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Abstract
In this study, we have proposed a mathematical model to determine the dynamical behavior of COVID-19 transmission

incorporating bilinear incidence rate and saturated treatment. One of our important assumptions is the occurrence of

reinfection of COVID-19, which is studied to be significant. The governing model yields up to multiple equilibrium points

depending on different parameter sets. Local and global stability analysis with the help of suitable Lyapunov coefficients

has been established for both disease-free and endemic steady states. It is found from analysis that the disease may still

persist in the population even if R0\1, if there is a limitation in the treatment facilities because of the state of saturation.

Consequently, the phenomenon of backward bifurcation is detected. The model dynamics show the existence of trans-

critical and backward bifurcation under certain parametric conditions. Analytical demonstration of backward bifurcation in

the system indicates that diminishing the basic reproductive number below unity is insufficient to prevent the spread of the

disease. The model system is also examined for saddle-node bifurcation due to its nature of bistability in the equilibrium

points. Additionally, sensitivity analyses for the variables in the basic reproduction number have been carried out to

identify the variables that have the greatest impact on the course of the disease. Numerical simulations are utilized to

clearly validate the theoretical results so as to show how the suggested mathematical model may be employed.

Keywords COVID-19 � Saturated treatment � Reinfection � Backward bifurcation � Saddle-node bifurcation �
Global stability � Sensitivity analysis

1 Introduction

In the field of epidemiology, over the past century, infec-

tious diseases have been a primary focus of investigation

through the utilization of mathematical models. Research-

ers have employed these models to examine various ill-

nesses, including HIV (Anderson 1988), TB (Wangari and

Stone 2018), influenza (Baba and Hincal 2018), malaria

(Abimbade et al. 2022), and most recently, COVID-19

(Buonomo 2020; Ghosh and Martcheva 2021). The SARS-

CoV-2 virus, which has impacted nearly every species in

the last 3 years, was declared a global pandemic by the

World Health Organization on March 11, 2020 (Cucinotta

and Vanelli 2020). This viral disease has been associated

with symptoms such as shortness of breath and loss of taste

or smell (Zhu et al. 2020; Wu et al. 2020; Chang et al.

2020). The dynamic nature of SARS-CoV-2, with its

ongoing mutations, has made it challenging to comprehend

its precise transmission patterns and predict the course of

the disease. Several factors, such as asymptomatic trans-

mission, variable incubation periods, diverse viral strains,

and reinfection of recovered individuals, have added

complexity to the pandemic’s trajectory (Li et al. 2020).

Efforts to control COVID-19, such as quarantine and

isolation policies, as well as appropriate patient care,

necessitate effective screening and diagnostic technologies

(World Health Organization, 2020). Due to the recent

outbreak, comprehensive knowledge of the disease’s

transmission dynamics and spread remains elusive as new
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information continues to emerge. COVID-19 research is a

rapidly evolving field, with new information continuously

emerging. Different regions have implemented various

techniques and strategies for COVID-19 control, including

testing and contact tracing, vaccination, social distancing,

mask-wearing, hand hygiene, isolation, and quarantine. As

of February 2023, in India alone, more than 44.68 million

people had contracted the virus, resulting in 530,775

deaths, based on available data (My Gov India, 2023).

Evaluating the actual effectiveness of vaccinations for

any disease is challenging, and it is particularly complex

for COVID-19, given the rapid distribution of vaccines in

diverse socioeconomic and geographic contexts (Mills and

Reis 2022). Throughout the past three years, numerous

mathematical models have been proposed by researchers to

understand the dynamics of COVID-19 among symp-

tomatic and asymptomatic individuals, both those who are

aware of their infection and those who are not (Ghosh and

Martcheva 2021; Rai et al. 2022; Li and Zhang 2022). In

the context of the virus’s evolving behavior and mutations,

the bilinear incidence rate, denoted as bSI, is considered

due to the high potential for the transmission of SARS-

CoV-2 to other hosts. This incidence rate function has been

discussed by Hethcote (2000) and Brauer and Castillo-

Chávez (2001) in their general epidemic models.

Within the realm of disease control measures, medical

treatment has emerged as a prominent intervention for

mitigating the disease burden. Nevertheless, when dealing

with diseases of significant consequence, such as COVID-

19, the widespread accessibility of treatment becomes a

formidable challenge. The scarcity of hospital beds and

essential laboratory equipment has resulted in treatment

capacity reaching a saturation point. In the domain of

epidemiological modeling, this situation is addressed by

incorporating an appropriate saturation function. The

availability of treatment on a large scale becomes feasible

when ample resources are accessible. Various treatment

modalities have been explored in the existing literature,

showcasing their respective advantages. Wang and Ruan

(2004), in their research, investigated a constant removal

rate of infections and revealed that, under certain parameter

constraints, it is conceivable to eliminate a disease over

time. They also determined that the persistence of the

disease is contingent upon the initial number of infected

individuals, and if the initial population falls within a

specific range, the disease will eventually subside. Zhon-

ghua and Yaohong (2010) employed a saturated treatment

function to illustrate the constraints imposed by limited

medical resources in their epidemic models. Subsequently,

various researchers have adopted diverse functions to

represent saturated treatment over time, such as the Holling

type-II function (Gao and Zhao 2011), Holling type-III

function (Dubey et al. 2016), and the Monod-Haldane

function (Kumar and Nilam 2019), among others.

Mathematical models find application in diverse fields for

the representation and analysis of real-world phenomena

such as economy, finance, medicine, biology, epidemiology,

and many others. In epidemiology, SEIR models are valu-

able for predicting the patterns of disease occurrence over

time for diseases with latency periods. As a result, these

models hold significance for epidemiologists in the analysis

of disease outbreaks, offering insights into the disease’s

progression within a population (Zhou and Cui 2011;

Algehyne and Ud Din 2021). Zhou and Cui (2011) investi-

gated an SEIR model featuring a bilinear incidence rate and a

saturated treatment rate. Their study revealed the potential

for backward bifurcation, resulting in bistable equilibrium

points. Numerous SEIR mathematical models with nonlinear

incidence rates have been developed to examine the

dynamics of COVID-19 transmission (Rohith and Devika

2020; Algehyne and Ud Din 2021; Kwuimy et al. 2020).

Rohith and Devika (2020) introduced an incidence rate that

includes a psychological component, leading to the identi-

fication of forward bifurcation. Algehyne and Ud Din (2021)

proposed an SQIR model with a saturated incidence rate and

natural recovery, concluding that quarantine measures are

the most effective means of pandemic control. Kwuimy et al.

(2020) presented an SEIRD model with a hybridized inci-

dence rate, monitoring government action, and public

response strength and demonstrated global asymptotic sta-

bility of equilibria without bifurcation behavior. The number

of persons who have been re-infected by the new coronavirus

is increasing, showing that immunity falls fast for certain

people after having been caught the virus before. According

to research, severely sick patients who initially contract

COVID-19 are more likely to acquire inadequate antibodies

and to contract dangerous secondary infections (Goldman

et al. 2020; Wu et al. 2020a). He et al. (2020) employed a

model to illustrate the progression of the epidemic in Hubei

Province, demonstrating its effectiveness in predicting the

future scenarios of the COVID-19 outbreak. Wang et al.

(2022) considered an SEIR model that accounts for rein-

fections from the infected and exposed classes. Literature

indicates that backward bifurcation has posed a challenge in

mitigating epidemic diseases (Lu et al. 2019). Oluyori et al.

(2021) investigated the dynamics of the COVID-19 pan-

demic using an SEIRS model with saturated incidence and

treatment rates, uncovering both backward and Hopf bifur-

cations in their model dynamics. Omame and Abbas (2023)

explored the impact of COVID-19 and dengue vaccinations

while incorporating saturated incidence. Ahmed et al.

(2021) developed a novel reaction-diffusion model for the

study of COVID-19 and performed stability analysis in the

space state of the spatiotemporal model. Additionally, vari-

ous mathematical models have been developed to address
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interventions in different countries across the globe (Flax-

man et al. 2020; Chung and Chew 2021). Khan et al. (2021)

studied the COVID-19 outbreaks by employing fractional

calculus through nonsingular derivative. Kumar et al.

(2020a) studied the COVID-19 pandemic through both sin-

gular and nonsingular derivative. There have been various

significant models using fractional calculus to study multiple

diseases and disorders (Kumar et al. 2020a, 2021; Moham-

madi et al. 2021) as well as ecological models (Kumar et al.

2020b). Raza et al. (2022) proposed and studied a dynamical

model of COVID-19 with a nonlinear incidence rate with

crowding effect. Lately, numerous researchers have been

engaged in discussions regarding stochastic models of epi-

demic diseases and its applications across various domains in

the realms of physical, biological, and other scientific fields

(Hamam et al. 2022; Raza et al. 2022, 2021, 2019).

The increasing number of COVID-19 reinfections

highlights the rapid decline in immunity among certain

individuals who have previously contracted the virus.

Research suggests that severely ill patients who initially

contract COVID-19 are more susceptible to developing

insufficient antibodies and contracting dangerous sec-

ondary infections. In a situation where the pandemic is

characterized by high and uncontrolled infection rates, the

available resources within a region become overwhelmed

due to a shortage of hospital beds and essential facilities. In

light of this, we have designed our proposed model by

incorporating a bilinear incidence rate and a treatment rate

that reaches saturation. This model can provide insights

into the extent and duration of protective immunity, as well

as the potential for reinfection, as discussed by (Vespignani

et al. 2020). To the best of our knowledge, there has been

no prior research that has integrated saturated treatment

with mass action incidence and addressed the issue of

COVID-19 reinfection. Given the growing concerns sur-

rounding reinfections of COVID-19, we believe it is

essential to emphasize the significance of such a scenario

and thoroughly investigate its implications.

In the study conducted by Annas et al. (2020), an SEIR

model with a bilinear incidence rate and perfect recovery is

employed and stability analysis is performed. Mwalili et al.

(2020) constructed a mathematical model with a nonlinear

incidence rate along with environmental factors in symp-

tomatic and asymptomatic compartments. Even though

these external factors have an effect on the disease, the

realistic nature of COVID-19 has been such that there has

been a shortage of medical facilities in the duration of the

pandemic because of its high transmission rate. Addition-

ally the symptomatic and asymptomatic infected people all

come under the umbrella of infectives in the sense of data

in a region (Han et al. 2020). So the focus of this work has

been to overcome these shortcomings can be overcome and

captured by the saturated treatment function. The

reinfections of COVID-19 are extremely high as shown in

the aforementioned literature. We believe the proposed

model is useful in capturing the dynamics of COVID-19

and hence for inventions of mitigation strategies.

We present and inspect an SEIR governing model which

provides for the high rate of infections through the mass

action incidence and saturated treatment in the form of

Holling type-II response. The governing model is exam-

ined to comprehend the specific effect of saturation in

treatment. The current paper is laid out as follows. Sec-

tion 2 deals with the proposed mathematical model and its

preliminary analysis. The non-negativity and boundedness

of solutions are demonstrated along with the computation

of the basic reproduction number (BRN) R0. Section 3

focuses on the local stability of the disease-free equilibrium

(DFE) and the unique endemic equilibrium (EE) by the

Routh-Hurwitz (R-H) criteria. Also, the global stabilities of

the DFE (by the result established by Chavez et al. 2002)

as well as the unique EE with the construction of Lyapunov

function are established. Sensitivity analysis of the

parameters occurring in the BRN is included in Sect. 5. In

Sect. 4, forward bifurcation phenomena have been

observed where an EE is stable when R0 [ 1. Moreover,

due to the presence of saturated treatment function

TðIÞ ¼ aI
1þbI, the model system experiences the backward

bifurcation phenomena on account of the occurrence of two

endemic equilibria (one stable, one unstable) when R0\1.

Saddle-node bifurcation is also analyzed for the model

system. Lastly, Sect. 6 focuses on numerical simulations of

the impact of some control parameters on the rise in the

infective population compartment. In this study,

MATLAB’s built-in ode45 tool for solving differential

equations was used for all numerical simulations.

2 Description of the Model

We have divided the total population N(t) into four distinct

compartments, each reflecting the individual’s disease

status at any given time t, denoted as:

• Susceptible S(t): Individuals who have not been

infected and are at risk of contracting the disease.

• Exposed E(t): Individuals who have been infected but

are not yet capable of transmitting the infection. They

are in the incubation phase, and after completing this

period, they become infectious.

• Infective I(t): Individuals who are currently infected

and can actively transmit the disease to others.

• Recovered R(t): Individuals that have recovered from

the disease for the time being but can be exposed to

reinfection.
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An SEIR epidemic model is developed for COVID-19 in

this paper, taking into account the saturated removed rate

and assuming removed individuals do not have perpetual

immunity. The entire framework for modeling the

dynamics of the disease is illustrated in the schematic

diagram presented in Fig. 1. This model allows us to track

the flow of individuals through these compartments as the

disease progresses.

Assumptions:

1. Reinfection of the recovered population due to inter-

action with the infected class leads to infections rather

than exposure. Due to the lack of immune response in

treated individuals, it is assumed that the resulting

interaction will give rise to new infections (Vespignani

et al. 2020).

2. Treatment is a noteworthy aspect to manage and

control an infectious disease. We have employed T(I)

as the treatment function (Gao and Zhao 2011; Zhang

and Liu 2008) for our model, which is defined to be

TðIÞ ¼ aI

1 þ bI
;

where b is the saturation constant in the function, i.e.,

b determines the amount of infectives being held over

in receiving treatment.

On the basis of the aforementioned determinants, the fol-

lowing governing nonlinear system of ordinary differential

equations exhibiting mass action incidence is formed to

mathematically explain the above hypotheses.

dS

dt
¼ ^� bSI � dS

dE

dt
¼ bSI � ðmþ d þ lÞE

dI

dt
¼ mE � ðd þ dþ cÞI � aI

1 þ bI
þ gRI

dR

dt
¼ lE þ cI þ aI

1 þ bI
� dR� gRI

ð1Þ

with the initial values Sð0Þ ¼ S0 [ 0, Eð0Þ ¼ E0 � 0,

Ið0Þ ¼ I0 � 0, Rð0Þ ¼ R0 � 0. All of the parameters con-

sidered in the model are non-negative. These initial con-

ditions are considered since at t ¼ 0, the number of

infections is non-negative, effectively rendering exposed

and recovered individuals to be at non-negative, while the

susceptible population may be prone to the disease. Table 1

contains illustrations of the parameters used in the model.

2.1 Non-negativity and Boundedness

The following are exhibited by the system of equations of

model (1)

dS

dt

�
�
�
�
�
S¼0

¼ ^[ 0;
dE

dt

�
�
�
�
�
E¼0

¼ bSI� 0;

dI

dt

�
�
�
�
�
I¼0

¼ mE� 0;
dR

dt

�
�
�
�
�
R¼0

¼ lE þ cI þ aI

1 þ bI
� 0:

All of the rates present in the model are non-negative on

the planes bounding the cone of R4
þ. As a result, if we start

from a non-negative beginning point in the inside of the

non-negative cone, then the solutions will exist in the same

domain of R4
þ for all time t. This is the non-negativity

property of all population compartments present in the

system.

Theorem 1 The positively invariant set U ¼
ðS;E; I;RÞ 2 R4

þ : 0� S;E; I;R� ^
d

� �

is the biologically

feasible region of governing model (1).

Proof Let us consider the subdivision of the entire popu-

lation N ¼ Sþ E þ I þ R in the form of four disjoint

compartments. Therefore, it follows from model system (1)

dN

dt
\ ^ �dN: ð2Þ

This implies

NðtÞ\^
d
� ^

d
� Nð0Þ

� �

e�dt;

which further gives

0�NðtÞ� ^
d
:

This indicates that all the solutions of (1) whose initial

conditions lie in U ¼
ðS;E; I;RÞ 2 R4

þ : 0� S;E; I;R� ^
d

� �

will persist in the

same domain for all time t. h

Fig. 1 The model system represented in a basic flowchart
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2.2 Existence of Equilibria and Basic
Reproduction Number

The proposed model has one disease-free equilibrium state

e0 ¼ ^
d ; 0; 0; 0
� �

, which exists for all time t.

The basic reproduction number R0 quantifies how many

individuals an infected person will typically spread the

illness to in a community with no resistance to it (Castillo-

Chavez et al. 2002). The illness will gradually disappear if

R0 is smaller than one. The disease can become endemic,

or persistent in the population for a very long time, if R0 is

higher than one (Allen et al. 2008). Making use of the next

generation matrix method pioneered by Van den Driessche

and Watmough (2002, 2008), we calculate the matrix

containing new infections F and the transitional matrix V

at the disease-free equilibrium. Thus,

F ¼

0 b
^
d

0 0

0 0 0 0

0 0 0 0

0 0 0 0

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

and

V ¼

d þ lþ m 0 0 0

�m aþ d þ cþ d 0 0

�l � a� c d þ g 0

0 b
^
d

� g d

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

:

The basic reproduction number of model system (1) is

obtained as the absolute largest eigenvalue of the matrix

FV�1, which is found to be

R0 ¼ b ^ m
dðd þ lþ mÞðd þ dþ cþ aÞ : ð3Þ

2.3 Existence of Multiple Endemic Fixed Points

We now observe the endemic fixed point denoted

by e� ¼ ðS�;E�; I�;R�Þ of governing model (1). After

equating the governing equations to zero, we obtain,

S� ¼
^

bI� þ d
, E� ¼

b ^ I�
ðmþ d þ lÞðbI� þ dÞ, R� ¼

1

d þ gI�

cI� þ
^blI�

ðmþ d þ lÞðbI� þ dÞ þ
aI�

1 þ bI�

� �

, where I� is real

positive root of the equation below

/ðI�Þ ¼ P0 þ P1I� þ P2I
2
� þ P3I

3
� ¼ 0: ð4Þ

Here,

P0 ¼ d2ðd þ dþ cþ aÞðR0 � 1Þ;

P1 ¼ g

(

b ^ m
d þ mþ l

� dðd þ dþ cþ aÞ
)

þ d

(

b ^ mb
d þ mþ l

� ðbþ bdÞðd þ dþ cÞ � ab

)

þ g cd þ ad þ b ^ l
d þ mþ l

� �

;

P2 ¼ g

(

cðbþ bdÞ þ abþ bb ^ l
d þ mþ l

)

� dbbðd þ dþ cÞ

þ g

(

b ^ m
d þ mþ l

� dðd þ dþ cÞ � ad

)

;

P3 ¼ �bbgðd þ dÞ:

The coefficient of the highest power P3 is always negative

and the constant coefficient P0\ð[ Þ0 subject to

R0\ð[ Þ1. Depending on parameter values, the signs of

Table 1 Nomenclature of the parameters

Parameter Parameter illustrations

^ Recruitment rate of population

b Rate at which the infected population interact with the susceptible class

d COVID-19-induced death rate

d Natural mortality rate

m Rate at which the exposed persons become infectious

g Rate at which recovered people become reinfected due to loss of

immunity and interaction with the infected class

c Natural recovery rate of infected persons

l Natural recovery rate of exposed persons

a Rate at which infected people is provided treatment

b The saturation constant
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P1 and P2 may be positive or negative. Therefore, /ðI�Þ
may have several real roots which are positive. Also, from

Eq. (4), it is to be noted that /ð0Þ[ 0 and /ð1Þ\0;

hence, by the property of continuity, there exists a positive

real root such that /ðI�Þ ¼ 0 when R0 [ 1. Thus, atleast

one endemic fixed point exists when R0 [ 1.

By Descartes’ rule of signs, Table 2 demonstrates the

number of positive real roots of Eq. (4). It can be observed

that in one case, there is an occurrence of two roots when

R0\1, thus directing toward the potential occurrence of

backward bifurcation in the system.

Theorem 2 Model system (1) possesses:

1. A unique endemic equilibrium e� if P1 [ 0, P2\0, or

P1 [ 0, P2 [ 0, or P1\0, P2\0, when R0 [ 1.

2. A maximum of two endemic equilibria e1 and e2 if

P1 [ 0, P2\0, or P1\0, P2 [ 0, or P1 [ 0, P2 [ 0,

when R0\1.

3. There exist atmost three endemic equilibria e1, e2 and

e� when P1\0, P2 [ 0 for R0 [ 1.

3 Stability Analysis of the Equilibria

An essential method for understanding population behavior

over time is the examination of local and global stability of

equilibrium points in a population model. In this section,

the local and global stabilities of the fixed points are

demonstrated along with the validation with numerical

results in Fig. 2.

3.1 Local Asymptotic Stability of Equilibria

Theorem 3 The disease-free equilibrium point e0 of model

system (1) is locally asymptotically stable(l.a.s.) if R0\1,

and unstable otherwise. Proof If the real parts of all the eigenvalues of the Jaco-

bian matrix of system (1) at the steady state are negative,

then that steady state of the system will be l.a.s. Thus, the

Jacobian matrix at the DFE is given by

Jje0
¼

�d 0 � b^
d

0

0 � d � l� m
bK
d

0

0 m � a� c� d � d 0

0 l aþ c � d

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

:

ð5Þ

Two eigenvalues of the Jacobian matrix at the disease-free

equilibrium are �d and �d, which are evidently negative.

The remaining two eigenvalues are rendered by the

equation

k2 þM1kþM0 ¼ 0; ð6Þ

Table 2 Possible number of real positive roots of /ðI�Þ ¼ 0

Cases Coefficients Possible number of positive real roots

P0 P1 P2 P3

– ? – – 0, 2

R0\1 – – ? – 0, 2

– – – – 0

– ? ? – 0, 2

? ? – – 1

R0 [ 1 ? – ? – 1, 3

? ? ? – 1

? – – – 1

Fig. 2 Global stabilities of equilibrium points

166 Iranian Journal of Science (2024) 48:161–179

123



where M1 ¼ 2d þ lþ mþ aþ dþ c,

M0 ¼ ðd þ lþ mÞðd þ adþ cÞð1 �R0Þ.
For R0\1, M1;M0 [ 0, hence Eq. (6) has two roots

with negative real parts. Thus, by Routh–Hurwitz criteria

(Dutta and Gupta 2018), the DFE e0 is l.a.s. if R0\1. h

Theorem 4 The governing model (1) possesses an endemic

steady state e� for R0 [ 1 when P1 [ 0, P2\0, or P1 [ 0,

P2 [ 0, or P1\0, P2\0 when R0 [ 1 and it is l.a.s. when

h0 [ 0, h1 [ 0, h2 [ 0, h3 [ 0 and h1h2h3 [ h2
1 þ h0h

2
3

(h1; h2; h3; h4 are defined in the proof below).

Proof The Jacobian matrix of governing model (1) at the

endemic fixed point e� is found to be

Jje� ¼
�bI� � d 0 � bS� 0

bI� � ðd þ mþ lÞ bS� 0

0 m � ðd þ dþ cÞ � a

ð1 þ bI�Þ2
þ gR� gI�

0 l cþ a

ð1 þ bI�Þ2
� gR� � gI�

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

:

The characteristic equation of Jje� is given below

u0 þ u1xþ u2x
2 þ u3x

3 þ x4 ¼ 0: ð7Þ

Here, u0 ¼ �ðbI� þ dÞ½b2gS�I2
�ðd þ mþ lÞðmþ lÞ þ

bgðmþ lÞS�I� � gI�ðcþ a
ð1þbI�Þ2 � gR�Þ�, u1 ¼ ½�ðbI� þ

dÞðd þ lþ mþ gI�Þ þ ðd þ mþ lÞgI�� ðdþdþ cþ
a

ð1þbI�Þ2 � gR�Þ � ðbI� þ dÞ½gI�ðd þ mþ lÞ � mbS�� � mb2

S�I�,

u2 ¼ ðd þ dþ cþ a
ð1þbI�Þ2 � gR�Þ½�gI�ðbI� þ dÞþ dþ

mþ lþ gI�� � ðd þ mþ lÞðbI� þ dÞ þ mbS�,
u3 ¼ d þ mþ lþ dþ cþ a

ð1þbI�Þ2 � gR� þ ðg� bÞI�.

Utilizing Routh–Hurwitz criterion given in (Martcheva

2015) for dimension n ¼ 4, it can be established that every

root of Eq. (7) has negative real parts on the condition that

u0 [ 0, u1 [ 0, u2 [ 0, u3 [ 0 and u1u2u3 [ u2
1 þ u0u

2
3.

Thus, the unique EE e� is l.a.s. if u0 [ 0, u1 [ 0, u2 [ 0,

u3 [ 0 and u1u2u3 [ u2
1 þ u0u

2
3 in addition to its

existence. h

3.2 Global Stability of Equilibria

Theorem 5 The disease-free equilibrium point is globally

asymptotically stable (g.a.s.) for R0\1, provided

b ¼ g ¼ 0.

Proof By the theorem pioneered by Chavez et al. (2002),

we take into consideration X ¼ ðS;RÞT with Y ¼ ðE; IÞT
such that

FðX; YÞ ¼ ½^ � bSI � dS; bSI � ðd þ mþ lÞE�T ;

GðX; YÞ ¼ ½mE � ðd þ dþ cÞI � aI

1 þ bI
þ gRI;

lE þ aI

1 þ bI
þ cI � dR� gRI�T :

ð8Þ

Here, the noninfected state is designated by e0 ¼ ðx�; 0; 0Þ,
where x� ¼ ð^d ; 0Þ. It can be easily seen that x� is g.a.s. for

the subsystem dX

dt
¼ FðX; 0Þ as X ! x� when t ! 1. In

addition,

dX

dt
¼ FðX; 0Þ ¼

^ � dS

0

� �

:

Also,

A ¼ DYGðx�; 0Þ ¼
�ðd þ mþ lÞ bS

m � ðd þ dþ cþ aÞ

 !

:

Since all nondiagonal elements are positive, A is a Metzler

matrix.

And thus, ĜðX; YÞ is given by

ĜðX; YÞ ¼ AY� GðX; YÞ;

)ĜðX; YÞ ¼
0

�aI þ aI

ð1 þ bIÞ � gRI

0

@

1

A:

We note that ĜðX; YÞ� 0 when b ¼ g ¼ 0. Therefore, from

the theorem, it follows that the disease-free state is g.a.s.

provided R0\1 when b ¼ g ¼ 0 (Li 2018). h

Lemma 1 Governing model (1) is uniformly persistent,

i.e., a real positive constant M exists such that

lim
t!1

inf fSðtÞ;EðtÞ; IðtÞ;RðtÞg�M: ð9Þ

Proof It can be seen via Theorem (3) that the DFE e0 is

unstable when R0 [ 1. Deploying the result on uniform

persistence by Freedman et al. (1994), the uniform
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persistence of our governing system (1) is established by

the fact that e0 is unstable when R0 [ 1. h

Theorem 6 The unique endemic equilibrium point e�,
provided it exists, is g.a.s. when R0 [ 1.

Proof Let us take into consideration a Lyapunov function

(Chavez et al. 2002; Li and Muldowney 1995)

- ¼ 1

2
ðS� S� þ E � E� þ I � I� þ R� R�Þ2

þ k1

2
ðS� S� þ E � E�Þ2 þ k2

2
ðI � I� þ R� R�Þ2:

ð10Þ

where k1 and k2 are positive real numbers that shall be

determined in due time. On differentiating H with respect

to t, we obtain

d-
dt

¼ ðS� S� þ E � E� þ I � I� þ R� R�Þ

dS

dt
þ dE

dt
þ dI

dt
þ dR

dt

� �

þ k1ðS� S� þ E � E�Þ
dS

dt
þ dE

dt

� �

þ k2ðI � I� þ R� R�Þ
dI

dt
þ dR

dt

� �

:

ð11Þ

We shall determine the following relations from the system

of equations (1) by using the resulting relations

^ ¼ dSþ dE þ ðd þ dÞI þ dR;

^ ¼ dSþ ðmþ d þ lÞ;

mE ¼ ðd þ dÞI � lE þ dR:

ð12Þ

Hence Eq. (11) becomes

d-
dt

¼ ðS� S� þ E � E� þ I � I� þ R� R�Þ

f�dðS� S�Þ � dðE � E�Þ � ðd þ dÞðI � I�Þ

� dðR� R�Þg þ k1ðS� S� þ E � E�Þf�dðS� S�Þ

� ðmþ d þ lÞðE � E�Þg þ k2ðI � I� þ R� R�Þ

fðmþ lÞðE � E�Þ � ðd þ dÞðI � I�Þ � dðR� R�Þg:
ð13Þ

Simplifying Eq. (13) and choosing the constants k1 ¼ 1 and

k2 ¼ d
dþd, we get that d-

dt
\0. By LaSalle’s invariance

theorem (Martcheva 2015; La Salle 1976), our analysis

leads us to the conclusion that for R0 [ 1, the unique EE is

g.a.s. h

In Fig. 2, the global stability of both the DFE and the

unique EE is depicted. As seen in Fig. 2a, if the parametric

restrictions given in Theorem (5) along with R0\1 are

satisfied, the DFE is g.a.s. for any perturbation in the initial

states of the compartments. Similarly, from Theorem (6),

the EE is g.a.s., as depicted in Fig. 2b provided it exists and

is unique for any disturbance in the initial conditions

whenever R0 [ 1.

Epidemiological significance: In proposed model (1),

the DFE exhibits global stability when the BRN R0\1

with the additional conditions b ¼ 0 and g ¼ 0, i.e., there is

no saturation in treatment along with no reinfections. In the

initial state of COVID-19 where there is practically no herd

immunity, it is realistically feasible that all persons should

get treated and the possibility of reinfections is negligible.

In essence, the population will remain free from experi-

encing disease outbreaks, and the disease will not establish

an endemic presence as shown in Fig. 2a. Moreover, the

global stability of the unique EE implies that if the disease

is already present within the population ðI[ 0Þ, it will

persist over an extended period. The disease will become a

sustained and recurring component of the population,

resulting in the continual occurrence of outbreaks. The

graphs in Fig. 2a, b signify that the global stabilities do not

depend on the initial value of the population sizes if the

given conditions in Theorems (5) and (6) are met.

4 Bifurcation Analysis

Bifurcation in a dynamical system happens when gradual

changes in the system’s parameter values result in abrupt

qualitative or topological changes in the behavior of the

system. In epidemiology, there are two different sorts of

branches: local and global (Ahmed et al. 2023). In one-

dimensional systems, common bifurcation types such as

saddle-node, tangent, transcritical and pitchfork bifurca-

tions are displayed.

For the governing system (1), we shall consider the

effective COVID-19 transmission rate b as the bifurcation

parameter. Assuming B1 ¼ d þ lþ m and

B2 ¼ d þ dþ cþ a, the model system is rewritten as

F1 ¼ ^ � bx1x3 � dx1

F2 ¼ bx1x3 � B1x2

F3 ¼ mx2 � B2x3 �
ax3

1 þ bx3

þ gx4x3

F4 ¼ lx2 þ cx3 þ
ax3

1 þ bx3

� dx4 � gx4x3:

ð14Þ

The Jacobian matrix at the DFE ^
d ; 0; 0; 0
� �

is found to

have three negative eigenvalues �d, �d, �ð3d þ dþ cþ
lþ mÞ and one simple zero eigenvalue at R0 ¼ 1 at
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ðe0; b
�Þ. The left and right eigenvectors at the zero eigen-

value are denoted by V ¼ ½0 m B1 0�T and

W ¼ ½�dmB1B2 ldB2 lmd lðlB2 þ mðcþ aÞÞ�T .

By applying the center manifold theorem in the theory

of bifurcation by Castillo–Chavez and Song in Carr (2012),

we compute the parameters A and B as

A ¼ 2v2w1w3

o2F2

ox1ox3

þ v3 w2
3

o2F3

ox2
3

þ 2w3w4

o2F3

ox3ox4

� �

¼ 2dlmB1½abdlmþ gB1flB2 þ mðcþ aÞg�

� 2d2m2B2
1B

2
2

^l ;

B ¼ v2w3

o2F2

ox3ob
� ¼ ml ^ [ 0:

For the occurrence of backward bifurcation (Li et al.

2015), the condition that A[ 0 and B[ 0 is essential.

After evaluating the above expression for A and substi-

tuting the values of B1 and B2, we obtain the condition

g[
dðd þ mþ lÞðd þ dþ cþ aÞ2 � abdm ^ l3

^l2ðd þ dþ cþ aÞflðd þ dþ cþ aÞ þ mðcþ aÞg :

The above result is worded in the following theorem in a

concise manner:

Theorem 7 Governing model system (1) experiences

backward bifurcation when

g[
dðd þ mþ lÞðd þ dþ cþ aÞ2 � abdm ^ l3

^l2ðd þ dþ cþ aÞflðd þ dþ cþ aÞ þ mðcþ aÞg

, and a forward bifurcation when

g\
dðd þ mþ lÞðd þ dþ cþ aÞ2 � abdm ^ l3

^l2ðd þ dþ cþ aÞflðd þ dþ cþ aÞ þ mðcþ aÞg

.

4.1 Forward Bifurcation Phenomenon

There are two possible stable equilibria in the instance of a

forward bifurcation: one in which the disease rapidly

spreads and affects a significant portion of the population,

and another in which the disease is controlled, leading to

only a minor fraction of the population being affected.

When a critical parameter value, such as the rate of

effective transmission b or the initial count of infected

individuals, is surpassed, the transition between these two

equilibria occurs (Das et al. 2021). The presence of trans-

critical bifurcation in a system implies that if the basic

reproduction number R0 goes from being greater than 1 to

being less than 1, then the disease can be eradicated

completely. When R0 [ 1, the disease-free equilibrium

experiences a stability transition. It is stable when R0\1

and becomes unstable when R0 [ 1. Figure 3 illustrates an

equivalent numerical representation of such dynamics. We

choose the parameters ^ ¼ 2, g ¼ 0:01, d ¼ 0:3, d ¼ 0:1,

m ¼ 0:7, l ¼ 0:01, a ¼ 0:0001, b ¼ 0:0005, c ¼ 0:003. As

R0 moves toward unity from left to right, a stable EE is

observed, whereas the DFE becomes unstable.

If the disease system is in a stable equilibrium with high

levels of infection, even a small rise in the number of

infected people or transmission rate can cause a large-scale

epidemic. If, on the other hand, the system is in a

stable equilibrium with low levels of infection, the disease

is likely to remain localized, and only a small portion of the

population will be affected.

Epidemiological significance: Forward bifurcation in the

model system as in Fig. 3 suggests the presence of a crit-

ical threshold of b that determines the potential for a

COVID-19 outbreak. Prior to the occurrence of the bifur-

cation, the DFE remains robust and prevents the disease

from gaining a foothold in the population. Following the

bifurcation, under specific parameter conditions, the DFE

loses stability, allowing the disease to endure within the

population. This transition holds significance as it offers

valuable insights into the minimal prerequisites for the

initiation of an outbreak.

4.2 Backward Bifurcation Phenomenon

Backward bifurcation is a phenomenon that gives insight

into the complexities of mitigating the disease. It happens

when a disease can continue to spread through a commu-

nity even after transmission rates drop below a specific

threshold. In some cases, when the transmission rate is

reduced below the critical threshold needed for the disease

to persist, the disease can still persist due to backward

bifurcation. The reason behind this occurrence is the

simultaneous existence of a stable endemic equilibrium and

a stable disease-free equilibrium., even when R0 is less

Fig. 3 Forward bifurcation is observed as R0 moves toward unity

from left to right
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than one (Moghadas 2004; Wang and Ruan 2004). We

choose the parameters ^ ¼ 0:01, g ¼ 0:7, d ¼ 0:001,

d ¼ 0:003, m ¼ 0:5, l ¼ 0:01, a ¼ 0:001, b ¼ 0:0005, c ¼
0:003 and b 2 ð0:0005; 0:2Þ to numerically prove the result

in Theorem (7). Upon analyzing the specified set of

parameters, we notice that model system (1) satisfy con-

dition (4) leading to the existence of two endemic

equilibria e�1 ¼ ð9:99714; 5:58956 � 10�6; 0:000408155; ;

0:00121806Þ and e�2 ¼ ð5:73275; 0:00835 079; 9:06338;

0:00539013Þ when R0\1 as shown in Fig. 4. The EE e�1 is

unstable, while e�2 is stable. This demonstrates that merely

reducing the basic reproduction number to less than one is

insufficient to halt the advancement of COVID-19 disease.

Owing to these phenomena, additional control measures

must be prioritized in addition to the main metrics, such as

the transfer rate and death rate from disease. External

strategies like masking, hand sanitizing and maintaining

appropriate distance from other potentially infected indi-

viduals are necessary.

The subsistence of a high-risk population that is more

prone to infection and is more responsible to propagate the

outbreak may be a cause in the physical interpretation of

backward bifurcation. Even if the general transmission rate

is decreased, the disease may still continue if the high-risk

population is not properly targeted by control methods.

Epidemiological significance: Epidemiologically this

signifies that the branches of two EE are very sensitive to

the initial population. For a slight change in the number of

infectives, the strain might move to the unstable branch. A

backward bifurcation carries implications of intricate and

uncertain disease dynamics within the field of epidemiol-

ogy. In Fig. 4, it becomes evident that there exists a

stable DFE coexisting with a stable EE and an unstable EE

concurrently. This intricacy in equilibrium coexistence can

result in fluctuations in disease prevalence, rendering the

prediction of disease outcomes a challenging endeavor.

Consequently, this implies that the continuation or inten-

sification of disease control measures may be necessary to

avert outbreaks, even when the disease’s prevalence is

relatively low. Furthermore, the presence of a backward

bifurcation serves as a valuable tool for validating the

accuracy of epidemiological models. The observation of

real-world data aligning with a model’s projections of a

backward bifurcation enhances confidence in the model’s

validity and its ability to encompass the intricacies of

disease dynamics.

4.3 Saddle-Node Bifurcation

We derive the condition for transversality for saddle-node

bifurcation by deploying the Sotomayor’s theorem (Perko

2013), by considering b as the bifurcation parameter for

governing model system (1). We have encountered that the

occurrence and destruction of equilibria is dependent on

the parameter b. Let the critical value of b for the occur-

rence of saddle-node bifurcation be denoted by bSN .

Therefore, governing model system (1) has two equilibria

(e1 and e2) when b[ bSN , no equilibria when b ¼ bSN and

there is a collision (e1=e2) when b\bSN . Let the point

where both equilibrium points collide be denoted by

e� ¼ ðS�SN ;E�
SN ; I

�
SN ;R

�
SNÞ. Define g ¼ ðg1; g2; g3; g4ÞT ,

where g1; g2; g3; g4 are taken to be

g1 ¼ ^ � bSI � dS

g2 ¼ bSI � ðmþ d þ lÞE

g3 ¼ mE � ðd þ dþ cÞI � aI

1 þ bI
þ gRI

g4 ¼ lE þ cI þ aI

1 þ bI
� dR� gRI:

ð15Þ

Assuming that the Jacobian matrix J ¼ Dgðe�; bSNÞ pos-

sesses a simple eigenvalue k ¼ 0 with an eigenvector

y ¼ ðy1; y2; y3; y4ÞT , and also the transpose of the Jacobian

matrix possesses an eigenvector z ¼ ðz1; z2; z3; z4ÞT for the

zero eigenvalue. Further, taking the derivative of g with

respect to b, we have

gb ¼ ðg1b; g2b; g3b; g4bÞT ¼ ð�SI; SI; 0; 0ÞT :

At the bifurcating equilibrium point,

gbðe�; bSNÞ ¼ ð�S�SNI
�
SN ; S

�
SNI

�
SN ; 0; 0ÞT :

Again,

zTgbðe�; bSNÞ ¼ �z1S
�
SNI

�
SN þ z2S

�
SNI

�
SN :

We also find

zT ½D2gðe�; bSNÞðy; yÞ� ¼ 2bSNy1y2ðz2 � z1Þ

þ 2aby2
3ðw3 � w4Þ

ð1 þ bI�Þ3
þ 2gy3y4ðw3 � w4Þ 6¼ 0:

Fig. 4 Backward bifurcation is observed as R0 movies toward unity

from right to left
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If the following conditions given by

1. zTgbðe�; bSNÞ 6¼ 0,

2. zT ½D2gðe�; bSNÞðy; yÞ� 6¼ 0,

are satisfied, governing model system (1) undergoes sad-

dle-node bifurcation.

Numerical validation: It is known that if detðJÞ\0, the

system undergoes saddle-node bifurcation. Let us consider

the values of parameters as given in Table 3.

Along with these parameters, if we consider

b 2 ð7:2 � 10�5; 4:69 � 10�4Þ, we find that determinant of

the Jacobian detðJÞ\0. There exist two equilibrium points

e1 ¼ ð385:2041; 0:0733; 0:9398; 1:2095Þ and e2 ¼
ð388:5982; 0:0057; 0:0145; 0:2477Þ at whom value of

det(J) is �4:3908 � 10�6 and �8:9441 � 10�7, respec-

tively. Computing numerically, we find the eigenvalues at

e1 are �0.471653, �0.21167, �0.00891927 and

0.00493099 and those at e2 are �0.57149, �0.112102,

�0.00894602 and 0.00156058. By using MATCONT, the

figure depicting these equilibrium points to be saddle nodes

is depicted in Fig. 5.

5 Sensitivity Analysis

The normalized forward sensitivity index of R0 in relation

to a model parameter H is defined to be

ER0

H ¼ H
R0

oR0

oH

This definition by Chitnis et al. (2008) evaluates the nor-

malized change in R0 when one parameter changes, while

the other parameters remain constant. A positive sensitivity

index of a parameter indicates that R0 is increasing in

relation to that parameter, whereas a negative indexing

suggests that R0 is decreasing in relation to that parameter.

The expressions for sensitivity index of every parameter

present in the BRN of governing model (1) are computed

as

ER0

^ ¼ 1; ER0

b ¼ 1; ER0

m ¼ d þ l
d þ lþ m

;

ER0

l ¼ � l
d þ lþ m

; ER0

d ¼ � d
aþ d þ dþ c

;

ER0

c ¼ � c
aþ d þ dþ c

; ER0

a ¼ � a

aþ d þ dþ c
:

The initial parameter values to establish the sensitivity

indices are taken from Table 4. From Fig. 6, it is seen that

parameters b, ^ and m have positive indices, whereas d, c, l
and a have a negative index. From Table 4 and Fig. 6, we

conclude that b, ^ and c possess the most positive and

negative correlation with R0. Thus, we have established

the contour plots of these parameters to better understand

their influence with respect to R0 in Fig. 7.

Sensitivity analysis results assist policymakers and

public health officials in determining which parameters

have the greatest impact on R0 and how changes in these

parameters can affect the disease transmission dynamics.

This information can then be used to develop effective

disease control strategies and make informed decisions

about disease prevention and control resource allocation.

The contour plots of any two parameters are easy to

decipher due to the variation in the colormap of the

quantity R0. As shown in Fig. 7, we have plotted the effect

of b versus four parameters viz., c, l, m and d with respect

to the parameters initially taken from Table 4. Figure 7a

depicts the relation between b and c, it can be seen that if b
can be lowered below 0.05 and simultaneously c can lie in

the interval (0, 1), the BRN can be decreased to 1 as shown

by the blueish region in the colormap on the side. Likewise,

as soon as b crosses approximately 0.1 for the same values

from the interval (0, 1) for c, the color moves to the red

region of the colormap, indicating that the value of the

Table 3 Parameters for

numerical validation
Parameter Numerical values

^ 3.5

d 0.014

d 0.009

m 0.3

g 0.1

c 1/14

l 1/7

a 0.05

b 0.001

0.5 1 1.5 2 2.5
10-3

0

1

2

3

4

5

6

I

SN

SN

Fig. 5 Detection of saddle-node bifurcation points in the model
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BRN has surpassed 1 and the region containing the popu-

lation has crossed over to the endemic state. Identically for

Fig. 7c, the disease remains in the disease-free zone when

b and m lie approximately in (0, 0.1).

6 Numerical Simulations

In the context of modeling, control parameters are vari-

ables that are used to modify or govern the behavior of a

model. These parameters can significantly influence the

dynamics of the model and can have various effects

depending on their values. The effects of control parame-

ters on model dynamics can be diverse, and they are often

domain-specific. Changes in behavioral dynamics of a

disease with respect to parameter variations are deemed

essential to thoroughly understand the progression of the

disease.

These trends are proof that highly transmissible diseases

like COVID-19 have multiple dynamical attributes in an

endemic condition due to which they are prone to unpre-

dictability at the onset of the spread of the illness. The data

values of each parameter taken from the literature for

COVID-19 are mentioned in Table 4.

This section focuses on investigating the dynamic

behavior of the population under the influence of different

parameters employed in model (1). Specially, the impact of

the reinfection rate, the saturation constant, recovery rate of

infected individuals are monitored with the help of Figs. 8,

9, 10, 11 and 12 by simulating the diagrams in MATLAB.

6.1 Effect of m

In Fig. 8, the effect of the proportion of individuals being

infected with COVID-19 is presented while keeping the

other parametric values constant. It can be observed that as

m ranges from 0.02, 0.2, 0.4, 0.6, the infected population is

obviously going higher.

It is interesting to see the leap as it takes the value from

0.02 to 0.2, there is a significant difference in the popula-

tion size, also the peak comes in later when the proportion

is lower. It is also seen that m has no significant impact on

the compartment of recovered class.

6.2 Effect of Saturation Constant b

In Fig. 9, the impact of the saturation constant is studied

with respect to the infected compartment. As the saturation

constant is decreased through values 2, 0.5, 0.01, 0.001, it

can be assessed that the number of infectious population is

decreased. The saturated treatment function in an epi-

demiological mathematical model has interesting dynam-

ics. It is integrated in our model because of the restricted

Table 4 Parameter table

Parameter Data value for EE Data value for DFE References

^ 3.514 3.514 Kwuimy et al. (2020)

b 0.2584 0.1 Agrawal et al. (2021), Ghosh and Martcheva (2021)

d 0.057 0.057 WHO (2022), Kamara et al. (2021)

d 0.009 0.009 The World Bank (2023), Ghosh and Martcheva (2021)

m 0.192 0.095 Li et al. (2020)

g 0.02 0.01 Assumed

c 0.172 0.398 Kwuimy et al. (2020)

l 0.25 0.25 The World Bank (2023)

a 2 2 Zhonghua and Yaohong (2010)

b 0.5 0.5 Zhonghua and Yaohong (2010)

1 2 3 4 5 6 7
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 6 Sensitivity indices of parameters present in R0
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accessibility of medical strategies and supplies (Hofer et al.

2021).

Since the treatment function is a Holling type-II function

TðIÞ ¼ aI
1þbI, therefore when I ! 1, TðIÞ ! a

b. As b is

lowered significantly, a
b increases accordingly i.e., as the

amount of treated humans from infections are increased,

the rate of infection and infected can be lowered. From the

figure, it is clear that if the saturation point is around 0.001,

the peak is just over half the highest number of infections
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Fig. 7 Contour plots of R0 as a function of b and c, l, m and d in (a),

(b), (c) and (d), respectively
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as it would have been had the saturation been at the value

b ¼ 2.

6.3 Effect of Reinfection Rate g

Figure 10 illustrates one of the main parameters introduced

in the proposed model. The consequences of reinfection in

a pandemic situation are catastrophic. Literature suggests

that reinfection with COVID-19 has caused a massive dent

on the health sector. On people with ages over sixty bat-

tling with comorbidities and severe illnesses, reinfection

can be detrimental to their health (Goldman et al. 2020). If

g is increased from 0.003 to 0.008, a substantial gap in the

rise of sick population can be registered. It is noteworthy

that in a difference of 0.005, there is a jump of around 45

infected people.

So, we perceive it to be one of the important control

parameters in the governing model. It is worth mentioning

here that the system shows backward bifurcation so it is not

enough to lower the BRN to less than 1. Since g does not

occur in the reproduction number, it is to be prioritized that

reinfections are kept as less as possible. There must be

treatments such as vaccination and additional doses of

medicines to keep occurrence of reinfection amidst the

recovered population. Additionally, it is crucial to

remember that when new versions of the virus evolve and

become more widespread, the situation may alter (Colson

et al. 2021).

6.4 Effect of Natural Recovery Rate c
and Effective Transmission Rate b

Figures 11 and 12 provide an insight into the effect of c,

the natural recovery rate, and b, the effective transfer rate

of susceptible to infected compartment. It is noticeable that

as the value of c increases from 0.172, 0.40, 0.50, 0.60, the

infections are slowly decreasing and then settles at a sim-

ilar level after a period of time. It can be observed that c
does not have any noteworthy effect on the population

class E, but has an enormous effect on the recovered class.

On the other hand, as b is ranged from 0.005, 0.0258 and

0.258, the infections get far higher and settle at an endemic

situation after some time. However, if b could be lowered

to less than 0.001, it can be witnessed that the disease

would eventually become extremely low and not many

infected persons will remain in the population. Moreover, it

is interesting to see that there is some oscillatory behavior

on the infected and recovered compartment when

b ¼ 0:001. This is found subject to the other parameters

made constant from previous references. It is worth

pointing out that reducing b to 0.001 is not simple. There

has to be stringent interactive measures and preventive

measures like masking, use of hand sanitizers and social

distancing.

7 Conclusion

In this article, a deterministic SEIR model is put forward

which has dynamical relevance to the COVID-19 pandemic

and consists of some important epidemiological factors such

as a high transmission rate and factors like reinfection and

natural and disease-induced death rates. The model reflects

multiple transmissions from susceptible S(t) and recovered

R(t) classes to the infected class I(t). The effect of restricted

treatment capacity on epidemic transmission is characterized

by a treatment rate given by Holling type-II functional

response TðIÞ ¼ aI
1þbI. Thus, the model deliberates the impact

of saturated treatment in the stage of community transmis-

sion of COVID-19 where the pandemic has reached a critical

stage and the record of new infections is significantly higher

than the available medical staff and resources. An observa-

tional study conducted by AIIMS, New Delhi, found that

during the omicron transmission phase of COVID-19, the

incidence density of reinfection was 456 per 10,000 person;

however, the infection was milder than in prior instances

(Malhotra et al. 2022; COVID-19 Forecasting Team 2022;

Goldman et al. 2020), which is incorporated in our model

(1). Initial investigations suggest that the governing model

has a disease-free steady state and a maximum of upto three

endemic steady states depending on sets of parameter vari-

ations. The DFE e0 is found to be l.a.s. whenR0\1 as well as

g.a.s. when the additional condition b ¼ g ¼ 0 holds. The

presence of multiple endemic equilibria causes the model to

demonstrate stability switches at equilibrium points. Local

and global asymptotic stability of the unique EE is discussed

in Theorems (4) and (6). The system experiences backward

bifurcation at R0 ¼ 1 for the threshold value

b ¼ 0:00081759. The condition for this phenomenon is

analyzed in Theorem (7) and proved numerically in Figs. 3

and 4. This suggests that lowering the reproduction number

below unity is insufficient to eliminate COVID-19 from the

population. The proposed model is significant because the

disease is studied for the impact of the phenomenon of

reinfection of COVID-19 due to its various mutations and

strains in the presence of limited healthcare facilities char-

acterized by saturated treatment. Healthcare systems fre-

quently encounter financial limitations that impact the

available funding for medical resources. Constrained bud-

gets can lead to issues such as understaffing, outdated

equipment and inadequate infrastructure. During the

COVID-19 pandemic, the global supply chain disruptions

have also affected the accessibility of medical resources,

including medications, equipment and supplies. This study
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focuses on the parameters that are responsible for mitigation

of COVID-19 because of its unusually high reinfections.

This possibility adds more pressure on the realistic scenario

of control of the disease spread. This study finds that the

impacts of exposed individuals becoming actively infectious

and natural recovery of infectious individuals are crucial to

slow the spread of the disease along with the half-saturation

constant. Determination of crucial rates which massively

influence the infected and recovered population has been

studied in detail. Due to the possibility of reinfection, mea-

sures to provide immunity to individuals such as vaccination,

are of utmost necessity. Also, stringent preventive measures

are still needed to be practiced due to the waning immunity of

vaccines that are currently deployed among the masses.
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