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Abstract
This paper thoroughly examines the Local Integrated Radial Basis Function (LIRBF) method’s performance in addressing

linear systems and first- to higher-order Fredholm integro-differential problems. Utilizing a meshless approach with Gauss–

Lobatto quadrature points for spatial discretization, we rigorously assess the method’s accuracy and efficiency across

various numerical problems from the existing literature. Evaluation criteria, including maximum absolute errors and rates

of convergence, validate the method’s effectiveness. To gauge the proposed LIRBF method’s efficacy, we benchmark it

against well-established numerical techniques like Multi-Scale-Galerkin’s, Alpert Multiwavelets, Legendre multi-wavelets

collocation, Legendre–Galerkin, Legendre polynomial approximation, and variational iteration methods. A comparative

analysis based on criterion norms assesses the numerical results obtained by each method. The findings reveal that the

proposed method demonstrates a significant reduction in sensitivity to the shape parameter compared to the RBF method.

This observation establishes the robustness and stability of the proposed method, highlighting its ability to maintain

accuracy and efficiency across diverse conditions. Results from numerical experiments and comparisons with other

established techniques affirm the efficiency and accuracy of the LIRBF method in solving Fredholm integro-differential

problems. The outcomes demonstrate promising performance, emphasizing the LIRBF method’s potential as a compelling

alternative for addressing similar problems with high precision and computational efficiency.

Keywords Fractional calculus � Meshless methods � RBF collocation � Partition of unity � Differential quadrature �
Irregular convex domains

1 Introduction

Fredholm integro-differential equations are a type of

mathematical equation that combine both differential

equations and integral equations. They were named after

the Swedish mathematician Ivar Fredholm, who made

significant contributions to the field of integral equations

(Thieme 1977).

A Fredholm integro-differential equation involves an

unknown function that appears both in the form of a dif-

ferential equation and as an integral in the equation. These

equations can be written in various forms, but generally,

they can be expressed as Jalilian and Tahernezhad (2020):

L½uðxÞ� ¼ f ðxÞ þ k
Z b

a

Kðx; s; uðsÞÞds; ð1Þ

where u(x) is the unknown function, L is a linear differ-

ential operator, f(x) is a given function, K(x, s, u(s)) is the

kernel function that depends on the unknown function and

its value at s, k is a parameter and a and b define the

interval of integration. These equations find applications in

various scientific and engineering fields, such as physics,

biology, economics, and engineering. They are used to

model a wide range of phenomena involving time-depen-

dent processes and interactions between different variables.

To solve Fredholm integro-differential equations, one

typically employs techniques from integral equations and

differential equations, such as the method of successive

approximations, numerical methods like finite difference or
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finite element methods, or other specialized methods

developed for specific types of equations.

The search for efficient numerical methods to approxi-

mate solutions of integro-differential equations has been a

subject of considerable research. Traditional analytical

methods often face limitations in handling the complex

nature of these equations, which involve both differential

and integral operators. As a result, various numerical

techniques have been developed to address these chal-

lenges and provide reliable approximations. One popular

approach is the wavelet method (Behiry and Hashish 2003;

ul Islam et al. 2013), which utilizes wavelet functions to

discretize the equation and approximate the unknown

function. Another method that has gained attention is the

differential transform method (Behiry and Mohamed

2012), which involves transforming the integro-differential

equation into a system of algebraic equations using dif-

ferential operators. The Bernoulli matrix method (Bhrawy

et al. 2012) offers an alternative approach by employing

matrices constructed based on Bernoulli polynomials. The

Chebyshev finite difference method (Dehghan and Saa-

datmandi 2008) combines the accuracy of Chebyshev

polynomials with the finite difference scheme to approxi-

mate the solution of integro-differential equations. Hybrid

methods, such as the one based on a combination of block

pulse functions and normalized Bernstein polynomials

(Behiry 2014), have been proposed to tackle integro-dif-

ferential equations. Matrix methods utilizing Bell polyno-

mials (Mirzaee 2017) provide effective tools for solving

Fredholm-Volterra integral equations. The homotopy

analysis method (Shidfar et al. 2010) offers a powerful

technique for finding series solutions of high-order non-

linear Volterra and Fredholm integro-differential equa-

tions. Other methods, such as the exponential spline

method (Jalilian and Tahernezhad 2020), multilevel aug-

mentation method (Chen et al. 2019), multiscale Galerkin

method (Chen et al. 2015), iterative method (Yulan et al.

2009), Sinc collocation method (Yeganeh et al. 2012),

improved reproducing kernel method (Xue et al. 2018),

Legendre polynomial method (Saadatmandi and Dehghan

2010), Walsh function method (Ordokhani 2010), and the

parameterization method (Dzhumabaev 2016), form a part

of the diverse array of numerical approaches. Each method

offers its own unique advantages, making them suitable for

different types of problems and providing valuable insights

into the behavior of complex systems. In recent studies,

several approaches have been proposed to solve integro-

differential equations with diverse characteristics. Yalcin

et al. (2020) introduced a matched Hermite-Taylor matrix

method to address combined partial integro-differential

equations involving nonlinearity and delay terms. Tchier

et al. (2021) explored the pseudo-spectral method based on

Chebyshev cardinal functions for the approximate solution

of partial integro-differential equations. Another

notable contribution comes from Parand and Nikarya

(2014), who applied Bessel functions to solve differential

and integro-differential equations of fractional order. Elahi

et al. (2018) employed the Laguerre approach for solving

systems of linear Fredholm integro-differential equations.

Cabre et al. (2022) delved into the Bernstein technique for

integro-differential equations, presenting a novel perspec-

tive in this area. Yuzbasi and Yildirim (2022) proposed a

collocation method using PellLucas polynomials to solve

parabolic-type partial integro-differential equations. In the

realm of numerical techniques, Kajani and Vencheh (2004)

focused on solving linear integro-differential equations

with Legendre wavelets, showcasing the versatility of

wavelet methods. Lotfi and Alipanah (2020) introduced the

Legendre spectral element method for solving Volterra-

integro differential equations, providing a valuable tool for

researchers dealing with integral equations. Hashemi et al.

(2016) introduced a geometric approach for solving the

density-dependent diffusion Nagumo equation, providing

insights into the behavior of this important equation.

Building upon this work, Hashemi (2021) conducted a

numerical study focusing on the one-dimensional coupled

nonlinear sine-Gordon equations using a novel geometric

meshless method, which demonstrated promising results in

terms of computational efficiency and accuracy. Further-

more, Hashemi and Hajikhah (2021) proposed the Gener-

alized Squared Remainder Minimization Method as a

powerful technique for solving multi-term fractional dif-

ferential equations, addressing a wide range of applications

in mathematical modeling and control theory. Recently,

Hashemi (2024) developed a variable coefficient third-de-

gree generalized Abel equation method for solving the

stochastic Schrodinger-Hirota model, contributing to the

advancement of understanding complex systems described

by stochastic differential equations. These diverse contri-

butions underscore the richness of mathematical methods

employed to address challenges in partial integro-differ-

ential equations across different domains.

Meshless methods have gained popularity in recent

years as a numerical approach for solving functional

equations. These methods utilize a scattered set of collo-

cation points, without the need for explicit relationships

between them. This characteristic sets meshless methods

apart from mesh-dependent techniques like finite differ-

ence and finite element methods. By eliminating the reli-

ance on structured grids, meshless methods offer flexibility

and allow computations to be solely based on the distri-

bution of collocation points. This advantage makes them a

valuable tool in solving functional equations efficiently and

effectively. Meshless methods have emerged as a versatile

approach for approximating solutions to a wide range of

linear and nonlinear functional equations, including Partial
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Differential Equations (PDEs), Ordinary Differential

Equations (ODEs), Integral Equations (IEs), and Integro-

Differential Equations (IDEs) such as the moving least

squares (MLS) method (Mirzaei and Dehghan 2010; Assari

et al. 2014b), discrete collocation method based on radial

basis functions (RBFs) (Dastjerdi et al. 2013; Assari et al.

2013a, b; Wang and Wang 2016; Assari and Dehghan

2017; Esmaeilbeigi et al. 2017), local meshless formula-

tions with modified Levin’s quadrature (Aziz 2015),

spectral meshless radial point interpolation (SMRPI)

method (Fatahi et al. 2016), local radial basis function

method (Assari et al. 2019), meshless product integration

(MPI) method (Assari et al. 2014c), meshless discrete

Galerkin (MDG) method (Assari et al. 2014b), RBF and

spectral collocation method (Mirzaee et al. 2021), Mesh-

free approach based on barycentric Lagrange interpolation

(Liu et al. 2019) and Legendre polynomial approximation

(Bildik et al. 2010).

In recent years, the versatility and effectiveness of

mesh-free methods have garnered significant attention,

leading to their widespread development and application

(Chen et al. 2022; Hu et al. 2005; Khosravifard et al.

2011). In this paper, we present a novel numerical

approach that employs the local integrated radial basis

functions (IRBFs) method to address the problem of

solving systems of linear one-dimensional Fredholm inte-

gro-differential equations. The proposed research extends

the existing body of knowledge by exploring the applica-

tions of indirect/integrated radial basis function (IRBF)

approaches introduced and developed in Ho and Le (2020);

Ho et al. (2021); Mai-Duy et al. (2007); Mai-Duy and

Tanner (2005); Mai-Duy and Tran-Cong (2006); Sarra

(2006); Vu et al. (2022). The proposed method utilizes an

interpolating extension of local IRBFs, which are con-

structed to approximate the unknown function u within the

discrete collocation method. To approximate the integrals

involved, the scheme employs the Gauss–Legendre (DGL)

quadrature formula. As a result, solving the linear Fred-

holm integral equation is transformed into solving a system

of linear algebraic equations.

The key novelties and advantages of the proposed

method can be summarized as: The LIRBF method is a

meshless collocation approach utilizing IRBFs to approx-

imate unknown functions in the integro-differential equa-

tions, extending existing RBF collocation methods by

integrating RBFs for constructing approximation functions.

The LIRBF method demonstrates reduced sensitivity to the

shape parameter compared to conventional RBF methods,

offering increased robustness and stability across various

problems and conditions. Employing the Gauss–Legendre

quadrature formula, the LIRBF method approximates the

integrals in Fredholm integro-differential equations accu-

rately and efficiently, enhancing the computational

efficiency of the method. Being a meshless approach, the

LIRBF method does not require structured meshes or grids

for discretization, providing flexibility in handling complex

geometries and irregular domains, thus expanding its

applicability to diverse problem sets.

2 Locally Supported IRBF

Consider a section [j] that includes ns nodes distributed

along an x-grid line, as illustrated in Fig. 1. We aim to

analyze the variation of the nodal function u½j� along this

section using the integrated radial basis function (IRBF)

formulation. By decomposing the second-order derivative

of u½j� into RBFs, we integrate the RBF network twice. This

process of integration gives us expressions for both the

first-order derivative and the function of u½j� itself.

u00
½j� ðxÞ �

Xns
k¼1

ck/
½2�
k ðxÞ; ð2Þ

u0
½j� ðxÞ �

Xns
k¼1

ck/
½1�
k ðxÞ þ w1; ð3Þ

u½j�ðxÞ �
Xns
k¼1

ck/
½0�
k ðxÞ þ w1xþ w2; ð4Þ

where ckf gnsk¼1 signifies the RBF weights requiring deter-

mination, while /kf gnsk¼1 indicates the given RBFs. The

expressions /½1�
k ðxÞ ¼

R
/½2�
k dx and /½0�

k ¼
R
/½1�
k dx define

the functions /½1�
k ðxÞ and /½0�

k as the integrals of /½2�
k and

/½1�
k , respectively. Moreover, ns is the number of colloca-

tion nodes in every stencil, w1 and w2 denote integration

constants that are also undetermined.

Opting for the physical space instead of the network-

weight space provides enhanced convenience. The RBF

coefficients, comprising two integration constants, can be

converted into understandable nodal variable values using

the subsequent correlation equation:

�u½j� ¼ U
c

w

� �
; ð5Þ

where the matrix U, with dimensions ns � ðns þ 2Þ, is

introduced. Its specific form is described as follows:

U ¼

/½0�
1 x1ð Þ /½0�

2 x1ð Þ . . . /½0�
ns

x1ð Þ x1 1

/½0�
1 x2ð Þ /½0�

2 x2ð Þ . . . /½0�
ns

x2ð Þ x2 1

. . . . . . . . . . . . . . . . . .

/½0�
1 xnsð Þ /½0�

2 xnsð Þ . . . /½0�
ns

xnsð Þ xns 1

2
66664

3
77775;

ð6Þ
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Let u½j� ¼ u1; u2; . . .; unsÞ
� �T

, c ¼ c1; c2; . . .; cns
� �T

, and w ¼
w1;w2ð ÞT be defined as column vectors. In the context of

this study, we consider two distinct transformation cases.

For a labeled segment represented by [j] that exclusively

comprises interior points, employing Eq. (5) results in an

inadequately determined system.

u½j� � U
c

w

� �
¼ C

c

w

� �
; ð7Þ

or

c

w

� �
¼ C�1u½j�; ð8Þ

in which the matrix C, denoted as U in the context, serves

as the transformation matrix. The utilization of the singular

value decomposition (SVD) method enables the attainment

of its invertibility.

In the context of a segment identified as [j], which

encompasses interior as well as boundary points, the

presence of coefficients w1 and w2 permits the introduction

of an additional equation given by:

f ¼ K
c

w

� �
; ð9Þ

to equation system (5). When Neumann boundary condi-

tions are encountered, this subsystem can be employed to

enforce a boundary value of the derivative at the location

x ¼ xN as

f ¼ u0ðxNÞ; ð10Þ

K ¼ /½1�
1 xNð Þ /½1�

2 xNð Þ . . . /½1�
ns

xNð Þ 1 0

h i
: ð11Þ

The conversion system can be represented in the following

formulation.

u½j�

f

 !
�

U

K

� �
c

w

� �
¼ C

c

w

� �
; ð12Þ

or

c

w

� �
¼ C�1

u½j� f
� �T

; ð13Þ

where C�1 can be computed the pseudo-inverse code in

MATLAB as pinvðCÞ. The relation (8) can be recognized

as a specific instance of (13), where the function f is

assigned a null value. By incorporating Eq. (13) into

Eqs. (2)–(4), the expressions for the second-order and first-

order derivatives, as well as the function involving the

variable u½j�, are obtained in relation to the values of the

nodal variables.

u00
½j� ðxÞ � /½2�

1 ðxÞ;/½2�
2 ðxÞ; . . .;/½2�

ns
ðxÞ; 0; 0

� 	
C�1

u½j� f
� �T

;

ð14Þ

u0
½j� ðxÞ � /½1�

1 ðxÞ;/½1�
2 ðxÞ; . . .;/½1�

ns
ðxÞ; 1; 0

� 	
C�1

u½j� f
� �T

;

ð15Þ

u½j�ðxÞ � /½0�
1 ðxÞ;/½0�

2 ðxÞ; . . .;/½0�
ns
ðxÞ; x; 1

� 	
C�1

u½j� f
� �T

;

ð16Þ

or

u00
½j� ðxÞ � �d

T
2u

½j� þ k2ðxÞ;

u0
½j� ðxÞ � �d

T
1u

½j� þ k1ðxÞ;

u½j�ðxÞ � �d
T
0u

½j� þ k0ðxÞ:

ð17Þ

In the given context, the variables k0; k1, and k2 represent

scalar quantities that are dependent on both x and a

boundary value denoted as f. On the other hand, the vectors
�d0; �d1 and �d2 are predefined vectors with a length of ns.

By utilizing Eqs. (14) and (15) on the segment [j] with

ns nodes, the second- and first-order derivatives of u½j� at

node xi can be determined.

u00
½j� ðxiÞ � �D2ðind;:Þu

½j� þ �k2ðindÞ; ð18Þ

u0
½j� ðxiÞ � �D1ðind;:Þu

½j� þ �k1ðindÞ; ð19Þ

u½j� xið Þ � �D0ðind;:Þu
½j� þ �k0ðindÞ ¼ �Iðind;:Þu

½j�; ð20Þ

Fig. 1 LIRBF structures

covering segment [j] with

ns ¼ 3
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in which the matrices �D1 and �D2 are matrices of known

dimensions ns � ns, while the vectors �k1 and �k2 are known

vectors of length ns. The index number ind represents the

position of node xi within the local network [j]. It should be

mentioned that �D0 is equivalent to the identity matrix �I,

which has dimensions ns � ns and �k1 is a zero vector.

Consequently, the shape function of the one-dimensional

LIRBF exhibits the properties of the Kronecker delta

function.

By meticulously combining the stencils associated with

individual nodes, we can construct comprehensive matrices

representing the second- and first-order derivatives. These

assembled matrices provide a systematic representation of

the derivative operations within the computational domain.

The resulting matrices encapsulate the relationship

between the nodes and enable the computation of deriva-

tive values at specific locations. The assembled matrices

that the accurate estimation of derivatives are as follows:

u00ðxÞ � Uxx ¼ DxxU; u0ðxÞ � Ux ¼ DxU; u xð Þ � U ¼ IU;

ð21Þ

where Dxx and Dx are second- and first-order derivatives

matrices, respectively, and I is identity matrix.

3 Solution of Integral Equations

This section introduces a numerical scheme for solving

one-dimensional Fredholm integral equations. The pro-

posed scheme utilizes the collocation method in conjunc-

tion with the Local Integrated Radial Basis Functions

(LIRBF) approach.

Consider the operator I : Cð½a; b�Þ ! Cð½a; b�Þ defined

as

IuðxÞ ¼
Z b

a

Kðx; sÞuðsÞds: ð22Þ

The integral equation (1) can be reformulated in an abstract

form as

ðL� kIÞu ¼ f ; ð23Þ

where L is linear differential operator. It is assumed that the

kernel function K(x, s) is Riemann-integrable with respect

to s for all x 2 ½a; b�. Furthermore, the following assump-

tion is made (Atkinson 1997): limh!0 wðhÞ ¼ 0, where

wðhÞ ¼ max
x1;x22½a;b� x1�x2k k� h

Z b

a

K x1; sð Þ � K x1; sð Þk kds;

ð24Þ

and consider (Atkinson 1997)

max
x2½a;b�

Z b

a

jKðx; sÞjds\1: ð25Þ

Theorem 1 (Geometric Series Theorem) Atkinson (1997)

Consider a Banach space denoted as Y. Let F be a

bounded operator mapping from Y to Y, where F is

defined as follows:

kFk\1;

Subsequently, when considering the operator I � F in the

context of Y, it can be established that I � F : Y �!1�1

onto
Y,

wherein ðI � FÞ�1
represents a bounded linear operator

and

ðI � FÞ�1


 

 6

1

1 � kFk :

The series

ðI � FÞ�1 ¼
X1
j¼0

F j;

known as the Neumann series, converges within the space

of bounded operators on Y, given the assumption that

kFk\1. As a result of this convergence, the Neumann

series yields the desired output Y.

Theorem 2 Consider the bounded operator I mapping

from the space C([a, b]) to C([a, b]). It is assumed that

kkkkIk\1. In this case, the operator L� kI can be

identified as a contraction operator. By virtue of the

Banach contraction mapping principle Atkinson (1997), it

follows that the integral equation possesses a unique

solution uðxÞ 2 Cð½a; b�Þ for any given function

f ðxÞ 2 Cð½a; b�Þ.

Proof Let u1ðxÞ and u2ðxÞ be two solutions to the integral

equation u ¼ Luþ f ðxÞ, with corresponding operators

L� kI , where kkkkIk\1. Then we have:

ku1ðxÞ � u2ðxÞk ¼ kLu1ðxÞ � Lu2ðxÞk
¼ kkIu1ðxÞ � kIu2ðxÞk
� kkkkIkku1ðxÞ � u2ðxÞk:

Since kkkkIk\1, we have kkkkIk\1. Hence, by the

Banach contraction mapping principle, L� kI is a con-

traction mapping on C([a, b]). Therefore, the integral

equation u ¼ Luþ f ðxÞ has a unique solution uðxÞ 2
Cð½a; b�Þ for any given function f ðxÞ 2 Cð½a; b�Þ. h
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4 Implementation of the Proposed Method

This section aims to demonstrate the application of the

proposed method to solve one-dimensional Fredholm

integro-differential equations, serving as an introduction to

the fundamental concept of our approach. For sample, the

equation under consideration can be represented as:

L½uðxÞ� ¼ f ðxÞ þ k
Z b

a

Kðx; s; uðsÞÞds; ð26Þ

with appropriate boundary conditions based on the high-

order of the derivative in differential operator L.

In order to implement the LIRBF method, an initial step

involves selecting a set of N nodal points xif g on the

interval [a, b], where a 6 x1\x2\ � � �\xN 6 b. The dis-

tribution of these nodes can be chosen in a regular or

random manner. Subsequently, instead of considering the

unknown function u, we introduce uh as a replacement, as

indicated in Eq. (4). Therefore, Eq. (26) can be modified

accordingly.

L½uhðxÞ� � k
Z b

a

Kðx; s; uhðsÞÞds ¼ f ðxÞ; ð27Þ

and more precisely for each node xi

Xns
k¼1

ck/
½2�
k ðxiÞ � k

Z bi

ai

K xi; s;
Xns
k¼1

ck/
½0�
k ðsÞ þ w1sþ w2

 !

ds ¼ f ðxiÞ; i ¼ 1; 2; . . .;N:

ð28Þ

or

!
c

w

� �
� k

Z bi

ai

K xi; s;W
c

w

� �� �
ds ¼ f ðxiÞ; i ¼ 1; 2; . . .;N;

ð29Þ

where ai ¼ minða; xi � diÞ, bi ¼ minðb; xi þ diÞ and

! ¼

/½2�
1 x1ð Þ /½2�

2 x1ð Þ . . . /½2�
ns

x1ð Þ x1 1

/½2�
1 x2ð Þ /½2�

2 x2ð Þ . . . /½2�
ns

x2ð Þ x2 1

. . . . . . . . . . . . . . . . . .

/½2�
1 xnsð Þ /½2�

2 xnsð Þ . . . /½2�
ns

xnsð Þ xns 1

2
66664

3
77775;

W ¼ /½0�
1 sð Þ /½0�

2 sð Þ . . . /½0�
ns

sð Þ s 1

h i
:

ð30Þ

Utilizing Eqs. (8) and (13), we can rewrite (29) as follows:

! U½i�
� 	�1

uh½i� � k
Z bi

ai

K xi; s;W U½i�
� 	�1

uh½i�
� �� �

ds ¼ f ðxiÞ; i ¼ 1; 2; . . .;N;

ð31Þ

Utilizing an M-point quadrature formula, characterized by

the coefficients nlf g and weights xlf g, within every

interval ½ai; bi�, the integral is estimated as follows (Waz-

waz 2011):

Z bi

ai

gðsÞds � bi � ai
2

XM
l¼1

xlg #l;i

� �
; ð32Þ

in which

xl ¼
2

ðlþ 1ÞP0
Mþ1 nlð ÞPM nlð Þ and #l;i ¼

1

2
ai þ bið Þ

þ 1

2
bi � aið Þnl;

ð33Þ

and

Z bi

ai

gðsÞds� bi � ai
2

XM
l¼1

xlg #l;i

� �












� 22Md2Mþ1
i

ð2MÞ! max
ai � x� bi

gð2MÞðsÞ


 

;

ð34Þ

where PmðxÞ is the well-known Legendre polynomial of

order M and g 2 C2M ai; bi½ �. By employing the numerical

integration scheme (32) within the system of Eq. (31), we

obtain a linear system comprising algebraic equations.

!½i� U½i�
� 	�1

uh½i� � k
XM
l¼1

xlKðxi; nlÞW U½i�
� 	�1

uh½i�
� �

¼ f ðxiÞ; i ¼ 1; 2; . . .;N:

ð35Þ

By assembling Eq. (32) for every node xi, we can derive

the following relation:

DxxU � k
XM
l¼1

xlKðx; nlÞW Uð Þ�1U ¼ f ðxÞ; x 2 ½a; b�:

ð36Þ

In this context, let us define the matrix G as an N � N

matrix by

G ¼ Dxx � k xKðx; nÞð ÞTW Uð Þ�1;

U ¼ fU1;U2; . . .;UNg; f ¼ ff1; f2; . . .; fNg;
ð37Þ

and equivalently

GU ¼ f : ð38Þ

5 Numerical Results

In this section, some examples are given to certify the

efficiency and accuracy of the presented method. All

results are computed by using the MATLAB 9.6 software
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on an Asus laptop powered by an Intel Core i7-4510U with

8 GB of RAM and a 2.6 GHz CPU. Also in this article, we

have utilized Gaussian radial basis function as follows

WGaussian ¼ eð��rÞ2

; ð39Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xjÞ2

q
; j ¼ 1; . . .;N; and � is shape

parameter that to achieve an optimal shape parameter, we

use Algorithm 1 that has been introduced via Sarra (Sarra

2012).

Algorithm 1 An optimal shape parameter (Sarra 2012)

where in Algorithm 1, U is the interpolation matrix and

cInc ¼ 1
ns

in which ns is the number of points in the con-

sidered domain and Kmin ¼ 110 and Kmin ¼ 1eþ 11.

The accuracy of the technique has been assessed through

the evaluation of error metrics as follows:

ek k1¼ max
x2½a;b�

uexðxÞ � uappðxÞ


 

� 


;

kuex � uappk1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ b

a

u2
exðtÞ � u2

appðtÞ








dt
s

;

where the exact solution uexðxÞ is estimated using the

numerical solution uappðxÞ obtained through the method

presented in this paper. The sparsity of the matrix, denoted

as Se, is given by the following expression (Saray et al.

2015):

Se ¼
M �Me

M
� 100%;

where M represents the total number of elements, and Me

corresponds to the number of non-zero elements.

To solve the problem of solving Fredholm integro-dif-

ferential equations using LIRBF method, the following

algorithm can be employed:

1. Define the Fredholm integro-differential equation to be

solved.

2. Decompose the highest-order derivative of the function

into RBFs.

3. Integrate the RBF basis several times to obtain

expressions for the low-order derivatives and the

function itself.

4. Utilize a meshless approach with collocation at Gauss–

Lobatto quadrature points for spatial discretization.

5. Construct an interpolating extension of local IRBFs to

approximate the unknown function within the discrete

collocation method.

6. Apply the Gauss–Legendre quadrature formula to

approximate the integrals involved and transform the

problem into solving a system of linear algebraic

equations.

Example 1 Our first example is the problem (Asady et al.

2005; Kurt and Sezer 2008)

y0ðxÞ ¼
R 1

0
etxyðtÞdt þ yðxÞ þ 1 � exþ1

xþ 1
;

yð0Þ ¼ 1;

8<
:
with exact solution yðxÞ ¼ ex.

The tables present a comprehensive comparison of

errors for the proposed method, Taylor matrix method with

N ¼ 8, and the exact solution for Example 1. In Table 1,

the errors for different values of x and N are provided. The

columns include the results from the reference (Kurt and

Sezer 2008), the proposed method with N ¼ 6 and N ¼ 8,

and the exact solution. The table demonstrates the accuracy

of the proposed method in approximating the exact solu-

tion, with errors close to the exact values.

Table 2 further compares the numerical results for

Example 1 using various methods. The columns include

results from hybrid Fourier and block-pulse functions,

Fourier functions, Taylor matrix method with N ¼ 8, E8ðxÞ
for Taylor matrix method, and the present method E8ðxÞ.
The table illustrates that the present method achieves

highly accurate results, with errors in the range of 10�7 to

10�4, demonstrating its effectiveness in approximating the

given example. This comparison provides valuable insights

into the performance of different numerical methods and

highlights the accuracy and reliability of the proposed

approach. We also examine the influence of the shape

parameter on the proposed method in comparison to the

LRBF method for Example 1. Figure 2 visually represents

the impact of varying the shape parameter on the perfor-

mance of both methods. The analysis of this figure depicts

that the effect of the shape parameter in LIRBF method is

significantly less pronounced compared to LRBF method.

This observation suggests that the proposed method exhi-

bits lower sensitivity and dependence on the shape

parameter, indicating a more robust and stable behavior.

Furthermore, Fig. 2 illustrates that the errors obtained
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Table 1 Comparison of errors

for proposed method and Taylor

matrix method for Example 1

x Kurt and Sezer (2008) Proposed method Exact solution

N ¼ 4 N ¼ 6 N ¼ 8 N ¼ 6 N ¼ 8

0.05 1.03866 1.05139 1.05132 1.0518 1.0513 1.0513

0.15 1.12035 1.16224 1.16201 1.1615 1.1618 1.1618

0.25 1.20788 1.28475 1.28434 1.2842 1.2840 1.2840

0.35 1.30125 1.42018 1.41956 1.4191 1.4191 1.4191

0.45 1.40047 1.56986 1.56901 1.5680 1.5683 1.5683

0.55 1.50553 1.73531 1.73420 1.7337 1.7333 1.7333

0.65 1.61642 1.91819 1.91678 1.9151 1.9155 1.9155

0.75 1.73316 2.12031 2.11859 2.1175 2.1170 2.1170

0.85 1.85574 2.34371 2.34165 2.3398 2.3396 2.3396

0.95 1.98416 2.59061 2.58821 2.5851 2.5857 2.5857

Table 2 Comparisons of numerical results for Example 1

x Hybrid Fourier and block-pulse functions Fourier functions Taylor matrix method N = 8 Taylor matrix

method E8 xð Þ
Present method E8 xð Þ

0.05 1.05128 1.22238 1.05132 2:20047 � 10�5 2:3767 � 10�7

0.15 1.16184 1.08199 1.16201 3:53323 � 10�5 3:2589 � 10�7

0.25 1.28405 1.35045 1.28434 6:35704 � 10�5 4:9618 � 10�7

0.35 1.41908 1.35695 1.41956 1:01215 � 10�4 6:3953 � 10�7

0.45 1.56831 1.62870 1.56901 1:54963 � 10�4 8:0302 � 10�7

0.55 1.73326 1.67340 1.73420 2:31844 � 10�4 1:0487 � 10�6

0.65 1.91555 1.97601 1.91678 3:39093 � 10�4 1:2048 � 10�6

0.75 2.11703 2.05371 2.11859 4:83948 � 10�4 1:5576 � 10�6

0.85 2.33966 2.41389 2.34165 6:73161 � 10�4 1:7382 � 10�6

0.95 2.58572 2.42536 2.58821 9:12919 � 10�4 1:9888 � 10�6

Fig. 2 Influence of the shape parameter on the performance of LRBF and LIRBF methods for Example 1
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across a wide range of shape parameters in the proposed

method are consistently lower than those in LIRBF

method. This finding underscores the efficiency and accu-

racy of the proposed method, particularly when faced with

variations in the shape parameter.

Example 2 The second-order linear Fredholm integral-

differential equations can be expressed as follows (Chen

et al. 2015, 2020; Khan et al. 2022):

u00ðxÞ ¼
Z 1

0

expðsxÞuðsÞdsþ 2x3 þ ðx� 2Þ expðxÞ þ xþ 2

x3
;

uð0Þ ¼ 0; uð1Þ ¼ 0:

The exact solution to this problem is given by

uðxÞ ¼ x2 � x.

In this instance, the objective is to showcase the accu-

racy of approximation and computational efficiency of the

proposed approach in contrast to the Fractional Multiscale

Galerkin Method (FMGM) and the original multiscale

Galerkin method (OMGM) (Chen et al. 2019). Table 3

succinctly presents the numerical outcomes achieved

through the application of these three methods. For each

designated N value, the approximated solutions arising

from FMGM and OMGM are denoted as uFMGM
app and

uOMGM
app , correspondingly. Figure 3 shows a comparison of

the proposed technique, linear Legendre multiwavelets

(Khan et al. 2022), and Multi-scale Galerkin methods

(Chen et al. 2015) for Example 2 in terms of maximum

absolute errors. Additionally, Table 4 displays the rate of

convergence for each method. Upon analyzing the data

presented in Table 4, we observe that both uFMGM
app and

uOMGM
app exhibit nearly the same level of accuracy and

demonstrate an identical optimal convergence order of 1.

However, it is noteworthy that the errors associated with

the LIRBF are significantly more accurate than the OMGM

and FMGM. To provide a visual representation of the

computational time comparison between the three methods,

we include Fig. 4, where the computing times of LIRBF,

FMGM and OMGM are plotted. The figure distinctly

illustrates that both computing time for LIRBF and FMGM

exhibit nearly the same. However, it is noteworthy that the

computational time associated with LIRBF and FMGM is

significantly less than that of the OMGM. Table 5 presents

the errors, condition numbers, and CPU time obtained

using the presented method with various selected

RBFs. These findings emphasize the superiority of the

proposed method in terms of computational efficiency over

the approach introduced in Chen et al. (2019).

In conclusion, the results presented in Tables 3 and 4

and Fig. 4 underscore the effectiveness of the IRBF in

achieving comparable approximation accuracy to the

OMGM while considerably reducing the computational

time. The findings indicate that the proposed method offers

significant advantages over the previous methods (Chen

et al. 2019) and holds promise for enhancing computa-

tional efficiency in solving similar problems. Figure 3

presents a log-log plot illustrating the errors obtained by

the proposed method, Multi-scale Galerkin (Chen et al.

2015), and linear Legendre multiwavelets (Khan et al.

2022) methods. The comparison allows us to discern that

the proposed method exhibits higher accuracy than the

existing methods in Chen et al. (2015) and Khan et al.

(2022). The log-log plot visually demonstrates the con-

vergence behavior and efficiency of the different methods

in approximating the solution. It is evident that the pro-

posed method outperforms both Multi-scale Galerkin

(Chen et al. 2015) and linear Legendre multiwavelets

Table 3 Comparison of errors for proposed method and FMGM/OMGM approaches for Example 2

N S(N) Chen et al. (2019) Proposed method

kuex � uFMGM
app k1 kuex � uOMGM

app k1
N kuex � uappk1

3 7 7.3842E �2 7.2174E �2 3 1.7391E �04

4 15 3.6943E �2 3.6085E �2 4 9.6929E �05

5 31 1.8476E �2 1.8042E �2 5 3.8127E �05

6 63 9.2385E �3 9.0211E �3 6 1.5082E �07

7 127 4.6194E �3 4.5106E �3 7 3.1993E �08

8 255 2.3097E �3 2.2553E �3 8 1.1175E �08

9 511 1.1549E �3 1.1276E �3 9 1.5508E �09

10 1023 5.7743E �4 5.6382E �4 10 4.9570E �10

11 2047 2.8872E �4 2.8191E �4 11 1.9707E �10

12 4095 1.4436E �4 1.4096E �4 12 8.1794E �11
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(Khan et al. 2022) approaches in terms of error reduction

and precision. We investigate the impact of the shape

parameter on the proposed method relative to the LRBF

method in Example 2. The visual representation in Fig. 5

illustrates the influence of varying the shape parameter on

both methods. The analysis of the figure indicates that the

proposed LIRBF method exhibits significantly less sensi-

tivity to the shape parameter compared to the LRBF

method, highlighting its enhanced robustness and stability.

Additionally, Fig. 5 demonstrates consistently lower errors

across a broad range of shape parameters in the proposed

method compared to the LRBF method, emphasizing the

efficiency and accuracy of the proposed approach.

Example 3 Let us consider the subsequent system of

integro-differential equations (Pour-Mahmoud et al. 2005;

Saray et al. 2015):

u001ðxÞ þ u02ðxÞ þ
Z 1

0

2xt u1ðtÞ � 3u2ðtÞð Þdt ¼ f1ðxÞ;

u01ðxÞ þ u002ðxÞ þ
Z 1

0

3 2xþ t2
� �

u1ðtÞ � 2u2ðtÞð Þdt ¼ f2ðxÞ;

where the functions f1ðxÞ and f2ðxÞ are defined as:

f1ðxÞ ¼
3x

10
þ 3x2 þ 8; f2ðxÞ ¼ 21xþ 4

5
;

Moreover, the system is subject to the following boundary

conditions:

u1ð0Þ þ u01ð0Þ ¼ 1; u1ð1Þ þ u01ð1Þ ¼ 10;

u2ð0Þ þ u02ð0Þ ¼ 1; u2ð1Þ þ u02ð1Þ ¼ 7:

The exact solution to this equation is determined as

follows:

Fig. 3 Comparison of the proposed technique, linear Legendre multiwavelets (Khan et al. 2022) and Multi-scale Galerkin methods (Chen et al.

2015) for Example 2 in terms of maximum absolute errors

Table 4 Comparison of

computational order for FMGM,

OMGM and LIRBF methods

N 3 4 5 6 7 8 9 10 11 12

FMGM Chen et al. (2019) – 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000

OMGM Chen et al. (2019) – 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

LIRBF – 0.843 1.346 4.660 2.237 1.518 2.849 1.646 4.653 3.458

Table 5 Errors obtained,

condition number and CPU-

time for the LIRBF method by

several radial basis functions

RBF function juex � uappj1 kek1 j CPU-time �

MQ 4.1768e �07 5.7023e �05 2.0926e?06 0.18 1.05

IQ 6.8028e �07 9.2902e �05 1.6243e?07 0.18 9.50

IMQ 2.1300e �07 2.9085e �05 3.9599e?06 0.20 7.50

GA 1.8991e �07 2.5932e �05 4.0214e?06 0.19 5.00
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u1ðxÞ ¼ 3x2 þ 1; u2ðxÞ ¼ x3 þ 2x� 1:

Table 6 presents the sparsity and k � k1 error for N ¼
6; 12; 24 using the Lattice Interpolation Radial Basis

Function (LIRBF) method, along with various thresholding

parameters for implementing the Alpert multiwavelets

method (Saray et al. 2015). Figure 6 illustrates the sparsity

plot of the matrices Dxx and Dx.

We explore the effect of the shape parameter on the

proposed method in Example 3, comparing it to the LRBF

method. The visual representation in Fig. 7 depicts the

impact of varying the shape parameter on both methods.

The analysis reveals that the proposed LIRBF method

displays significantly lower sensitivity to the shape

parameter when contrasted with the LRBF method, show-

casing its improved robustness and stability. Moreover,

Fig. 7 consistently shows lower errors across a wide range

of shape parameters both components u1 and u2 in the

proposed method than in the LRBF method, emphasizing

the efficiency and accuracy of the proposed approach.

Fig. 4 Comparison of computational times for LIRBF, FMGM, and OMGM in Example 2

Fig. 5 Influence of the shape parameter on the performance of LRBF and LIRBF methods for Example 2
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Example 4 Consider the following system of integro-dif-

ferential equations with associated supplementary condi-

tions (Pour-Mahmoud et al. 2005; Saray et al. 2015):

u0001 ðxÞ þ 2u002ðxÞ þ u03ðxÞ þ
Z 1

0

ðxþ tÞ2 u1ðtÞ þ u2ðtÞð

þ2u3ðtÞÞdt ¼ f1ðxÞ;

u01ðxÞ þ u002ðxÞ þ u3ðxÞ þ
Z 1

0

x3 þ t2 þ 5
� �

2u1ðtÞð

þu2ðtÞ � u3ðtÞÞdt ¼ f2ðxÞ;

u01ðxÞ þ u02ðxÞ þ u03ðxÞ þ
Z 1

0

5x2 þ t2 þ 5
� �

u1ðtÞð

�u2ðtÞ � u3ðtÞÞdt ¼ f3ðxÞ;

u1ð0Þ þ u01ð0Þ þ u001ð0Þ ¼ 3;

u1ð1Þ þ u01ð1Þ þ u001ð1Þ ¼ sinð1Þ þ 4 cosð1Þ;

u2ð0Þ þ u02ð0Þ ¼ 0; u2ð1Þ þ u02ð1Þ ¼ � cosð1Þ;

u2ð0Þ ¼ 1; u3ð1Þ ¼ 8:

The objective of this system is to determine the functions

u1ðxÞ, u2ðxÞ, and u3ðxÞ that satisfy the given equations.

Moreover, it is known that the exact solutions to the system

are defined as:

u1ðxÞ ¼ð1 þ xÞ sinðxÞ; u2ðxÞ ¼ ð1 � xÞ cosðxÞ;
u3ðxÞ ¼ ð1 þ xÞ3:

The forcing functions fi for i ¼ 1; 2; 3 are:

f1ðxÞ ¼ xþ 1ð Þ sin xð Þ þ 4 sin xð Þ � 2 1 � xð Þ cos xð Þ
þ 2 cos xð Þ
þ 3 xþ 1ð Þ2þ sin 1ð Þ x2

� 3 cos 1ð Þ x2 þ 19x2

2
þ 10 sin 1ð Þ x� 2 cos 1ð Þ x

þ 19x

5
þ 3 sin 1ð Þ

þ 11 cos 1ð Þ � 43

10
;

f2ðxÞ ¼ 3 sin xð Þ þ xþ 1ð Þ cos xð Þ
þ x� 1ð Þ cos xð Þ þ xþ 1ð Þ3

þ 2 sin 1ð Þ x3 � 5 cos 1ð Þ x3 � 3x3

4

þ 12 sin 1ð Þ � 8 cos 1ð Þ � 78

5
;

f3ðxÞ ¼ x� 1ð Þ sin xð Þ þ sin xð Þ
þ xþ 1ð Þ cos xð Þ � cos xð Þ

þ 3 xþ 1ð Þ2þ5 sin 1ð Þ x2 � 5 cos 1ð Þ x2 � 75x2

4

� 4 cos 1ð Þ � 83

5
:

Table 7 presents the maximum errors obtained from the

proposed methods, alongside the results of the method

described in Saray et al. (2015). Additionally, this

table showcases the sparsity of the derivative coefficients

matrices, as well as the computation time required to solve

the problem using the presented method. Through a

meticulous examination of the acquired outcomes, it

becomes evident that, in certain instances, the errors

derived from the proposed method exhibit more suit-

able accuracy. This observation holds great promise for the

future applicability of the proposed method in solving

Table 6 Comparison of results for the IRBF method and Alpert multiwavelets method for Example 3

Method N Threshold parameter ð�Þ Sparsity ðS�Þ ek k1 of u1 ek k1 of u2 CPU-time

IRBF 6 – 80:66% 2.8E �05 2.7E �04 0.21

12 – 82:85% 1.6E �06 8.7E �06 0.21

24 – 85:43% 5.8E �08 2.7E �07 0.33

Alpert multiwavelets 20 0 0% 1.7E �14 2.2E �14 –

10E �5 89:77% 1.3E �07 2.2E �06 –

10E �4 91:27% 1.2E �04 1.2E �05 –

10E �3 92:10% 1.0E �04 4.4E �04 –

40 0 0% 1.6E �14 2.2E �14 –

10E �5 96:63% 1.3E �07 2.2E �06 –

10E �4 97:04% 1.2E �04 1.2E �05 –

10E �3 97:26% 1.0E �04 4.4E �04 –
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another system of Fredholm equation, as it demonstrates

the potential to yield results with high precision and in a

computationally efficient manner. Investigating the shape

parameter’s impact on the proposed method in Example 4

relative to the LRBF method, Fig. 8 visually demonstrates

the sensitivity difference. The analysis indicates that the

LIRBF method exhibits significantly lower sensitivity to

the shape parameter than the LRBF method, highlighting

enhanced robustness. Moreover, Fig. 8 consistently reveals

lower errors across a broad range of shape parameters for

three components, u1, u2 and u3, in the proposed method

compared to the LRBF method, underscoring its efficiency

and accuracy.

Fig. 6 Plots of sparse matrix

Fig. 7 Influence of the shape parameter on the performance of LRBF and LIRBF methods for Example 3
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Example 5 Consider the following fourth-order nonlinear

system of integro-differential Fredholm equations of the

second kind, defined for 0\x� 1:

u
ð4Þ
1 ðxÞ þ u002ðxÞu

ð4Þ
2 ðxÞ þ u1ðxÞ þ

Z 1

0

expðx� tÞu2ðtÞdt ¼ 2 expðxÞ

þ expð�2xÞ þ expðxþ 1Þ � 1

xþ 1
;

u
ð4Þ
2 ðxÞ þ u0001 ðxÞ

� �3þu2ðxÞ þ
Z 1

0

expðxtÞu1ðtÞdt

¼ expð3xÞ þ 2 expð�xÞ þ expðxÞ:

The boundary conditions for this system are specified as

follows:

u1ð0Þ ¼ u01ð0Þ ¼ 1; u1ð1Þ ¼ u01ð1Þ ¼ expð1Þ;

u2ð0Þ ¼ �u02ð0Þ ¼ 1; u2ð1Þ ¼ �u02ð1Þ ¼ expð�1Þ:

The exact solution to this system is given by:

u1 ¼ expðxÞ; u2 ¼ expð�xÞ:

Tables 8 and 9 provide an in-depth analysis of the errors

and computational performance for components u1 and u2,

respectively. The reference method (El-Gamel and

Mohamed 2022), as well as the proposed method, are

scrutinized for their accuracy in solving the problem. The

maximum errors, quantified by jej1, are presented for

various discretization levels (N). The proposed method

showcases promising accuracy, as evidenced by the lower

Table 7 Comparison of results

for the IRBF method and Alpert

multiwavelets method for

Example 4

Method N Threshold parameter ð�Þ Sparsity ðS�Þ ek k1ofu1 ek k1ofu2 CPU-time

IRBF 6 – 74:07% 3.0E �05 4.5E �05 0.22

12 – 80:65% 6.4E �07 1.4E �06 0.22

24 – 82:13% 7.5E �08 9.5E �08 0.22

48 – 85:98% 1.3E �08 3.7E �08 0.34

Alpert multiwavelets 20 0 0% 1.7E �14 1.3E �07 –

10E �04 81:06% 1.3E �07 3.8E �05 –

10E �03 86:75% 1.2E �04 8.6E �05 –

10E �02 89:07% 1.0E �04 2.0E �02 –

40 0 0% 1.6E �14 4.0E �09 –

10E �04 2:31% 1.3E �07 3.8E �05 –

10E �03 4:83% 1.2E �04 8.5E �05 –

10E �02 6:27% 1.0E �04 2.0E �02 –

Fig. 8 Influence of the shape parameter on the performance of LRBF and LIRBF methods for Example 4
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errors compared to the reference method. The convergence

rates, a crucial indicator of method performance, are

reported, demonstrating the efficiency of the proposed

method. Moreover, the computational time needed for each

discretization level is incorporated, further confirming the

efficiency of the proposed approach. Figure 9 illustrates a

visual contrast in terms of the comparison between the

proposed LIRBF method and the Chebyshev pseudo-

spectral method as described in reference (El-Gamel and

Mohamed 2022), focusing on the kek1 values.

Exploring the impact of the shape parameter in Example

5, we compare the proposed method to the LRBF method.

The visual representation in Fig. 10 illustrates the varying

shape parameter’s effect on both methods. Analysis indi-

cates that the proposed LIRBF method exhibits signifi-

cantly lower sensitivity to the shape parameter than the

LRBF method, showcasing enhanced robustness. Figure 10

consistently depicts lower errors across a broad range of

shape parameters for both components u1 and u2 in the

proposed method, emphasizing its efficiency and accuracy.

Example 6 Consider the following boundary value prob-

lem with a logarithmic kernel (Assari et al. 2014a):

Table 8 Comparison of errors

and show computational

performance for component u1

for Example 5

El-Gamel and Mohamed (2022) Proposed method

N kek1ofu1 N kek1ofu1 Rate CPU-time

6 8.2497E �06 6 2.0620E �05 – 0.70

8 1.0546E �08 12 8.0011E �07 4.69 0.79

10 3.7632E �10 24 4.3308E �08 4.21 0.86

12 1.6487E �11 48 3.0319E �09 3.84 5.93

Table 9 Comparison of errors

and show computational

performance for component u2

for Example 5

El-Gamel and Mohamed (2022) Proposed method

N kek1 of u2 N kek1 of u2 Rate CPU-time

6 1.6106E �05 6 7.1892E �06 – 0.70

8 1.9708E �08 12 2.5596E �07 4.81 0.79

10 9.0600E �11 24 1.2566E �08 4.35 0.86

12 4.7895E �11 48 1.4018E �09 3.16 5.93

Fig. 9 Comparison of kek1 for LIRBF and Chebyshev pseudo-spectral methods (El-Gamel and Mohamed 2022) for Example 5
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u00ðxÞ � 1

p

Z p

�p
ln 2 sin

x� t

2

���
��� 1 þ ext sin2 x� t

2

n oh

þ 1

t2 þ x2 þ 1

�
uðtÞdt ¼ f ðxÞ; x 2 ½0; 5p�;

uð0Þ þ u0ð0Þ ¼ coshð1Þ � 7 sinhð1Þ; uð5pÞ þ u0ð5pÞ ¼ 1;

ð40Þ

where the function f ðxÞ has been chosen such that the exact

solution is given by

uðxÞ ¼ cosh
1

x2 þ 7xþ 1

� �
:

Figure 11 presents the graph of the approximation

solution for Example 6 over the interval ½0; 5p�. From

Table 10, it can be observed that the proposed method

provides approximate solutions for different values of

x with varying levels of accuracy. These approximations

are compared against the exact solution, demonstrating that

the proposed method closely matches the exact solution for

Fig. 10 Influence of the shape parameter on the performance of LRBF and LIRBF methods for Example 5

Fig. 11 The graph of approximation solution for Example 6 in ½0; 5p�
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the given example. The slight discrepancies in the results

can be attributed to the finite precision of numerical

computations and the approximation techniques used in the

proposed method.
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