSA. Results indicate that the PPSO is less susceptible to

the value of w, and a desirable design scheme is achieved

regardless of the value of w being employed. In addition,

when probabilistic functions are added, local search of the

PSO is improved significantly. A parametric study is also

conducted to examine various ranges of P1 and P2 and find

the best range for design of large-span prestressed concrete

slab problems.
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