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Abstract
We study the linear finite element approximation of thermoelastic frictional contact problem. The unilateral contact

condition is weakly imposed by the penalty method. Our analysis yields error estimates that are contingent upon the

penalty parameter e and the mesh size h. Furthermore, provided the solution maintains regularity, we establish a con-

vergence result.
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1 Introduction

Contact-related challenges pervade various domains within

mechanics, physics, and engineering applications. Instan-

ces within the automotive sector include the interaction

between brake pads and rotors, as well as that between

pistons and cylinders. The thermal aspects of contact pro-

cesses have significant implications, exerting an influence

on both the composition and rigidity of surfaces in contact,

as well as triggering thermal stresses within the interacting

bodies, see Shillor et al. (2004) for more details. Recip-

rocally, the prevailing temperature can impact the elastic

material response. Numerous studies in the literature,

illustrated for instance by Chouly et al. (2014); Benkhira

et al. (2019a, 2019b); Benaissa et al. (2016); khalfi et al.

(2023); Faiz et al. (2024, 2023) and the references there-

in (Benaissa et al. 2015), have delved into diverse thermo-

mechanical frictional problems. In these works, not only

were rigorous mathematical models of contact incorporat-

ing thermal effects established, but their unique weak

solvability was also demonstrated through the application

of variational and hemi-variational inequalities. Further-

more, other contributions in the literature have explored

different aspects related to mechanical contact phenomena.

In recent literature, there has been an emergence of a

new theoretical framework for modeling frictionless con-

tact in thermoelastic materials, as discussed in Liu et al.

(2021). This model introduces two sets of unilateral con-

straints: one governing normal displacement through the

Signorini condition on a specified boundary portion, and

the other imposing a unilateral restriction on temperature

within a defined domain. Unlike the model presented in Liu

et al. (2021), our study focuses on numerically investigat-

ing a frictionless contact scenario involving a thermoelastic

body and a thermally conductive foundation. Notably, the

determination of the heat exchange coefficient in this

scenario relies on a function of the contact pressure, as

detailed in Ramaniraka (1997). The novelty of our work

lies in the numerical methodology employed, which

employs two distinct contact algorithms based on penalty

and augmented Lagrangian approaches. These algorithms

are extensively discussed and effectively applied to simu-

late the considered system. Our research aims to explore
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the implications of incorporating a temperature field in the

contact process between a thermoelastic body and a rigid

foundation. Specifically, we consider a model describing a

static frictional contact problem between a thermoelastic

body and a thermally conductive foundation, assuming

small deformations. The constitutive law governing mate-

rial behavior incorporates Hencky’s nonlinear law and

considers the interplay between mechanical and thermal

properties.

The paper’s organization is as follows: In Sect. 2, we

introduce relevant notations and preliminaries, and present

a model depicting the process of frictional contact between

a thermoelastic body and a rigid foundation. Section 3

focuses on deriving the penalized weak formulation of the

model for both frictionless and Tresca’s friction scenarios.

This section also addresses issues of existence and

uniqueness, and discusses the finite element approximation

of the penalized weak problems in detail. In Sect. 4, we

establish error estimates for the numerical approximation,

considering the dependence on both the penalty parameter

e and the mesh size h. Moreover, provided specific regu-

larity assumptions for the solution of contact problems and

stipulated requirements on parameters e and h, we offer

results regarding the convergence rate of the finite element

approximation of the penalized solution.

2 Physical Statement of Problem (PÞ

Problem ðPÞ : we consider a thermoelastic body whose

material particles occupy a polygonal or polyhedral domain

X of Rd ðd ¼ 2; 3Þ. The body’s equilibrium equations are

characterized by

r ¼ AeðuÞ �Mh in X; ð2:1Þ

qT ¼ �Krh in X; ð2:2Þ

Div rþ f0 ¼ 0 in X; ð2:3Þ

div qT � q0 ¼ 0 in X: ð2:4Þ

Here u is the displacement field, and h is the temperature

field. The symbols r and qT stand for the stress tensor and

the heat flux vector field, respectively. The operator A :

X� Sd ! Sd is the nonlinear elasticity operator that

describes the behavior of Hencky’s materials, given by (see

Han (2005); Haslinger and Mäkinen (1992); Chouly et al.

(2014); Benkhira et al. (2019a, 2019b) for more details)

AeðuÞ ¼ k0 trðeðuÞÞ I þ 2gðk�eðuÞk2Þ �eðuÞ in X; ð2:5Þ

where k0 [ 0 is a material coefficient, I is the second-order

identity tensor, trðeÞ ¼ eii denotes the trace of e, and e
represents its deviatoric part defined as follows

e ¼ e� 1

d
trðeÞI:

The operators M ¼ ðMijÞ and K ¼ ðKijÞ describe

respectively, magentathe purely elastic, the thermal

expansion and thermal conductivity properties of the

material. The linearized strain eðuÞ is given by

eðuÞ ¼ 1
2
ðruþ ðruÞTÞ, where ðruÞT is the transpose of

ðruÞ. We recall that Div and div denote the divergence

operator for tensors and vector valued functions. The

densities f0 2 L2ðXÞd and q0 2 L2ðXÞ represent the body

force and the volume of heat source on the body,

respectively.

We assume that the boundary C ¼ oX of X is smooth

and made of three mutually disjoined parts C1, C2, C3. On

part C1, we assume that the body is clamped and a given

temperature is described, we choose it equal to zero. On

part C2, we prescribe a surface forces and a heat flux of

densities q2 2 L2ðC2Þ and f2 2 L2ðC2Þd, respectively.

Finally, on C3, the contact is unilateral, resulting in Sig-

norini boundary conditions for mechanical effects, and

thermal conditions dictate zero heat flux at points without

contact and a prescribed temperature at points with contact

for thermal effects. The boundary conditions on C1 and C2

are then specified as follows

u ¼ 0 on C1; h ¼ 0 on C1 [ C2; ð2:6Þ

rm ¼ f2 on C2; qT � m ¼ q2 on C2; ð2:7Þ

where the vector m is the unit outward normal on C. We

adopt the following decomposition: if v is a given vector

field on C3, we split it into its normal component vm and its

tangential component vs by

vm ¼ v � m; vs ¼ v� vmm:

Similarly, if r is a given tensor field on C, its normal and

tangential components on C are defined by

rm ¼ ðrmÞ � m; rs ¼ rm� rmm:

According to this notation, um and us are the normal and

tangential components of the displacement vector u, and rm
and rs are the normal and tangential components of the

stress tensor r. Furthermore, to describe the unilateral

contact on part C3, we consider the following nonlinear

boundary conditions

um � g; rm � 0; ðum � gÞrm ¼ 0 on C3; ð2:8Þ
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krsk� S;

krsk\S ) us ¼ 0;

krsk ¼ �S
us

kusk
) 9 k 2 Rþ; rs ¼ �k us

9
>>=

>>;

on C3;

ð2:9Þ

qT � m ¼ kTðum � gÞuLðh� hFÞ on C3: ð2:10Þ

In conditions (2.8), the function g denotes the maximum

penetration between the body and the foundation. These

equations (2.8) correspond to the classical Signorini con-

ditions. The relations (2.9) describe the Tresca-type friction

law, where S 2 L2ðC3Þ is a given nonnegative function.

Equation (2.10) specifies the heat flux condition, with hF
representing the foundation’s temperature and kT denoting

the heat exchange function between the foundation and the

body [see Duvaut (1981)]. Additionally, uL is a truncation

function defined for a large constant L[ 0 as follows

uLðsÞ ¼
�L if s\� L;
s if � L� s� L;
L if s\L:

8
<

:

Our aim is a finite element analysis of Problem ðPÞ, given
by (2.1)–(2.10), using penalty method. Todo that, consider

HmðXÞ where m� 0, and let L2ðXÞ denote the conventional
Sobolev space H0ðXÞ equipped with its customary norms

k � km;X. Our initial step involves introducing the

subsequent

H ¼ L2ðXÞd; H1 ¼ H1ðXÞd; H ¼ fs ¼ ðsijÞ 2 H : sij ¼ sjig;
H1 ¼ fr 2 H : rij;j 2 Hg:

These are real Hilbert subspaces for the Euclidean associ-

ated norms to the following inner products

ðu; vÞH ¼
Z

X
uivi dx; ðu; vÞH1

¼ ðu; vÞH þ ðeðuÞ; eðvÞÞH;

ðr; sÞH ¼
Z

X
rijsij dx; ðr; sÞH1

¼ ðr; sÞH þ ðDivr;DivsÞH:

According to the mechanical part of a condition (2.6), we

consider the subspace

V :¼ v 2 H1ðXÞ
� �d

: v ¼ 0 on C1

n o
;

and the set K of admissible displacements satisfying the

non-interpenetration condition, i.e.,

K :¼ fv 2 V : vm � g on C3g:

Since measðC1Þ[ 0, the following Korn’s inequality

holds, i.e.,

keðvÞkH � ck kvkH1
; 8 v 2 V; ð2:11Þ

for a constant ck [ 0 that depends only on X and C1. Over

the subspace V, let us consider the inner product and its

associated Euclidean, defined as below

ðu; vÞV ¼ ðeðuÞ; eðvÞÞH; kukV ¼ ðu; uÞ
1
2

V ; ð2:12Þ

Thus ðV ; k � kVÞ is a real Hilbert space. Moreover, by

Sobolev trace theorem, relations (2.11) and (2.12), there

exists a constant c0 [ 0 which depends only on X, C1 and

C3 such that

kvkL2ðCÞd � c0kvkV ; 8 v 2 V: ð2:13Þ

Now, according to the thermal part of a condition (2.6), we

introduce the subspace

Q ¼ fn 2 H1ðXÞ j n ¼ 0 on C1 [ C2g:

The spaces ðQ; k � kQÞ is a real Hilbert space for the asso-

ciated norm of the following scalar product

ðn;wÞQ ¼ ðrn;rwÞL2ðXÞ:

It is worth noting that, given measðC1Þ[ 0, the Friedrichs-

Poincaré inequality is applicable, implying the existence of

a constant cF [ 0 dependent solely on X and Ca, as follows

knkQ � cF knkH1ðXÞ; 8w 2 Q: ð2:14Þ

Moreover, by Sobolev trace theorem, there exists c1 [ 0,

depending only on X, C1 and C3, such that

knkL2ðC3Þ � c1knkQ; 8 n 2 Q: ð2:15Þ

Also there exists a constant cT [ 0, depending only on X,
C1, C2 and C3, such that

krnkH � cTknkH1ðXÞ; 8 n 2 Q:

For any real Banach space ðX; k � kÞ, we denote by h�; �i the
duality pairing between X and its dual X0. Next, in the study
of Problem ðPÞ, we need the following hypotheses.

ðH1Þ The function g is continuously differentiable in

½0;1Þ and satisfies

0\g0 � gðtÞ� 1

2
d k0; ð2:16Þ

0\a1 � gðtÞ þ 2g0ðtÞt � a2; ð2:17Þ

where g0, a1 and a2 are a given positive constants.
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ðH2Þ The thermal conductivity tensor K ¼ ðkijÞ : X�
Rd ! Rd satisfies the standard properties:

kij ¼ kji 2 L1ðXÞ;

and there exists a nonnegative constant mK such

that

kijðxÞfifj �mKkfk2; 8f ¼ ðfiÞ 2 Rd a.e. x 2 X:

Let MF ¼ supi;j kkijkL1ðXÞ denote the norm of K.

ðH3Þ The tensor M ¼ ðmijÞ : X� Sd ! Rd satisfies the

properties

mij ¼ mji 2 L1ðXÞ:

Let kMk ¼ supi;j kmijkL1ðXÞ be the norm of the

thermal expansion tensor M.

ðH4Þ The thermal conductance function

w ¼ kT : C3 � R ! Rþ, satisfy the properties

(a) there exists Mu [ 0 such that

jkTðx; uÞj �Mu for all u 2 R, a.e. x 2 C3,

(b) the mapping x 7!wðx; uÞ is measurable on C3 for all

u 2 R,

(c) there exists Lu [ 0 such that, for all u1, u2 2 R, one

has

jwðx; u1Þ � wðx; u2Þj � Luju1 � u2j a.e. x 2 C3:

ðH5Þ The body forces, traction and heat source

densities satisfy the following properties

f0 2 L2ðXÞd; f2 2 L2ðC2Þd; q0 2 L2ðXÞ; q2 2 L2ðC2Þ:

ðH6Þ The friction bound, the gap function and

the foundation’s temperature satisfy

S� 0 a.e. x 2 C3; S 2 L2ðC3Þ;
g� 0 a.e. x 2 C3; g 2 L2ðC3Þ;

hF 2 L2ðC3Þ:

In the other hand, to write the weak formulation, we define

the following operators

Au; vh iV ¼
Z

X
AeðuÞeðvÞ dx; 8 u; v 2 V ; ð2:18Þ

Ph; vh iV ¼
Z

X
Ph eðvÞ dx; 8 h 2 Q; 8 v 2 V ; ð2:19Þ

Kh; gh iQ ¼
Z

X
Krhrg dx; 8 h; g 2 Q: ð2:20Þ

Next, we consider the elements f 2 V 0 and q 2 Q0 given by

f ; vh iV ¼
Z

X
f0 � v dxþ

Z

C2

f2 � v da; 8 v 2 V ; ð2:21Þ

q; gh iQ ¼
Z

X
q0 g dx�

Z

C2

q2g da; 8 g 2 Q: ð2:22Þ

3 Existence and Uniqueness Results

3.1 Penalty Formulation of the Frictionless
Problem

Consider ðP0Þ as the frictionless counterpart of Problem

(P), derived by substituting (2.9) with the following

condition

rsðu; hÞ ¼ 0: ð3:1Þ

Subsequently, the weak formulation of the frictionless

unilateral problem defined by (2.1)–(2.10) is as follows

Problem ðPVÞ. Find a displacement field u 2 K and a

temperature field h 2 Q such that

ðAeðuÞ; eðvÞ � eðuÞÞH � ðMh; eðvÞ � eðuÞÞH
�ðf ; v� uÞV ; 8 v 2 K;

ð3:2Þ

ðKrh;rnÞL2ðXÞ þ ‘ðu; h; nÞ ¼ ðq; nÞQ; 8 n 2 Q; ð3:3Þ

where the functional ‘ : V � Q� Q ! R defined as

follows

‘ðu; h; nÞ ¼
Z

C3

kTðum � gÞuLðh� hFÞ n da:

The existence of a unique solution to Problem ðPVÞ relies
on elliptic variational inequalities and fixed point argu-

ments, as discussed in, for instance, Duvaut (1981). We

then examine the product space X ¼ V � Q, which forms a

Hilbert space with the corresponding norm defined by the

inner product below

x; yð ÞX¼ u; vð ÞVþ h; nð ÞQ; 8 x ¼ ðu; hÞ; y ¼ ðv; nÞ 2 X:

ð3:4Þ

We introduce the operator B : X ! X, defined as follows

Bx; yð ÞX¼ ðAeðuÞ; eðvÞÞH � ðMh; eðvÞÞH
þ ðKrh;rnÞL2ðXÞ

ð3:5Þ

We also introduce the functional j : X ! R and the ele-

ment f e 2 X given by
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jðx; yÞ ¼ ‘ u; h; nð Þ; ð3:6Þ

f e ¼ f ; qð Þ 2 X: ð3:7Þ

Let U ¼ K � Q be non-empty closed convex of X. Then,

we get the following equivalent problem Problem ðPVÞ.
Find x ¼ ðu; hÞ 2 U such that

Bx; y� xð ÞXþj x; yð Þ � j x; xð Þ� f e; y� xð ÞX ;
8 y ¼ ðv; nÞ 2 U:

ð3:8Þ

Lemma 3.1 The operator B is strongly monotone and

Lipschitz continuous.

Proof To establish this, we need to ensure that the non-

linear elasticity operator A, as defined in (2.5), is both

strongly monotone and Lipschitz continuous. By perform-

ing algebraic manipulations akin to those in references

(Benkhira et al. 2019a, b), we obtain:

ðAeðuÞ �AeðvÞ; eðuÞ � eðvÞÞH �mAku� vk2V ;
8 u; v 2 V with mA ¼ 2a1;

ð3:9Þ

kAeðuÞ �AeðvÞkH �MAku� vkV ;
8 u; v 2 V with MA ¼ 2d2k0:

ð3:10Þ

With (3.9)–(3.10) in mind, and employing similar algebraic

manipulations as in Benkhira et al. (2019a, 2019b), we can

readily establish the existence of positive constants mB and

MB, depending solely on A, M, K, and X, such that:

ðBx� By; x� yÞX �mBkx� yk2X; 8x; y 2 X; ð3:11Þ

kBx� BykX �MBkx� ykX; 8x; y 2 X: ð3:12Þ

Therefore, we conclude the proof of the Lemma 3.1. h

Let’s define the notation ½ � �þ to represent the positive

part of each scalar a 2 R as follows:

½a�þ ¼
a if a� 0;

0 otherwise:

�

Throughout the remainder of this document, we will fre-

quently utilize the following common properties:

a� ½a�þ; a � ½a�þ ¼ ½a�þ2
; 8a 2 R: ð3:13Þ

The monotonicity property can be derived from the

aforementioned properties, as detailed in Chouly and Hild

(2013a); Chouly et al. (2014); Chouly and Hild (2013b).

�
½a�þ � ½b�þ

�
ða� bÞ�

�
½a�þ � ½b�þ

�2
: ð3:14Þ

The variational inequality (3.8) poses challenges for solu-

tion using various methods, particularly due to the con-

straint subspace K which is not conducive for

computations. Therefore, alternative techniques are nee-

ded, and one of the classical and widely used methods to

address this inequality constraint is the penalty method.

The penalty technique is a well-established approach for

numerically handling constrained problems (see, for

example, Li (1998); Kikuchi and Oden (1988)). Unlike the

Lagrange multiplier technique, the penalty method does

not require the introduction of a new variable. Furthermore,

it is more readily implementable in many numerical algo-

rithms. However, it’s important to note that this method

still represents an approximation, as the solution of the

penalized problem is expected to converge to the solution

of the original problem only as the penalty parameter tends

to zero.

Problem ðPVeÞ. Find a displacement field ue 2 V and a

temperature field he 2 Q such that

Bxe; yð ÞXþj xe; yð Þ þ 1

e

Z

C3

½ue;m�þvm da

¼ f e; yð ÞX; 8 y ¼ ðv; nÞ 2 X ¼ V � Q:

ð3:15Þ

Note that this formulation is obtained by taking

rmðu�; heÞ ¼
1

e
½ue;m�þ where ue;m ¼ ue � m:

We have the following theorem, the proof of which can be

found in (Bourichi et al. 2016, Theorem 3.1):

Theorem 3.2 Problem ðPV�Þ has a unique solution

x� ¼ ðu�; h�Þ 2 X ¼ V � Q.

3.2 Penalty Formulation of Tresca’s Friction
Problem

Initially, employing conventional methods rooted in

Green’s formula, we establish that when ðu; r; h; qÞ denote
regular functions satisfying (2.1)-(2.10), the weak formu-

lation of the Tresca’s friction problem can be articulated as

follows.

Problem ðPVÞ. Find ðu; hÞ 2 V � Q such that

ðAeðuÞ; eðvÞ � eðuÞÞH � ðMh; eðvÞ � eðuÞÞH
þ jSðvÞ � jSðuÞ� ðf ; v� uÞV ; 8 v 2 V ;

ð3:16Þ

ðKrh;rnÞL2ðXÞ þ ‘ u; h; nð Þ ¼ ðq; nÞQ; 8 n 2 W ; ð3:17Þ

where the functionals jS and ‘ are defined as following

jS ¼
Z

C3

Skusk ds;

‘ u; h; nð Þ ¼
Z

C3

kTðum � gÞuLðh� hFÞ n da:

The following theorem can be found in Duvaut (1981).

Theorem 3.3 With assumptions ðH1Þ–ðH6Þ, Problem

ðPVÞ possesses at least one solution. Furthermore, if the

function k is given for some a 2 R, by
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kðnÞ ¼ a k0ðnÞ; ð3:18Þ

Then, there exists a1 [ 0 such that if

0� a� a1; ð3:19Þ

the solution of Problem ðPVÞ, is unique.

Lemma 3.4 The couple x ¼ ðu; hÞ 2 X is a solution to

Problem ðPVÞ if and only if

ðBx; y� xÞX þ jðx; yÞ � jðx; xÞ þ
Z

C3

S
�
kvsk � kusk

�
ds

�ðf e; y� xÞX; 8 y ¼ ðv; nÞ 2 U:

ð3:20Þ

By employing the penalty method on Problem ðPVeÞ,
we derive the subsequent penalized weak formulation.

Problem ðPVeÞ. Find a displacement field ue 2 V and a

temperature field he 2 Q such that

ðBxe; yÞX þ jðxe; yÞ þ
1

e

Z

C3

½ue;m�þvmda

þ 1

e

Z

C3

½ue;s�egvsda ¼ ðf e; yÞX; 8 y ¼ ðv; nÞ 2 X;

ð3:21Þ

where the notation ½ � �a (a 2 Rþ) stands for the truncation

of a scalar x 2 R, i.e.;

½x�a ¼
x if kxk� a;

a
x

kxk otherwise:

8
<

:

The following theorem can be found in (Chouly and Hild

2013b, Theorem 4.1) and (Bourichi et al.

2016, Theorem 3.1).

Theorem 3.5 Under the assumptions ðH1Þ–ðH6Þ, ðPVeÞ
has a unique solution.

3.3 Approximation of the Penalty Weak
Formulations

For a given discretization parameter h[ 0, we denote by

T h a coherent set of triangular finite element partitions of

the closed domain X, which are compatible with the

boundary partitions C ¼ C1 [ C2 [ C3. We contemplate

two finite-dimensional subspaces Vh � V and Qh � Q,

which approximate the spaces V and Q, respectively, as

follows

Vh ¼ vh 2 CðXÞd : vhjT 2 P1ðTÞd; 8T 2 T h
n

and vh ¼ 0 on C1

�
;

Qh ¼ nh 2 CðXÞ : nhjT 2 P1ðTÞ; 8T 2 T h
n

and nh ¼ 0 on C1 [ C2

�

where P1ðTÞ represents the space of polynomial functions

with a global degree less than or equal to 1 within an

arbitrary element T 2 T h. Additionally, we examine the

space X hðC3Þ comprising the normal traces on C3 for

discrete functions in Vh, namely

X hðC3Þ ¼ lh 2 CðC3Þ : 9 vh 2 Vh;
�

8T 2 T h; vh � m ¼ lh
�
:

The following lemmas outline pertinent properties of the

L2ðC3Þ-projection operator Ph : L2ðC3Þ ! X hðC3Þ, with

further details available in Bernardi et al. (1994), Bramble

et al. (2001), Bramble and Xu (1991).

Lemma 3.6 Suppose the mesh linked with X hðC3Þ exhibits
local quasi-uniformity, indicating that the ratio of the

diameter of a simplex to the diameter of the largest ball

enclosed within the simplex remains bounded irrespective

of h for all simplices across all triangulations, as elabo-

rated in Bramble et al. (2001). Under these conditions, for

any r 2 ½0; 1� and every v 2 HrðC3Þ, the subsequent sta-

bility and interpolation estimates apply

kPhðvÞkr;C3
� c; kvkr;C3

; ð3:22Þ

kv� PhðvÞk0;C3
� chr; kvkr;C3

; ð3:23Þ

where the constant c[ 0 in the two inequalities remains

independent of v and the discretization size h.

Lemma 3.7 Suppose the mesh on C3 is quasi-uniform.

Then, there exists an extension operator Rh : X hðC3Þ !
VhðC3Þ and a constant c[ 0, independent of v and h,

satisfying:

RhðlhÞj C3 ¼ lh; ð3:24Þ

kRhðlhÞk1;X � c; klhk1
2
;C3

; 8; lh 2 X hðC3Þ: ð3:25Þ

Subsequently, consider Ph and Rh as the vector repre-

sentations of the operators Ph and Rh, respectively, which

are defined as follows

PhðwÞ :¼ ðPhðwiÞÞ1� i� d; 8 w :¼ ðwiÞ1� i� d 2 L2ðC3Þ;
ð3:26Þ

RhðwÞ :¼ ðRhðwiÞÞ1� i� d; 8 w :¼ ðwiÞ1� i� d 2 X hðC3Þ:
ð3:27Þ
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It’s worth noting that Ph and Rh adhere to the stability and

interpolation properties stated earlier in equations (3.22)

through (3.25).

Remark 3.8 Consider a sequence of triangulations

T ¼ ðT hÞh[ 0. We define it as quasi-uniform if the ratio

hs=qs, where hs denotes the diameter of an element s 2 T h

and qs represents the diameter of its inscribed circle, is

bounded by a constant r̂ independent of both s and h.

Furthermore, there exists a constant c[ 0 that is invariant

with respect to h and satisfies the following condition:

hs � ch; 8 s 2 T h:

It’s important to highlight that the quasi-uniformity of the

mesh on C3 (the mesh associated with X hðC3Þ) implies its

local quasi-uniformity.

3.3.1 Approximation of the Frictionless Problem

The finite element discretization ðPVh
e Þ of the penalized

problem ðPVeÞ is outlined as follows.

Problem ðPVh
e Þ. Find a displacement field uhe 2 Vh

and a temperature field hhe 2 Qh such that

ðBxhe ; yhÞX þ jðxhe ; yhÞ þ
1

e

Z

C3

½uhe;m�
þvhm da

¼ ðf e; yhÞX ; 8 yh ¼ ðvh; nhÞ 2 Xh ¼ Vh � Qh:

ð3:28Þ

Proof By applying Theorem 3.2, replacing V and Q with

Vh and Qh respectively, we deduce that Problem ðPVh
e Þ has

a unique solution ðuhe ; hhe Þ 2 Xh ¼ Vh � Qh. h

3.3.2 Approximation of the Tresca’s Friction Problem

The numerical approximation ðPVh

e Þ for the penalized

problem ðPVeÞ, is described as follows.

Problem ðPVh

e Þ. Find uhe 2 Vh and hhe 2 Qh such that

ðBxhe ; yhÞX þ jðxhe ; yhÞ þ
1

e

Z

C3

½uhe;m�
þvhmda

þ 1

e

Z

C3

½uhe;s�egvhsda ¼ ðf e; yhÞX;

for all yh ¼ ðvh; nhÞ 2 Xh ¼ Vh � Qh:

ð3:29Þ

Remark 3.9 The uniqueness of the solution to problem

ðPVh

e Þ can be established using similar reasoning as in

(Chouly and Hild 2013b, Theorem 4.1) and (Bourichi et al.

2016, Theorem 3.1), with the respective spaces Vh and Qh

replacing V and Q.

The penalized problem ðPVeÞ is consistent with the

finite element penalized problem ðPVh

e Þ in such a way that

the solution xe ¼ ðue; heÞ of problem ðPVeÞ satisfies equa-
tion (3.29) for all test functions

yh ¼ ðvh; nhÞ 2 Xh ¼ Vh � Qh � X ¼ V � Q. This implies

that

ðBxe; yhÞX þ jðxe; yhÞ þ
1

e

Z

C3

½ue;m�þvhmda

þ 1

e

Z

C3

½ue;s�egvhsda ¼ ðf e; yhÞX:
ð3:30Þ

We revisit the fundamental characteristics of projections as

follows
�
½x�a � ½y�a

�
� ðx� yÞ� 0

and
�
�½x�a � ½y�a

�
�� jx� yj; 8 x; y 2 Rd�1;

ð3:31Þ

expressed for any v and w belonging to V, we can represent

this as
�
½vs��g � ½ws��g

�
� ðvs � wsÞ� 0

and
�
�½vs��g � ½ws��g

�
�� jvs � wsj on C3:

ð3:32Þ

4 Approximation and a Priori Estimate
Results

4.1 A Priori Estimate of the Frictionless Problem

Lemma 4.1 Let x ¼ ðu; hÞ 2 ½H3
2
þrðXÞ�d � H

3
2
þrðXÞ with

r 2 ð0; 1
2
�, respectively, xhe ¼ ðuhe ; h

h
e Þ and xe ¼ ðue; heÞ be

solutions of the problems ðPVÞ, ðPVh
e Þ and ðPVeÞ. Then,

we have

rmðu; hÞ þ
1

e
½uhe;m�

þ
�
�
�
�

�
�
�
�
�r;C3

�C hr rmðu; hÞ þ
1

e
½uhe;m�

þ
�
�
�
�

�
�
�
�
0;C3

"

þhr�
1
2 ku� uhek1;X þ kh� hhek1;X
	 
i

ð4:1Þ

and

rmðu; hÞ þ
1

e
½ue;m�þ

�
�
�
�

�
�
�
�
�r;C3

�C er rmðu; hÞ þ
1

e
½ue;m�þ

�
�
�
�

�
�
�
�
0;C3

"

þer�
1
2 ku� uek1;X þ kh� hek1;X
	 
i

;

ð4:2Þ

where the non-negative constant C is independent of e, u ,

uhe and h.

Proof First, we have [see Chouly and Hild (2013b) for

more details]
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rmðu; hÞ þ
1

e
½uhe;m�

þ
�
�
�
�

�
�
�
�
�r;C3

¼ sup
v2HrðC3Þ

rmðu; hÞ þ
1

e
½uhe;m�

þ; v

� �

C3

kvkr;C3

:

Hence, by using the relations (3.22)–(3.25), we get that

rmðu; hÞ þ
1

e
½uhe;m�

þ
�
�
�
�

�
�
�
�
�r;C3

� sup
v2HrðC3Þ

rmðu; hÞ þ
1

e
½uhe;m�

þ; v� Phv

� �

C3

kvkr;C3

þ sup
v2HrðC3Þ

rmðu; hÞ þ
1

e
½uhe;m�

þ;Phv

� �

C3

kvkr;C3

� rmðu; hÞ þ
1

e
½uhe;m�

þ
�
�
�
�

�
�
�
�
0;C3

sup
v2HrðC3Þ

kv� Phvk0;C3

kPhvkr;C3

þ C sup
v2HrðC3Þ

rmðu; hÞ þ
1

e
½uhe;m�

þ;Phv

� �

C3

kPhvkr;C3

�Chr rmðu; hÞ þ
1

e
½uhe;m�

þ
�
�
�
�

�
�
�
�
0;C3

þ sup
v2HrðC3Þ

rmðu; hÞ þ
1

e
½uhe;m�

þ;Phv

� �

C3

kPhvkr;C3

:

Furthermore, we know that for all v 2 V , we have

ðAeðuÞ; eðvÞÞH � ðMh; eðvÞÞH ¼ ðf ; vÞV þ hrmðu; hÞ; vmiC3
;

ðAeðueÞ; eðvÞÞH � ðMhe; eðvÞÞH ¼ ðf ; vÞV þ � 1

e
½ue;m�þ; vm

� �

C3

:

Then, we find that

rmðu; hÞ þ
1

e
½ue;m�þ; vm

� �

C3

¼ ðAeðu� ueÞ; eðvÞÞH

þ ðMðhe � hÞ; eðvÞÞH; 8v 2 V :

ð4:3Þ

Similarly, by using Vh instead of V, we deduce that

rmðu; hÞ þ
1

e
½uhe;m�

þ; vhm

� �

C3

¼ ðAeðu� uhe Þ; eðvhÞÞH

þ ðMðhhe � hÞ; eðvhÞÞH:

On another side, the continuity of ðu; vÞ7!ðAeðuÞ; eðvÞÞ and
ðh; vÞ7!ðMh; eðvÞÞ lead to

sup
v2HrðC3Þ

rmðu; hÞ þ
1

e
½uhe;m�

þ;Phv

� �

C3

kPhvkr;C3

� sup
v2HrðC3Þ

rmðu; hÞ þ
1

e
½uhe;m�

þ;Rh
�
Phv

�

jC3
� m

� �

C3

kPhvkr;C3

� sup
v2HrðC3Þ

�
Aeðu� uhe Þ; eRh

�
Phv

��

H
þ
�
Mðhhe � hÞ; eRh

�
Phv

��

H

kPhvkr;C3

�C
�
ku� uhek1;X þ kh� hhek1;X

�
sup

v2HrðC3Þ

kRhðPhvÞk1;X
kPhvkr;C3

�C
�
ku� uhek1;X þ kh� hhek1;X

�
sup

v2HrðC3Þ

kRhðPhvÞk1
2
;C3

kPhvkr;C3

:

Using next the following inverse inequality

kPhvk1
2
;C3

�Chr�
1
2kPhvkr;C3

to find

sup
v2HrðC3Þ

rmðu; hÞ þ
1

e
½uhe;m�

þ;Phv

� �

C3

kPhvkr;C3

�Chr�
1
2

�
ku� uhek1;X þ kh� hhek1;X

�
:

Finally, we the following estimate

rmðu; hÞ þ
1

e
½uhe;m�

þ
�
�
�
�

�
�
�
�
�r;C3

�C
h
hr�

1
2ðku� uhek1;X þ kh� hhek1;XÞ

þ hr rmðu; hÞ þ
1

e
½uhe;m�

þ
�
�
�
�

�
�
�
�
0;C3

i
:

We now introduce V e a fictitious finite element space,

defined identically as Vh and with the choice of mesh size

h ¼ e. We note Pe : L2ðC3Þ ! X eðC3Þ the L2ðC3Þ-projec-
tion operator onto X eðC3Þ. Therefore, we can write

rmðu; hÞ þ
1

e
½uhe;m�

þ
�
�
�
�

�
�
�
�
�r;C3

�C
h
er�

1
2ðku� uhek1;X þ kh� hhek1;XÞ

þ er rmðu; hÞ þ
1

e
½uhe;m�

þ
�
�
�
�

�
�
�
�
0;C3

i
;

which is the desired result (4.2). h

Theorem 4.2 Suppose X � Rd is a bounded polygonal

domain. Let x ¼ ðu; hÞ and xe ¼ ðue; heÞ denote the solu-

tions of Problems ðPÞ and ðPVeÞ, respectively. Assuming
that ðu; hÞ 2 ½H3

2
þrðXÞ�d � H

3
2
þrðXÞ (where r 2 ð0; 1=2�),

the subsequent prior estimate holds
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ku� uek1;X þ kh� hek1;X þ e
1
2 rmðu; hÞ þ

1

e
½ue;m�þ

�
�
�
�

�
�
�
�
0;C3

�C e
1
2
þr
�
kuk3

2
þr;X þ khk3

2
þr;X

�

ð4:4Þ

for a constant C[ 0 which is independent of a parameter e
and of a solution x of Problem ðPÞ.

Proof By taking test functions v 2 ðH1ðXÞdÞ and w 2
H1ðXÞ and multiplying Eq. (2.1) and (2.2) by them, we

subsequently employ Green’s formula and incorporate the

boundary conditions (2.6), (2.7), and (2.10) to derive

ðBx; yÞX þ ‘ðu; h;wÞ þ
Z

C3

rmðu; hÞ vm da

¼ ðf e; yÞX; 8y ¼ ðv;wÞ 2 X:

ð4:5Þ

It’s worth mentioning that the Eq. (4.5) can be interpreted

meaningfully if its integral term is viewed as a duality

pairing between HC3
¼ H1=2ðC3Þ and its dual space

H	
C3

¼ H�1=2ðC3Þ. Hence, assuming u 2 ½H3
2
þrðXÞ�d and

w 2 H
3
2
þrðXÞ provides justification for this relationship by

ensuring

rm 2 HrðC3Þ:

Considering the ellipticity relation (3.11) of the operator A,

along with the relations (3.15) and (4.5), we infer that

mBkx� xek2X �ðBx� Bxe; x� xeÞX
�ðBx; x� xeÞX � ðBxe; x� xeÞX

�
Z

C3

�
rmðu; hÞ þ

1

e
½ue;m�þ

�
ðum � ue;mÞ da

þ ‘ðue; he; h� heÞ � ‘ðu; h; h� heÞ

�
Z

C3

rmðu; hÞ um daþ
Z

C3

1

e
½ue;m�þ um daþ T

�
Z

C3

rmðu; hÞ ue;m da�
Z

C3

1

�
½ue;m�þ ue;m da;

ð4:6Þ

where

T ¼ ‘ðue; he; h� heÞ � ‘ðu; h; h� heÞ:

Due to the contact conditions (2.8) on C3, we observe that
Z

C3

rmðu; hÞ um da ¼ 0; ð4:7Þ
Z

C3

1

�
½ue;m�þ um da� 0: ð4:8Þ

Additionally, recalling the beneficial property (3.13), the

identical condition (2.8) results in

�
Z

C3

rmðu; hÞ ue;m da� �
Z

C3

rmðu; hÞ ½ue;m�þ da; ð4:9Þ

�
Z

C3

1

e
½ue;m�þ ue;m da ¼ �

Z

C3

1

e
½ue;m�þ ½ue;m�þ da: ð4:10Þ

Then, using the relations (4.7)–(4.10) and the well-known

Young inequality, (4.6) becomes

mBkx� xek2X

� �
Z

C3

rmðu; hÞ þ
1

e
½ue;m�þ


 �

½ue;m�þ daþ T

� � e
Z

C3

rmðu; hÞ þ
1

e
½ue;m�þ


 �

rmðu; hÞ � rmðu; hÞ þ
1

e
½ue;m�þ


 �

daþ T

� � e rmðu; hÞ þ
1

e
½ue;m�þ

�
�
�
�

�
�
�
�

2

0;C3

þ e
Z

C3

rmðu; hÞ þ
1

e
½ue;m�þ


 �

rmðu; hÞ daþ T

� � e rmðu; hÞ þ
1

e
½ue;m�þ

�
�
�
�

�
�
�
�

2

0;C3

þed rmðu; hÞk

þ 1

e
½ue;m�þ

�
�
�
�
�r;C3

e1�d rmðu; hÞk kr;C3
þT

� � e rmðu; hÞk

þ 1

e
½ue;m�þ

�
�
�
�

2

0;C3

þ e2d

2b
rmðu; hÞ þ

1

e
½ue;m�þ

�
�
�
�

�
�
�
�

2

�r;C3

þ be2�2d

2
rmðu; hÞk k2r;C3

þT ;

ð4:11Þ

where d 2 ½0; 1� and b[ 0. Considering the two estimates

(4.1)–(4.2), we can infer that

mBkx� xek2X

� � e 1� C
e2ðdþrÞ�1

b


 �

rmðu; hÞ þ
1

e
½ue;m�þ

�
�
�
�

�
�
�
�

2

0;C3

þ C
e2ðdþrÞ�1

b
ku� uek21;X þ kh� hek21;X
h i

þ be2ð1�dÞ

2
rmðu; hÞk k2r;C3

þT :

ð4:12Þ

On the other hand, we have
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T ¼
Z

C3

kTðue;m � gÞuLðhe � hFÞðh� heÞ da

�
Z

C3

kTðum � gÞuLðh� hFÞðh� heÞ da

¼
Z

C3

kTðue;m � gÞ
�
uLðhe � hFÞ � uLðh� hFÞ

�
ðh� heÞ da

þ
Z

C3

�
kTðue;m � gÞ � kTðum � gÞ

�
uLðh� hFÞðh� heÞ da:

Then, we deduce for some non-negative constant C[ LuL

that

jT j �Mukh� hek20;C3
þ LuL kue;m � umk0;C3

kh� hek0;C3

� Mu þ Lu L

4a


 �

kh� hek20;C3
þ aLuL kue;m � umk20;C3

� Mu þ C

4a


 �

kh� hek21;X þ C a kue � uk21;X:

ð4:13Þ

We next use the two estimates (4.13) and (4.12) to deduce

mB � C
e2ðdþrÞ�1

b
� C a


 �

ku� uek21;X

þ mB � C
e2ðdþrÞ�1

b
�Mu � C

4a


 �

kh� hek21;X

þ e 1� C
e2ðdþrÞ�1

b


 �

rmðu; hÞ þ
1

e
½ue;m�þ

�
�
�
�

�
�
�
�

2

0;C3

� b
e2ð1�dÞ

2
rmðu; hÞk k2r;C3

:

ð4:14Þ

We then choose d ¼ 1
2
� r (which give 2ðdþ rÞ � 1 ¼ 0),

and

b ¼ C 1þ 1

mB
þ 1

mB þMu


 �

;

a ¼ 1

C
mB �

C

b


 �

þ C

2 mB þMu � C
b

	 
 :

This choice of d, a and b was made in order to guarantee

that

mB � C
e2ðdþrÞ�1

b
� C a[ 0;

mB � C
e2ðdþrÞ�1

b
�Mu � C

4a
[ 0;

1� C
e2ðdþrÞ�1

b
[ 0:

Thus, the desired bound (4.4) follows from the estimate
�
�rmðu; hÞ

�
�
r;C3

�C
�
kuk3

2
þr;X þ khk3

2
þr;X

�
:

h

4.2 A Priori Estimate of of Tresca’s Friction
Problem

Theorem 4.3 Suppose x ¼ ðu; hÞ and xe ¼ ðue; heÞ repre-

sent the solutions of Problem ðPVÞ and Problem ðPVeÞ,
respectively. If we assume the regularities u 2 ðH3

2
þrðXÞÞd

and h 2 H
3
2
þrðXÞ with 0\r� 1=2, then the following a

priori estimate holds

ku� uek1;X þ kh� hek1;X þ e
1
2 rmðu; hÞ þ

1

e
½ue;m�þ

�
�
�
�

�
�
�
�
0;C3

þ e
1
2 rsðu; hÞ þ

1

e
½ue;s�eg

�
�
�
�

�
�
�
�
0;C3

�C e
1
2
þr kuk3

2
þr;X þ khk3

2
þr;Xk

	 

;

ð4:15Þ

where C[ 0 does not depend on a penalized parameter e,
nor on x ¼ ðu; hÞ solution of Problem ðPVÞ.

Proof It’s notable to observe that the friction conditions

(2.9) and the definition of ½��e;g entail
Z

C3

rsðu; hÞ þ
1

�
½ue;s�eg


 �

ðus � ue;sÞ da

� �
Z

C3

rsðu; hÞ þ
1

�
½ue;s�eg


 �

ue;s da

� �
Z

C3

rsðu; hÞ þ
1

e
½ue;s�eg


 �

½ue;s�eg da:

The estimate (4.2) obtained in Lemma 4.1 still holds, by

replacing krmðu; hÞ þ 1
e ½ue;m�

þks;C3
by

rmðu; hÞ þ
1

e
½ue;m�þ

�
�
�
�

�
�
�
�
s;C3

þ rsðu; hÞ þ
1

e
½ue;s�eg

�
�
�
�

�
�
�
�
s;C3

;

for s ¼ �r or s ¼ 0, see (Chouly and Hild 2013b, Theo-

rem 4.1). Subsequently, employing similar methodologies

as presented in (Chouly and Hild 2013b, Theorem 4.1), we

can derive the estimate (4.15), thereby establishing Theo-

rem 4.2. h

4.3 A Priori Estimate of the Approximation
Frictionless Problem

Theorem 4.4 Consider xhe ¼ ðuhe ; hhe Þ and xe ¼ ðue; heÞ as

the solutions of problems ðPVh
e Þ and ðPVeÞ, respectively.

Then, for any e[ 0 and any h[ 0, the subsequent a priori

error estimate is valid
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kue � uhek1;X þ khe � hhek1;X þ ðe12 þ Ch
1
2Þ 1

e
½ue;m�þ

�
�
�
�

� 1

e
½uhe;m�

þ
�
�
�
�
0;C3

�C u� uek k1;Xþ u� vh
�
�

�
�
1;X

þ h� hek k1;X
n

þkh� nhk1;X
o
; 8 yh ¼ ðvh; nhÞ 2 Xh;

ð4:16Þ

where C[ 0 is independent of the constrained solution

x ¼ ðu; hÞ and the parameters h and e.

Proof Taking yh � xh� as test function in Problem ðPVh
� Þ,

we obtain

ðBxhe ; yh � xhe ÞX þ ‘ðuhe ; h
h
e ; n

h � hhe Þ

þ 1

e

Z

C3

½uhe;m�
þðvhn � uhe;mÞ da ¼ ðf e; yh � xhe ÞX ;

8 yh ¼ ðvh; nhÞ 2 Xh:

ð4:17Þ

The penalized problem ðPVeÞ aligns with the finite element

problem ðPVh
� Þ in such a way that the solution xe ¼ ðue; heÞ

of Problem ðPVeÞ also satisfies, for every

yh ¼ ðvh; nhÞ 2 Xh, the equation

ðBxe; yhÞX þ ‘ðue; he; nhÞ

þ 1

e

Z

C3

½ue;m�þvhm da ¼ ðf e; yhÞX:
ð4:18Þ

We take the test function xhe ¼ ðuhe ; hhe Þ 2 Xh in equation

(4.18) to deduce

ðBxe; yh � xhe ÞX þ ‘ðue; he; nh � hhe Þ

þ 1

e

Z

C3

½ue;m�þðvhn � uhe;mÞ da ¼ ðf e; yh � xhe ÞX ;

8 yh ¼ ðvh; nhÞ 2 Xh:

ð4:19Þ

Given that the operator B exhibits strong monotonicity and

Lipschitz continuity (see (3.11)–(3.12)), we have

mB kxe � xhek
2
X �ðBxe � Bxhe ; xe � xhe ÞX

�ðBxe � Bxhe ; xe � yhÞX þ ðBxe � Bxhe ; y
h � xhe ÞX

�MB kxe � xhekXkxe � yhkX
þ ðBxe; yh � xhe ÞX � ðBxhe ; yh � xhe ÞX;
8 yh ¼ ðvh; nhÞ 2 Xh:

ð4:20Þ

Employing Young’s inequality and the triangle inequality,

the preceding estimate (4.20) is transformed into

mBkxe � xhek
2
X �

1

2a
kxe � xhek

2
X þ aM2

B

2
kxe � yhk2X

þ ðBxe; yh � xhe ÞX � ðBxhe ; yh � xhe ÞX

� 1

2a
kxe � xhek

2
X þ aM2

B

�
kxe � xk2X þ kx� yhk2X

�

þ ðBxe; yh � xhe ÞX � ðBxhe ; yh � xhe ÞX; 8 yh

¼ ðvh; nhÞ 2 Xh:

ð4:21Þ

To assess the last two terms of the previous inequality, we

utilize equations (4.17) and (4.19) to derive

ðBxe; yh � xhe ÞX � ðBxhe ; yh � xhe ÞX

¼
Z

C3

1

e
½uhe;m�

þ � 1

e
½ue;m�þ


 �

ðvhm � uhe;mÞ da

þ ‘ðuhe ; h
h
e ; n

h � hhe Þ � ‘ðue; he; nh � hhe Þ

¼
Z

C3

1

e
½ue;m�þ � 1

e
½uhe;m�

þ

 �

ðuhe;m � ue;mÞ da

þ
Z

C3

1

e
½ue;m�þ � 1

e
½uhe;m�

þ

 �

ðue;m � vhmÞ da

þ ‘ðuhe ; h
h
e ; n

h � hhe Þ � ‘ðue; he; nh � hhe Þ:

ð4:22Þ

We estimate the first term of (4.22) by
Z

C3

1

e
½ue;m�þ � 1

e
½uhe;m�

þ

 �

ðuhe;m � ue;mÞ da

¼ �e
Z

C3

1

e
½ue;m�þ � 1

e
½uhe;m�

þ

 �

1

e
ue;m �

1

e
uhe;m


 �

da

� � e
1

e
½ue;m�þ � 1

e
½uhe;m�

þ
�
�
�
�

�
�
�
�

2

0;C3

:

ð4:23Þ

For the second term of (4.22), we (3.26), (3.27) and Cau-

chy–Schwartz inequality to obtain
Z

C3

1

e
½ue;m�þ � 1

e
½uhe;m�

þ

 �

ðue;m � vhmÞ da

¼
Z

C3

1

e
½ue;m�þ � 1

e
½uhe;m�

þ

 �

ðue � vhÞ � m� Phðue � vhÞ � m
� �

da

þ
Z

C3

1

e
½ue;m�þ � 1

e
½uhe;m�

þ

 �

Phðue � vhÞ � m da

� 1

e
½ue;m�þ � 1

e
½uhe;m�

þ
0;C3

�
�

�
�ðue � vhÞ � m

�
�
�
�

�Phðue � vhÞ � m
�
�
0;C3

þ
Z

C3

1

e
½ue;m�þ � 1

e
½uhe;m�

þ

 �

RhðPhðue � vhÞ � mÞ da:

ð4:24Þ

Through the utilization of interpolation (3.23), in con-

junction with the continuity of the trace operator and

Young’s inequality, we obtain
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1

e
½ue;m�þ � 1

e
½uhe;m�

þ
�
�
�
�

�
�
�
�
0;C3

ðue � vhÞ � m� Phðu� � vhÞ � m
�
�

�
�
0;C3

� ch
1
2

1

e
½u�;m�þ � 1

e
½uhe;m�

þ
�
�
�
�

�
�
�
�
0;C3

ue � vh
�
�

�
�

1
2
;C3

� ch
1

e
½ue;m�þ � 1

e
½uhe;m�

þ
�
�
�
�

�
�
�
�

2

0;C3

þc ue � vh
�
�

�
�2
1;X

�Ch
1

e
½ue;m�þ � 1

e
½uhe;m�

þ
�
�
�
�

�
�
�
�

2

0;C3

þ C kue � uk21;X þ ku� vhk21;X
	 


:

ð4:25Þ

Using condition (4.18) and stability properties in (3.22) and

(3.25), and choosing

y	 ¼ RhðPhðu� � vhÞÞ; h� � nh
� �

;

K ¼ ‘ðue; he; h� � nhÞ � ‘ðuhe ; h
h
e ; h� � nhÞ;

we can deduce from Problem ðPVh
e Þ that

Z

C3

1

e
½ue;m�þ � 1

e
½uhe;m�

þ

 �

Rh Phðue � vhÞ � m
� �

da

�ðBxe � Bxhe ; y
	ÞX þ ‘ðue; he; h� � nhÞ � ‘ðuhe ; hhe ; h� � nhÞ

�MB kxe � xhekX ky	kX þK

�MB kxe � xhekX
�
kRhðPhðue � vhÞÞ

�
�
1;X

þ
�
�he � nh

�
�
1;X

�
þK

�CMB kxe � xhekX
�
kPhðue � vhÞk1

2
;C3

þ khe � nhk1;X
�
þK

�CMBkxe � xhekX
�
kue � uk1;X

þ ku� vhk1;X þ khe � hk1;X þ kh� nhk1;X
�
þK

� 1

a
kxe � xhek

2
X

þ a ðCMBÞ2

2

�
kue � uk21;X þ ku� vhk21;X

þ khe � hk21;X þ kh� nhk21;X
�
þK;

ð4:26Þ

where the term K is as follows

K ¼
Z

C3

kTðue;m � gÞuLðhe � hFÞðhe � nhÞ da

�
Z

C3

kTðuhe;m � gÞuLðhhe � hFÞðhe � nhÞ da

¼
Z

C3

kTðue;m � gÞ
�
uLðhe � hFÞ � uLðhhe � hFÞ

�
ðhe � nhÞ da

þ
Z

C3

�
kTðue;m � gÞ � kTðuhe;m � gÞ

�
uLðhhe � hFÞ ðhe � nhÞ da:

Then, we finally find

jKj
�Mukhe � hhek0;C3

khe � nhk0;C3

þ LuL kue;m � uhe;mk0;C3
khe � nhk0;C3

� Mu

4a
khe � hhek

2
0;C3

þ aMu þ LuL

4a


 �

khe � nhk20;C3

þ aLuL kue;m � uhe;mk
2
0;C3

� Mu

4a
khe � hhek

2
1;X

þ
�
aMu þ C

4a

�
khe � nhk21;X þ aC kue � uhek

2
1;X

� Mu

4a
khe � hhek

2
1;X þ aMu þ C

4a


 �

khe � hk21;X
	

þkh� nhk21;X


þ aC kue � uhek

2
1;X:

ð4:27Þ

We now combine (4.25), (4.26) and (4.27) to rewrite the

estimate (4.24) as follows
Z

C3

1

e
½ue;m�þ � 1

e
½uhe;m�

þ

 �

ðue;m � vhmÞ da

� 1

a
kxe � xhek

2
X þ ch

1

e
½ue;m�þ � 1

e
½uhe;m�

þ
�
�
�
�

�
�
�
�

2

0;C3

þ C 1þ aM2
B

2


 �

kue � uk21;X þ ku� vhk21;X
	 


þ aMu þ C

4a
þ aCM2

B

2


 �

khe � hk21;X þ kh� nhk21;X
	 


þ aC kue � uhek
2
1;X þMu

4a
khe � hhek

2
1;X:

ð4:28Þ

For the third term of (4.22), wee know that

‘ðuhe ; hhe ; nh � hhe Þ � ‘ðue; he; nh � hhe Þ

¼
Z

C3

kTðuhe;m � gÞuLðhhe � hFÞðnh � hhe Þ da

�
Z

C3

kTðue;m � gÞuLðhe � hFÞðnh � hhe Þ da

¼
Z

C3

kTðuhe;m � gÞ
�
uLðhhe � hFÞ � uLðhe � hFÞ

�
ðnh � hhe Þ da

þ
Z

C3

�
kTðuhe;m � gÞ � kTðue;m � gÞ

�
uLðhe � hFÞðnh � hhe Þ da:

Then, the following majoration inequality holds.
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�
�‘ðuhe ; h

h
e ; n

h � hhe Þ � ‘ðue; he; nh � hhe Þ
�
�

�Mukhhe � hek0;C3
knh � hhek0;C3

þ LuL kuhe;m � ue;mk0;C3
knh � hhek0;C3

� Mu

4a
khhe � hek20;C3

þ aMu þ LuL

4a


 �

khhe � nhk20;C3
þ aLuL kue;m � uhe;mk

2
0;C3

� Mu

4a
khe � hhek

2
1;X

þ aMu þ C

4a


 �

khhe � nhk21;X þ aC kue � uhek
2
1;X

� Mu

4a
khe � hhek

2
1;X þ aMu þ C

4a


 �

khe � hhek
2
1;X þ khe � hk21;X þ kh� nhk21;X

	 


þ aC kue � uhek
2
1;X:

ð4:29Þ

Next, we combine (4.23), (4.28) and (4.29) to reformulate

the estimate (4.22), we express it in the following manner

ðBxe; yh � xhe ÞX � ðBxhe ; yh � xhe ÞX

� 1

a
kxe � xhek

2
X þ ðCh� eÞ 1

e
½ue;m�þ � 1

e
½uhe;m�

þ
�
�
�
�

�
�
�
�

2

0;C3

þ C 1þ aM2
B

2

� �
�
kue � uk21;X þ ku� vhk21;X

�

þ 2aMu þ C

2a
þ aCM2

B

2

� �

khe � hk21;X þ kh� nhk21;X
	 


þ 2aC kue � uhek
2
1;X þ Mu

2a
þ aMu þ C

4a

� �

khe � hhek
2
1;X:

ð4:30Þ

Recalling k � k2X ¼ k � k2V þ k � k2Q, k � kH1


V
k � kV and

k � kQ ¼ k � k1;X, we use the inequality (4.30) to rewrite the

estimate (4.21) as follows

mB �
3

2a
� 2aC

� �

kue � uhek
2
1;X

þ mB �
3

2a
�Mu

2a
� aMu � C

4a

� �

khe � hhek
2
1;X

þ e
1

e
½ue;m�þ � 1

e
½uhe;m�

þ
�
�
�
�

�
�
�
�

2

0;C3

�Ch
1

e
½ue;m�þ � 1

e
½uhe;m�

þ
�
�
�
�

�
�
�
�

2

0;C3

þ C 1þ 3aM2
B

2

� �

kue � uk21;X þ ku� vhk21;X
	 


þ 2aMu þ C

2a
þ 3CaM2

B

2

� �

khe � hk21;X þ kh� nhk21;X
	 


:

ð4:31Þ

Under appropriate mathematical condition on a[ 0

involving mB, Mu and C, the terms mB � 3
2a � 2aC and

mB � 3
2a �

Mu

2a � aMu � C
4a are non-negative. So, (4.31)

implies the desired estimation (4.16). h

Theorem 4.5 Given the conditions stated in Theorem 4.4,

if x ¼ ðu; hÞ represents the solution of Problem (3.8) such

that

u 2 H
3
2
þrðXÞd; h 2 H

3
2
þrðXÞ with 0\r� 2;

then the ensuing estimate holds true

u� uhe
�
�

�
�
1;X

þ h� hhe
�
�

�
�
1;X

þðe12 � Ch
1
2Þ rmðu; hÞk

þ 1

e
½uhe;m�

þ
�
�
�
�
0;C3

�C h
1
2
þr þ e

1
2
þr

	 

kuk3

2
þr;X þ khk3

2
þr;X

	 


ð4:32Þ

where C[ 0 is independent of x ¼ ðu; hÞ; e and h.

Proof Given that xh ¼ ðuh; hhÞ 2 Xh, we select

xh ¼ ðuh; hhÞ ¼ ðI1
hðuÞ; I 1

hðhÞÞ;

where I 1
h denotes Lagrange’s interpolation operator asso-

ciated with Xh ¼ Vh � Qh. The conventional Lagrange

interpolation approximations in the H1ðXÞ norm are pro-

vided for r 2 ð� 1
2
; 1
2
� as detailed in prior works (see khalfi

et al. (2023); Bourichi et al. (2016); Dione (2019); Ern and

Guermond (2004))

�
�u� I 1

hðuÞ
�
�
1;X

� ch
1
2
þrkuk3

2þr;X;
�
�h� I 1

hðhÞ
�
�
1;X

� ch
1
2
þrkhk3

2
þr;X:

ð4:33Þ

We opt for penalty and mesh parameters to ensure e[ h.

Subsequently, utilizing the triangle inequality, Theorem 4.5

is derived from Theorems 4.4, 4.2, and the interpolation

estimate (4.33). h

Remark 4.6 Ultimately, to establish a convergence rate for

the approximation (4.32), we may select eðhÞ :¼ chc, where

c and c are fixed positive constants; hence, the penalty

parameter e becomes a function of the mesh size h. Con-

sequently, we obtain

1. When e scales in accordance with h, meaning

eðhÞ :¼ ðC þ 1Þ2h, we derive the following a priori

estimate from Theorem 4.4:

ku� uhek1;X þ kh� hhek1;X þ h
1
2 rmðu; hÞk

þ 1

e
½uhe;m�

þ
�
�
�
�
0;C3

�Ch
1
2
þr kuk3

2
þr;X þ khk3

2
þr;X

	 

:

2. When eðhÞ :¼ C2hc with 0\c\1, Theorem 4.4 gives

us the following a priori estimate:
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ku� uhek1;X þ kh� hhek1;X

þ Ch
c
2 1� h

1�c
2

	 

rmðu; hÞ þ

1

e
½uhe;m�

þ
�
�
�
�

�
�
�
�
0;C3

�Chcð
1
2
þrÞ kuk3

2
þr;X þ khk3

2
þr;X

	 

:

4.4 A Priori Estimate of the Approximation
Tresca’s Friction Problem

Theorem 4.7 Let x� ¼ ðu�; h�Þ and xhe ¼ ðuhe ; hhe Þ solutions
of problems ðPVeÞ and ðPVh

e Þ, respectively. Subsequently,
for any e[ 0 and h[ 0, the ensuing a priori estimate is

obtained

kue � uhek1;X þ khe � hhek1;X

þ
�
e
1
2 � Ch

1
2

� 1

e
½ue;m�þ

�
�
�
�

�

þ 1

e
½uhe;m�

þ
�
�
�
�
0;C3

þ 1

e
½ue;s�eg �

1

e
½uhe;s�eg

�
�
�
�

�
�
�
�
0;C3

#

�C ue � uk k1;Xþku� vhk1;X
	

þkhe � hk1;X þ kh� nhk1;X


; 8 yh ¼ ðvh; nhÞ 2 Xh;

ð4:34Þ

where a constant C[ 0 remains independent of x ¼
ðu; hÞ; e and h.

Proof The proof technique employed here resembles that

of Theorem 4.4. Initially, as utilized in establishing (4.21),

we have

mB xe � xhe
�
�

�
�2
X

� 1

2a
xe � xhe

�
�

�
�2
X
þ aM2

B

2
xe � yh

�
�

�
�2
X

þ ðBxe; yh � xhe ÞX � ðBxhe ; yh � xhe ÞX

� 1

2a
xe � xhe

�
�

�
�2
X
þaM2

B xe � xk k þ x� yh
�
�

�
�2
X

	 
2

X

þ Bxe; y
h � xhe

� �

X
� Bxhe ; y

h � xhe
� �

X
; 8yh

¼ ðvh; nhÞ 2 Xh:

ð4:35Þ

Recalling (3.29) and (3.30), where the terms ue;m and ue;s
are introduced, we derive

ðBxe; yh � xhe ÞX � ðBxhe ; yh � xhe ÞX

¼
Z

C3

1

e
½uhe;m�

þ � 1

e
½ue;m�þ


 �

ðvhm � uhe;mÞ da

þ
Z

C3

1

e
½uhe;s�eg �

1

e
½ue;s�eg


 �

ðvhs � uhe;sÞ da

þ ‘ðuhe ; h
h
e ; n

h � hhe Þ � ‘ðue; he; nh � hhe Þ

¼
Z

C3

1

e
½ue;m�þ � 1

e
½uhe;m�

þ

 �

ðuhe;m � ue;mÞ da

þ
Z

C3

1

e
½ue;m�þ � 1

e
½uhe;m�

þ

 �

ðue;m � vhmÞ da

þ
Z

C3

1

e
½ue;s�eg �

1

e
½uhe;s�eg


 �

ðuhe;s � ue;sÞ da

þ
Z

C3

1

e
½ue;s�eg �

1

e
½uhe;s�eg


 �

ðue;s � vhsÞ da

þ ‘ðuhe ; h
h
e ; n

h � hhe Þ � ‘ðue; he; nh � hhe Þ
¼ S1 þ S2 þ S3 þ S4 þ S5;

ð4:36Þ

where the quantities S1, S2, S3 , S4 and S5 are defined as

follows.

S1 ¼
Z

C3

1

e
½ue;m�þ � 1

e
½uhe;m�

þ

 �

ðuhe;m � ue;mÞ da; ð4:37Þ

S2 ¼
Z

C3

1

e
½ue;m�þ � 1

e
½uhe;m�

þ

 �

ðue;m � vhmÞ da; ð4:38Þ

S3 ¼
Z

C3

1

e
½ue;s�eg �

1

e
½uhe;s�eg


 �

ðuhe;s � ue;sÞ da; ð4:39Þ

S4 ¼
Z

C3

1

e
½ue;s�eg �

1

e
½uhe;s�eg


 �

ðue;s � vhsÞ da; ð4:40Þ

S5 ¼ ‘ðuhe ; h
h
e ; n

h � hhe Þ � ‘ðue; he; nh � hhe Þ: ð4:41Þ

We already have estimated the term S1 in (4.23), and we

get

S1 � � e
�
�
�
1

e
½ue;m�þ � 1

e
½uhe;m�

þ
�
�
�
2

0;C3

: ð4:42Þ

Using the properties (3.31)–(3.32), we estimate the term S3
as follows

S3 ¼ �e
Z

C3

1

e
½ue;s�eg �

1

e
½uhe;s�eg


 �
1

e
ue;s �

1

e
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 �
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� � e
1

e
½ue;s�eg �

1

e
½uhe;s�eg

�
�
�
�

�
�
�
�

2

0;C3

:

ð4:43Þ

For the remaining terms S2 and S4, we use (3.24)–(3.27)

and Cauchy-Schwartz inequality to get
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Hence, we conclude that
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ð4:44Þ

Moreover, by the same arguments as those used in the

estimation (4.25)–(4.26)–(4.27), we obtain
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Thus, the sum S2 þ S4 can be estimated as follows
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Finally, we already have estimated the term S5 in (4.29), as

following
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We combine (4.35) with the estimates (4.42), (4.43), (4.47)

and (4.48) to get
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where C[ LuL is independent of x ¼ ðu; hÞ; e and h. As

we have noted for estimation (4.31), we recall that for

appropriate condition on a we have

mB �
3

2a
� 2aC[ 0 and mB �

3

2a
�Mu

2a
� aMu � C

4a
[ 0;

which let us conclude the desired estimation (4.34). h

Theorem 4.8 Under hypotheses of Theorem 4.7, if the

solution x ¼ ðu; hÞ of Problem (3.20) is such that

u 2 H
3
2
þrðXÞd and h 2 H

3
2
þrðXÞ with 0\r� 2;

there exists c[ 0 independent of x ¼ ðu; hÞ, � and h such

that
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Remark 4.9 Similar to the frictionless scenario, to ascer-

tain the convergence rate outlined in Theorem 4.8, we

adjust the penalty parameter as a function of the mesh size.

Therefore, if we consider, for instance, eðhÞ :¼
�
C þ 1

�2
h,

signifying that the penalty parameter e aligns with the mesh

size h, we obtain the ensuing a priori estimate
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5 Conclusions

A thermoelastic unilateral contact problem in d ¼ 2; 3

dimensional domain X with and without Tresca’s friction

law has been presented in this work. First, the variational

formulations and their corresponding linear finite element

approximations are provided. The unilateral contact con-

dition is weakly imposed here using the penalty method.

Finally, error estimates dependent on the penalty parameter

e and the mesh size h were obtained. Furthermore,

assuming the solution maintains regularity, a convergence

result was established.
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