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Abstract
In this article, we propose an aquatic system, in terms of three dimensional plankton-fish interaction model that takes into

account holling type II and IV functional responses. Both species (fish and phytoplankton) are thought to be growing

logistically. Our objective is to apply the dynamical behavior model with constant rate harvesting to the fish population.

The stability of the model system has been investigated for both geographical and non-spatial systems, and the theoretical

findings have been proven using numerical simulation. It is observed that the aquatic system is particularly sensitive to

maximum per capita predation rate and capable of causing bifurcating occurrences. Persistence and permanence are

discussed. We observed the Hopf bifurcation situations for varied maximal per capita predation rates and harvesting

constant rates. Furthermore, the diffusion-driven Turing instability is investigated, and various time level and harvesting

constant rate based Turing patterns are observed.The results of this study reveal that the mortality rate of phytoplankton

and the continual harvesting of the fish population play key roles in marine systems.

Keywords Plankton-fish model � Holling type-II and Holling type-IV functional response � Hopf bifurcation �
Persistence and permanence � Harvesting yield � Diffusion � Pattern

1 Introduction

Mathematical modelling is a process of creating a mathe-

matical representation of real world systems using math

formulas and description. Dhar and Baghel (2016), Baghel

and Dhar (2014), Baghel et al. (2012), Holt (2002), Nath

et al. (2019), Kumar and Kumari (2021), Kumari and

Upadhyay (2020), Maionchi et al. (2006), Callahan and

Knobloch (1999). Mathematical modelling gives precision

and strategy for problem solutions. It also allows better

design and control of a system (Baghel et al. 2012).

Mathematical modelling of ecosystem was started by

lotka and volterra. The biological or ecological interaction

can be explained as pre-predation and so on (Hritonenko

et al. 1999; Baghel 2023). In prey-predator system many

factors involved one of them is functional response.

According to behaviour of populations, functional response

has been developed (Hastings and Powell 1991). Many

researchers have been used two-species models, but the

interaction of three or more species may be critical to

community function (Huisman and De Boer 1997).

Holling type functional responses have been performed

by many researchers. The Holling type II and Holling type

IV functional Responses are simple in terms of mathe-

matically and mechanistically. Higher order models are

allowed in holling type functional responses. Many

researchers included mathematical model of a syn eco-

symbiotic population with a prey and two predators with

mutualism between the predators (Reddy and Pattabhira-

macharyulu 2011).

Diffusion is vital in ecosystems, patterns arise as a result

of reaction-diffusion equations and Turing instability

defines how patterns appear in nature. It occurs when a

homogeneous stable steady state becomes unstable in the

presence of diffusion (which contradicts the general idea

that diffusion is a stabilizing process). A food web model

with diffusion have used by most of the authors (Upadhyay
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et al. 2011a, b; Thakur 2015; Upadhyay and Naji 2009;

Bera et al. 2016).

In the spatialtemporal system The diffusion driven

instability is performed (Rai and Upadhyay 2004; Zhao and

Lv 2009; Upadhyay et al. 2010; Baghel et al. 2012). A

mathematical model with harvesting on prey and predator

both species is formulated and analyzed. The exploitation

of biological resources and the harvest of population spe-

cies are used in fisheries and wildlife management (Cal-

lahan and Knobloch 1999; Dhar et al. 2012; Misra et al.

2019). The predator–prey model is considered in which

predator species are harvested independently with constant

rates (Baghel et al. 2011; Dhar et al. 2015). Harvesting is a

common and natural phenomenon. In fishery harvesting is

used frequently as the biological resources are mostly

renewable resources. On an exploited fishery system with

interacting prey and predator species, many researchers are

considering harvesting on either prey species or predator

species or harvesting on both prey and predator species

(Das and Pal 2019; Dubey et al. 2018; Chakraborty et al.

2015).

A fishing system with interacting predator and prey

provides an intriguing scenario. The scientific communities

have been exploring the harvesting of the species (Walters

et al. 2016; Whipple et al. 2000; Soudijn et al. 2021).

Some authors studied a model system in order to fig-

ure out how optimal harvesting policies can be developed

so that economic gain is balanced against the ecological

health of the exploited system (Upadhyay and Tiwari

2017). Some authors suggested stochastic behavior of the

system (Badawi et al. 2022, 2023a, b; Maayah et al. 2022).

In this work, plankton-fish model system is considered

with Holling types functional responses (i.e. Holling types

II and IV functional response). In Sect. 2, proposed the

spatial model and 3 is non-spatial model, in this, we will

obtain boundedness and the stability for interior equilib-

rium point. Moreover, existence of Hopf bifurcation is

explained. After this, persistence and permanence are also

performed. In Sect. 4, Spatiotemporal model is performed.

Stability of bifurcating periodic solutions is shown and

Turing instability and pattern formation are performed.

Finally, conclusion is given.

2 Spatial Model System

An aquatic environment is home to a diverse range of

water-dependent living organisms, such as plants, animals,

and bacteria. The following assumptions were used to

develop the aquatic model, in order to introduce spatial

variations a three dimensional plankton-fish model is dis-

cussed. We have considered Holling type functional

responses, where phytoplankton, zooplankton and fish

population densities are represented by P(T), Z(T) and F(T)

(at time T) respectively. Phytoplankton is growing logis-

tically with growth rate r and carrying capacity K. We have

used Holling type II and Holling type IV functional

response. Holling type II functional response is given by
ZF

K1þZ and cPZ
P2

i þPþa
represents Holling type IV functional

response. Table 1 contains descriptions of the remaining

parameters.

Therefore, we use diffusion terms in system, the reac-

tion-diffusion system in a bounded domain H � R3 has

been shown as below:

oP

oT
¼ rP 1� P

K

� �
� cPZ

P2

i þ P þ a
þ d1DP ð1Þ

oZ

oT
¼ cPZ

P2

i þ P þ a
� d1Z � r1ZF

K1 þ Z
þ d2DZ ð2Þ

oF

oT
¼ sF 1� F

K2

� �
þ r2ZF

K1 þ Z
� hF þ d3DF ð3Þ

Initial conditions are as below:

Pðl; 0Þ[ 0; Zðl; 0Þ[ 0;Fðl; 0Þ[ 0;

l ¼ ðx; yÞ�H.

subject to boundary conditions:
oP
om ¼ oZ

om ¼ oF
om ; m�oH; T [ 0; where, m denotes unit nor-

mal vector of the boundary oH: d1; d2 and d3 are diffusion
coefficients for phytoplankton, zooplankton and fish pop-

ulation respectively. D is Laplacian operator given by o2

ox2
in

one dimensional spatial domain and o2

ox2
þ o2

oy2
in two

dimensional spatial domain.

A brief description of parameters is as below:

3 Non-spatial Model system

A three dimensional plankton fish model is discussed.

Where P(T), Z(T) and F(T) are population densities of the

phytoplankton, zooplankton and fish population at time T

respectively. The model is given as below:

dP

dT
¼ rP 1� P

K

� �
� cPZ

P2

i þ P þ a
ð4Þ

dZ

dT
¼ cPZ

P2

i þ P þ a
� d1Z � r1ZF

K1 þ Z
ð5Þ

dF

dT
¼ sF 1� F

K2

� �
þ r2ZF

K1 þ Z
� hF ð6Þ

Subject to initial conditions:

Pð0Þ[ 0; Zð0Þ[ 0;Fð0Þ[ 0:
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3.1 Dynamical Behaviour of the Non-spatial
Model System

In this part, dynamical behavior of the proposed model is

discussed. First, we obtain equilibrium points of the system

and discuss existence of these points. Moreover, we find

local stability and bifurcation analysis is performed. Fur-

ther, persistence and permanence are performed.

3.1.1 Existence of Equilibrium Points and Linear Stability
Analysis

There exist at most six equilibrium points of the system

are: (i) E0 = (0,0,0) (ii) E1 ¼ ðK; 0; 0Þ (iii) E2 ¼ ð0; 0;FÞ
(iv) E3 ¼ ðP; Z; 0Þ (v) E4 ¼ ðP; 0;FÞ (vi)

E5 ¼ ðP�; Z�;F�Þ. Now, we check the existence of equi-

librium points and find the stability as follow:

(i) The equilibrium point E0 = (0,0,0) exists always.

Then, the Jacobian matrix is given as

JðE0Þ=

r 0 0

0 � d1 0

0 0 s � h

2
4

3
5

Eigen values of E0 are (r, �d1, s - h). Eigen

value s � h is positive if s[ h, negative if s\h.

Then, E0 will be saddle point.

(ii) Predator free equilibrium point is E1 ¼ ðK; 0; 0Þ,
exists for all parameter values. Thus, the Jacobian

matrix is given as:

JðE1Þ=

�r
�cZ

K2

i
þ K þ a

0

0
cZ

K2

i
þ K þ a

� m 0

0 0 s � h

2
66666664

3
77777775

The eigen value of E1 are �r, cZ
K2

i þKþa
� m and

s - h. Eigen value is positive or negative if the

condition cZ
K2

i þKþa
[m or cZ

K2

i þKþa
\m is satisfied

and eigen value s - h is positive or negative if

condition s[ h or s\h is satisfied. If all the eigen

values are negative then E1 is LAS otherwise

unstable.

(iii) The equilibrium point is E2 ¼ ð0; 0;FÞ, exists.
Thus the Jacobian matrix is given as:

JðE2Þ=

�r 0 0

0 � d1 �
r1F

K1

0

0
r2F

K1

s � h � 2sF

K2

2
6664

3
7775

The eigen values of E2 are � r, �d1-
r1F
K1
, and

s � h. eigen value � d1 þ r1F
K1

� �
is positive or

negative if the condition d1 þ r1F
K1

� �
\0 or

d1 þ r1F
K1

� �
[ 0 is satisfied, hence E2 will be a

saddle point.

(iv) Top predator free equilibrium point

E3 ¼ ðP; Z; 0Þ, exists. Thus the Jacobian matrix

Table 1 Parameters used in

model system are given as

follows:

Parameters Meaning

r Growth rate of phytoplankton

K Carrying capacity of phytoplankton

d1 Mortality rate of zooplankton

s Growth rate of fish population

r1,r2 Maximum uptake rates

h Harvested with constant rate

c Maximum per capita predation rate

K1 Half saturation constant of zooplankton and fish population

a The half-saturation constant in absence of any inhibitory effect

i A direct measure of the predator’s immunity

K2 Carrying capacity of fish population
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is given as:

JðE3Þ=

h11 h12 h13

h21 h22 h23

h31 h32 h33

2
4

3
5

where,

h11 ¼ r � 2Pr

K
�

P2

i þ P þ a
h i

cZ � cPZ 2P
i þ 1

� �
P2

i þ P þ a
� �2

, h12 ¼ �cP
P2

i þPþað Þ, h13 ¼ 0.

h21 ¼
P2

i þPþa
� 	

cZ�cPZ 2P
i þ1ð Þ

P2

i þPþað Þ2
, h22 ¼ �cP

P2

i þPþað Þ,

h23 ¼ r1Z
K1þZ. h31 ¼ 0, h32 ¼ 0, h33 ¼ s � h þ r2Z

K1þZ.

(v) Zooplankton- population free equilibrium point

E4 ¼ ðP; 0;FÞ, exists. Thus the Jacobian matrix is

given as:

JðE4Þ=

r � 2Pr

K

cP

P2

i
þ P þ a

� � 0

0
cP

P2

i
þ P þ a

� �� d1 0

0
r1F

k1
s � h

2
66666666664

3
77777777775

The eigenvalues of E4 are 2r � 2Pr
K , cP

P2

i þPþað Þ �

d1 and s � h. These eigen values are negative if

2r\ 2Pr
K , cP

P2

i þPþað Þ\d1 and s\h. Hence E4 will be

a LAS otherwise unstable.

(vi) The interior equilibrium point E5 ¼ ðP�; Z�;F�Þ,
the Jacobian matrix is given as:

JðE5Þ=

g11 g12 g13

g21 g22 g23

g31 g32 g33

2
4

3
5

g11 ¼ r � 2Pr

K
�

P2

i þ P þ a
h i

cZ � cPZ 2P
i þ 1

� �
P2

i þ P þ a
� �2

g12 ¼ �cP
P2

i þPþað Þ, g13 ¼ 0

g21 ¼
P2

i þPþa
� 	

cZ�cPZ 2P
i þ1ð Þ

P2

i þPþað Þ2

g22 ¼ cP
P2

i þPþað Þ � d1, g23 ¼ �r1Z

k1þZð Þ2

g31 ¼ 0, g32 ¼ K1r2F

ðk1þZÞ2 �
K1rF

ðk1þZÞ2

g33 ¼ s � 2sF
K2

þ r2Z
k1þZ � h

Theorem 1 Assume that

r\� 2Pr

K
�

P2

i þ P þ a
h i

cZ � cPZ 2P
i þ 1

� �
P2

i þ P þ a
� �2 ð7Þ

s þ r2Z

k1 þ Z
\� 2sF

K2

� h ð8Þ

Then the equilibrium point E5ðP�; Z�;F�Þ is locally

asymptotically stable.

Proof The characteristics equation is

k3 þ A1k
2 þ A2kþ A3 ¼ 0

where,

A1 ¼ �ðg11 þ g22 þ g33Þ
A2 ¼ g22g33 � g23g32 þ g11g33 þ g11g22 � g12g21

A3 ¼ g11g23g32 þ g12g21g33 � g11g22g33:

Now, E5 is locally asymptotically stable according to

Routh–Hurwitz criterion. Clearly, we find that g11\0 and

g33\0: Now we can say that interior equilibrium point

E5ðP�; Z�;F�Þ of system is locally asymptotically stable. h

3.1.2 Hopf-bifurcation of Non-spatial System

Hopf-bifurcation happens in the system when it becomes

unstable and periodic solutionaries appear in the system.

We may comprehend the presence of the Hopf bifurcation

by demonstrating the theorem, in which the bifurcation

parameter r represents the carrying capacity of the prey.

Theorem 2 When carrying capacity r of prey, crosses a

critical value r�, then the Hopf-bifurcation occurs in model

system (4)–(6) around the positive equilibrium e5 ¼
ðP�; Z�;F�Þ if the following conditions hold:

M1ðr�Þ[ 0, M3ðr�Þ[ 0,M1ðr�ÞM2ðr�Þ � M3ðr�Þ ¼ 0

and

½M1ðr�ÞM2ðr�Þ�
0
6¼ M

0
3ðr�Þ:

Proof It is clear that the equilibrium point e5 is LAS and

system become unstable when we change in some param-

eter value. We take r as the bifurcation parameter. If there

exists a critical value r� such that

M1ðr�ÞM2ðr�Þ � M3ðr�Þ ¼ 0

For r ¼ r� the characteristic equation is given as:

k2 r�ð Þ þ M2 r�ð Þ
� �

k r�ð Þ þ M1 r�ð Þð Þ ¼ 0 ð9Þ
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Roots of above equation are: �M1ðr�Þ, i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ðr�Þ

p
and

�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ðr�Þ

p
: If transversality condition

ReðkðKÞÞ
dK jr¼r� 6¼ 0

hold, we can say Hopf-bifurcation occurs at r ¼ r�. For all
r, general form of roots are

k1ðrÞ ¼ uðrÞ þ ivðrÞ;
k2ðrÞ ¼ uðrÞ þ ivðrÞ;
k3ðrÞ ¼ �M1ðrÞ:
Substituting into (9), we get

QðrÞu0 ðrÞ � UðrÞv0 ðrÞ þ VðrÞ ¼ 0; ð10Þ

UðrÞu0 ðrÞ þ QðrÞv0 ðrÞ þ WðrÞ ¼ 0; ð11Þ

Where,

QðrÞ ¼ 3u2ðrÞ þ 2M1ðrÞuðrÞ þ M2ðrÞ � 3v2ðrÞ
UðrÞ ¼ 6uðrÞvðrÞ þ 2M1vðrÞ
VðrÞ ¼ u2ðrÞM 0

1ðrÞ þ M
0

2uðrÞ þ M
0

3ðrÞ � M
0

1ðrÞv2ðrÞ
WðrÞ ¼ 2uðrÞvðrÞM 0

1ðrÞ þ M
0

2ðrÞvðrÞ
Here, uðrÞ ¼ 0, vðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ðr�Þ

p
, we get

Qðr�Þ ¼ �2M2ðr�Þ, Uðr�Þ ¼ 2M1ðr�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ðr�Þ

p
,

Vðr�Þ ¼ M
0

3ðr�Þ � M
0

1ðr�ÞM2ðr�Þ;
Wðr�Þ ¼ M

0
2ðr�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ðr�Þ

p
Solving u

0 ðr�Þ from Eqs. (10) and (11) we get,
ReðkjðrÞÞ

dr jr¼r� ¼ u
0 ðrÞr¼r� ¼ � Uðr�ÞWðr�ÞþQðr�ÞVðr�Þ

Q2ðr�ÞþL2ðr�Þ ¼ 1
2

M
0
3
ðr�Þ�ðM1ðr�ÞM2ðr�ÞÞ

0

M2
1
ðr�ÞþM2ðr�Þ 6¼ 0

If ðM1ðr�ÞM2ðr�ÞÞ
0
6¼ M

0
3ðr�Þ and

k3ðr�Þ ¼ �M1ðr�Þ\0

Hence the theorem is proved. Because transversality

conditions hold and we can say that Hopf-bifurcation

occurs at r ¼ r�. Hence the theorem is established.

Here, we take certain parameter values r ¼ 2, K ¼ 0:01,

m ¼ 0:1, r1 ¼ 0:3, s ¼ 0:02, a ¼ 0:01, i ¼ 2, K1 ¼ 0:054,

K2 ¼ :02, r2 ¼ 0:03, h ¼ 0:01.

The system (4)–(6) is stable at the coexistence equilib-

rium point E�, which is depicted with the time series and

phase space diagram of system (4)–(6) in Figs. 1, 4, and 6,

if we assume c = 1.6 and h = 1. We now view the system

from the other perspective. The system becomes unsta-

ble and oscillates around the coexistence equilibrium point

E� if we select c = 2.22 and h = 0.8. The phase space

diagram and time series of system (4)–(6) are depicted in

Figs. 2, 3, 5, and 7.

Figures 4, 6 illustrate the stability areas of the system in

the PZ and ZF-plane, where the system exhibits stable dy-

namics and Figs. 5, 7 illustrate the system’s dynamics in

the PZ and ZF-plane, where the system exhibits unsta-

ble dynamics. h

The impact of harvesting constant rate on h = 0.8 is

demonstrated here to exhibit oscillatory behavior (see

Fig. 6), whereas h = 1 exhibits steady behavior (see Fig. 7).

Fig. 1 Time series, phase portrait for the system (4)–(6) at c ¼ 1:6

Fig. 2 Time series, phase portrait for the system (4)–(6) at c ¼ 2:22

Fig. 3 Time series, phase portrait the system (4)–(6) at c ¼ 2:45
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3.1.3 Persistence and Permanance

The permanence of a system indicates that strictly positive

solutions do not have omega limit points on the border of

the non-negative cone. Persistence and permanence are

crucial system behaviors for understanding the system’s

long-term behavior.

Theorem 3 All the solutions of the model system which

start in R3
þ are uniformly bounded.

Proof Let (P(T), Z(T), F(T)) be any solution of the model

with positive initial condition.

Now, we consider a function /ðP; Z;TÞ ¼ P þ Z þ r1
r2

F

Then differentiating above function with respect to T, we

have

d/
dT=

dP
dT þ dZ

dT þ
r1
r2

dF
dT

Putting the values of P(T), Z(T) and F(T), we get

d/
dT = rP 1� P

K

� �
� d1Z þ sFr1

r2
1� F

K2

� �
� hr1F

r2
:

Then we have the following differential equation:

d/
dT þ g/� KðrþgÞ2

4r þ r1K2ðsþgÞ2
4r2s � Zðd1 � gÞ

Now, we define g\d1, then above inequality is bounded

by
KðrþgÞ2

4r þ r1K2ðsþgÞ2
4r2s : Thus we find l[ 0, such that

d/
dT þ g/� l, which conclude that

/ðTÞ�/ð0Þe�gT þ l
g 1� e�gTð Þ�maxð/ð0Þ; l

gÞ:
Hence, All the solutions of the model system (1) are

uniformly bounded. Theorem is proved. h

Theorem 4 The model system (4)–(6) is uniformly per-

sistent if conditions are satisfied as below:

Fig. 4 Phase portraits of the system (4)–(6) for a stable limit cycle at

c ¼ 1:6

Fig. 5 Phase portraits of the system (4)–(6) for a unstable limit cycle

at c ¼ 2:45

Fig. 6 Phase portraits of the system (4)–(6) for a stable limit cycle at

h ¼ 1

Fig. 7 Phase portraits of the system (4)–(6) for a unstable limit cycle

at h ¼ 0:8
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rg1 [ d1g2 þ ðh � sÞg3
g2 [

ðh�sÞg3

cK

k2
i
þkþa

�d1

� �

s þ r2Z
K1þZ [ h

Proof Let fðP; Z;FÞ ¼ Pg1Zg2Fg3 be lyapunov function.

Taking log both the sides and differentiating, we get

wðP; Z;FÞ ¼ _f
f ¼ g1 r 1� P

K

� �
� cZ

P2

i þPþa

� �

þg2
cP

P2

i þPþa
� d1

�
� r1F

K1þZ� þ g3 s 1� F
K2

� �
þ r2Z

K1þZ � h
h i

:

wðP; Z;FÞ[ 0 is enough condition to prove the uniform

persistence of the system. Following are conditions for the

system to be uniformly persistent.

wð0; 0; 0Þ ¼ g1r � d1g2 þ g3ðs � hÞ[ 0

wðK; 0; 0Þ ¼ g2
cK

K2

i þKþa
� d1g2 þ sg3 � hg3 [ 0

wðP; Z; 0Þ ¼ g1 r 1� P
K

� ��
� cZ

P2

i þPþa
� þ g2

cP
P2

i þPþa
� d1

� �

þg3 s þ r2Z
K1þZ � h

h i
¼ s � h þ r2Z

K1þZ [ 0

These conditions are satisfied if the conditions stated in

theorem holds. h

3.1.4 Maximum Harvesting Yield (MSY)

The growth of fish population depends on zooplankton for

complete model system and we obtain

h ¼ sF 1� F
K2

� �
þ r2ZF

K1þZ

where h represents the reduction in fish population due

to harvesting.

So, oh
oF ¼ 0, which gives F ¼ K2

2 s s þ r2Z
K1þZ

� �
, where

K2

2s s þ r2Z
K1þZ

� �
[ 0 and o2h

oF2 ¼ �2s
K2

\0. Thus we have

hMSY = K2s
4

1þ r2Z
sðK1þZÞ

h i2
Hence, we have a maximum sustainable yield when

hMSY ¼ K2s
4
. Also, h[ hMSY , and h\hMSY indicate,

respectively, the over- and under-exploitation of the fish

population.

4 Dynamical Behaviour of the Spatial Model
System

In this section, linear stability is discussed. The spatial

system about the equilibrium point ðP�; Z�;F�Þ has been

linearized for this purpose, and the system has been dis-

turbed as follows:

PðT ; x; yÞ ¼P� þ P̂ðT; x; yÞ; ð12Þ

ZðT ; x; yÞ ¼Z� þ ẐðT; x; yÞ; ð13Þ

FðT ; x; yÞ ¼F� þ F̂ðT; x; yÞ ð14Þ

Here, P̂; Ẑ; F̂ are small perturbations of time and space.

P̂ ¼ �1 expðkrTÞ cosðrxxÞ cosðryyÞ;
Ẑ ¼ �2 expðkrTÞ cosðrxxÞ cosðryyÞ;
F̂ ¼ �3 expðkrTÞ cosðrxxÞ cosðryyÞ;
Here, �1; �2; �3 are positive and sufficiently small con-

stants. rx and ry are components of wave number r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ r2y

q
along x and y directions respectively and kr is

wavelength.

Now, we have:
oP̂
oT ¼ d11P̂ þ d12Ẑ þ d13F̂ þ d1DP̂;
oẐ
oT ¼ d21P̂ þ d22Ẑ þ d23F̂ þ d2DẐ;
oF̂
oT ¼ d31P̂ þ d32Ẑ þ d33F̂ þ d3DF̂;

The Jacobian matrix of linearized system is:

d11 � d1r2 d12 0

d21 d22 � d2r2 d23

0 d32 d33 � d3r2

2
4

3
5

where,

d11 ¼ r � 2Pr

K
�

P2

i þ P þ a
h i

cZ � cPZ 2P
i þ 1

� �
P2

i þ P þ a
� �2

d12 ¼ �cP
P2

i þPþað Þ, d13 ¼ 0

d21 ¼
P2

i þPþa
� 	

cZ�cPZ 2P
i þ1ð Þ

P2

i þPþað Þ2

d22 ¼ cP
P2

i þPþað Þ � d1, d23 ¼ �r1Z

ðk1þZÞ2

d31 ¼ 0, d32 ¼ K1r2F

ðk1þZÞ2 �
K1rF

ðk1þZÞ2

d33 ¼ s � 2sF
K2

þ r2Z
k1þZ � h

The characteristic equation corresponding to the Jaco-

bian matrix is written as below:

k3r þ a1 r2ð Þk2r þ a2 r2ð Þkr þ a3 r2ð Þ ¼ 0;

Here,

a1 r2ð Þ ¼ r2 d1 þ d2 þ d3ð Þ þ E1

a2 r2ð Þ ¼ r4ðd1d2 þ d1d3 þ d2d3Þ�
r2ððd2ðd11 þ d33Þ þ d1ðd22 þ d33 þ d3ðd11 þ d22ÞÞÞ þ E2

a3 r2ð Þ ¼ d1d2d3r6 � r4ðd2d3d11 þ d1d3d22

þd1d2d33Þ þ r2ðd1ðd22d33 � d23d32Þþ
d2d11d33 þ d3ðd11d22 � d12d21ÞÞ þ E3;

with

E1 ¼ �ðd11 þ d22 þ d33Þ;
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E2 ¼ d22d33 � d23d32 þ d11d33 þ d11d22 � d12d21;

E3 ¼ d11d23d32 þ d12d21d33 � d11d22d33;

and

a1 r2
� �

a2 r2
� �

� a3 r2
� �

¼ u0 þ u1 r2
� �

þ u2 r4
� �

þ u3 r6
� �

;

where

u0 ¼ E1E2 � E3; u1 ¼ E2ðd1 þ d2 þ d3Þ � E1ðd2ðd33 þ
d11Þ þ d3ðd22þ d11Þ þ d1ðd22 þ d33ÞÞ � d1ðd22d33 �
d23d32Þ �d2ðd33d11Þ � d3ðd22d11 � d12d21Þ;

u2 ¼ d11d2d3 þ d22d1d3 þ d33d1d2þ E1ðd1d2 þ d1d3 þ
d2d3 � ðd1 þ d2 þ d3Þðd1ðd33 þ d11Þ þd3ðd22 þ d11Þ þ
d1ðd22 þ d33ÞÞ; u3 ¼ ðd1 þ d2 þ d3Þðd1d2 þ d1d3þ
d2d3Þ � d1ðd22d33 � d23d32Þ:

Hence from the Routh–Hurwitz criterion, spatial system

is stable if

a1 r2
� �

[ 0; a3 r2
� �

[ 0; a1 r2
� �

a2 r2
� �

� a3 r2
� �

[ 0:

ð15Þ

Theorem 5 If the positive equilibrium point ðP�; Z�;F�Þ is

LAS for temporal model system(4)–(6), then ðP�; Z�;F�Þ is

LAS for spatiotemporal model system (1)–(3).

Proof The proof of above theorem follows from Routh–

Hurwitz criterion, hence omitted. h

4.1 Hopf-Bifurcation of Spatial Model System

Now, here the existence of hopf bifurcation for sptial

model is discussed with equilibrium point

P̂ ¼ P � P�; Ẑ ¼ Z � Z�; F̂ ¼ F � F�:
Then the system becomes:

oP

oT
¼ rðP þ P�Þ 1� ðP þ P�Þ

K

� �

� cðP þ P�ÞðZ þ Z�Þ
ðPþP�Þ2

i þ ðP þ P�Þ þ a
þ d1DP

ð16Þ

oZ

oT
¼ cðP þ P�ÞðZ þ Z�Þ

ðPþP�Þ2
i þ ðP þ P�Þ þ a

� d1ðZ þ Z�Þ

� r1ðZ þ Z�ÞðF þ F�Þ
K1 þ ðZ þ Z�Þ þ d2DZ

ð17Þ

oF

oT
¼ sðF þ F�Þð1� ðF þ F�Þ

K2

Þ

þ r2ðZ þ Z�ÞðF þ F�Þ
K1 þ ðZ þ Z�Þ � hðF þ F�Þ þ d3DF

ð18Þ

After the transformation the model system takes the form

as below:

_pðTÞ ¼ lðpÞ þ nðpÞ;
where

l=
A100 þ d1DP A010 0

B100 B010 þ d2DZ B001

0 C010 d3DF

2
4

3
5

and nðpÞ ¼ ðf1; f2; f3ÞT :

Let us consider,

l ¼ km þ dn

D 0 0

0 D
0 0 D

2
4

3
5

and nðpÞ ¼ ðf1; f2; f3ÞT :

Here,

km ¼
A100 A010 0

B100 B010 B001

0 C010 0

2
4

3
5

and dn ¼
d1 0 0

0 d2 0

0 0 d3

2
4

3
5

then,

_pðTÞ ¼ lðpÞ;
Characteristic equation is given as

kw � dn

D 0 0

0 D
0 0 D

2
4

3
5w � kmw ¼ 0

where

w�domdn

D 0 0

0 D 0

0 0 D

2
4

3
5

The eigen value problem is:

�D/ ¼ k/; m�X
o/m ¼ 0; m�oX
has eigenvalues 0 ¼ k0\k1\k2\:::\kr\:::; and

corresponding eigenfunctions are

cr ¼ /rðmÞ; r�N0 ¼ 0; 1; 2; :::

Let

b1r ¼
cr
0

0

2
4

3
5, b2r ¼

0

cr
0

2
4

3
5, b3r ¼

0

0

cr

2
4

3
5:

Then, Br ¼ b1r; b
2
r; b

3
r

� �1
r¼0

establish a basis. and

w�dom dn

D 0 0

0 D 0

0 0 D

2
4

3
5

0
@

1
A� 0

can be formed as

w ¼
P1

r¼1 b1r; b
2
r; b

3
r

� � hw; b1ri
hw; b2ri
hw; b3ri

2
4

3
5:

Characteristic equation is given as below:

det

kþ d1kr � A100 � A010 0

�B100 kþ d2kr � B010 � B001

0 � C010 kþ d3kr

2
4

3
5

for some r�N0. Therefore,

k3 þ l1k
2 þ l2kþ l3 ¼ 0;
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where

l1 ¼ krðd1 þ d2 þ d3Þ þ E1;

l2 ¼ k2rðd1d2 þ d2d3 þ d3d1Þ � krðA100ðd2 þ d3Þþ
B010ðd1 þ d3ÞÞ þ E2

l3 ¼ d1d2d3k
3
r � k2rðA100d2d3 þ B010d3d1Þ þ krðd3

ðA100B010 � A010B100Þ � d1B001C010Þ þ E3;

E1 ¼ �ðA010 þ B010Þ;
E2 ¼ A100B010 � A010B100 � B001C010;

E3 ¼ A100B001C010:

After some calculation we get,

l1l2 � l3 ¼ ~F1k
3
r þ ~F1k

2
r þ ~F1kr þ E1E2 � E3

ðk2 þ l2Þðkþ l1Þ ¼ 0

For all k, general form of roots are

k1ðhBÞ ¼ q1ðhBÞ þ iq2ðhBÞ;
k2ðhBÞ ¼ q1ðhBÞ þ iq2ðhBÞ;
k3ðhBÞ ¼ �l1ðhBÞ:
Substituting into we get

L1ðhBÞq
0
1ðhBÞ � L2ðhBÞq

0
2ðhBÞ þ L3ðhBÞ ¼ 0;

L1ðhBÞq
0
2ðhBÞ þ L2ðhBÞq

0
1ðhBÞ þ L4ðhBÞ ¼ 0;

Where,

L1ðhBÞ ¼ 3q21ðhBÞ þ 2l1ðhBÞqðhBÞ þ l2ðhBÞ � 3q22ðhBÞ
L2ðhBÞ ¼ 6q1ðhBÞq2ðhBÞ þ 2l1q2ðhBÞ
L3ðhBÞ ¼ q21ðhBÞl

0

1ðhBÞ þ l
0

2q1ðhBÞ þ l
0

3ðhBÞ � l
0

1ðhBÞ
q22ðhBÞ

L4ðhBÞ ¼ 2q1ðhBÞq2ðhBÞl
0
1ðhBÞ þ l

0
2ðhBÞq2ðhBÞ

Here, q1ðh�
BÞ ¼ 0, q2ðh�

BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðh�

BÞ
p

, we get

L1ðh�
BÞ ¼ �2l2ðh�

BÞ, L2ðK�Þ ¼ 2l1ðh�
BÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðh�

BÞ
p

,

L2ðh�
BÞ ¼ l

0
3ðh�

BÞ � l
0
1ðh�

BÞl2ðh�
BÞ;

L4ðh�
BÞ ¼ l

0
2ðh�

BÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðh�

BÞ
p

Solving q
0
1ðK�Þ, we get:

ReðkjðKÞÞ
dK jhB¼h�B

¼ q
0

1ðhBÞhB¼h�B
¼ � L2ðh�BÞK4ðh�BÞþL1ðh�BÞL3ðh�BÞ

L2
1
ðh�BÞþL2

2
ðK�Þ

¼ 1
2

l
0
3
ðh�BÞ�ðl1ðh�BÞl2ðh�BÞÞ

0

l2
1
ðh�BÞþl2ðh�BÞ

6¼ 0

and k3ðh�
BÞ ¼ �l1ðh�

BÞ\0

Hence the theorem is proved. Because transversality

conditions hold and we can say that Hopf-bifurcation

occurs at hB ¼ h�
B:

4.2 Turing Instability

When a system becomes unstable, Turing instability

occurs. The species diffusion coefficients determine the

Turing stability.

Theorem 6 if one of the following conditions is satisfied,

Turing instability occurs in the system:

(i) If r2 [ 0 and r22 � 4r1r3 [ 0 then r2f is positive

and real.

(ii) If q2 [ 0 and q2
2 � 3q1q3 [ 0 then r2f is positive

and real.

(iii) If a3ðr2f Þ ¼
2q3

2
�9q1q2q3þ27q2

1
q4�2ðq2

2
�3q1q3Þ

3
2

27q2
1

\0 and if

u1\0; u2\0; and

/ðr2Þ ¼ 2u3
1
�9u0u1u2þ27u2

0
u3�2ðu2

1
�3u0u2Þ

3
2

27u2
0

\0:

Then, the Turing instability occurs around equilibrium of

the system.

Proof a1 r2ð Þ[ 0; a3 r2ð Þ[ 0; a1 r2ð Þa2 r2ð Þ � a3 r2ð Þ\0:

Let us assume that l ¼ r2, we have

a2ðlÞ ¼ r1l2 þ r2lþ r3;

where,

r1 ¼ d1d2 þ d1d3 þ d2d3;
r2 ¼ �d2ðd11 þ d33 � d1ðd22 þ d33 � d3ðd11 þ d22;

r3 ¼ E3:

It is easy to see that if a2ðlÞ ¼ r1l2 þ r2lþ r3\0

holds,then equilibrium of system become unstable.

Fig. 8 Maximum ReðkðKÞÞ against K

Fig. 9 Maximum ReðkðKÞÞ against K
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Roots of above equation given as below:

l1;2 ¼
�r2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
2
�4r1r3

p
2r1

:

r2 [ 0 and r22 [ 4r1r3 for some l is sufficient to show

Turing instability. Turing instability occurs in the range

l1\r2\l2:
Now, we have

a3 ¼ q1l3 þ q2l2 þ q3lþ q4;

where

q1 ¼ d1d2d3;

q2 ¼ �ðd2d3d11 þ d1d3d22 þ d1d2d33Þ;
q3 ¼ d1ðd22d33 � d23d32Þ þ d2d11d23 þ d3ðd11d22

�d12d21Þ;
a3 has minima, for this purpose we need to as below:

Fig. 10 Maximum ReðkðKÞÞ against K

Fig. 11 Spatial distribution of phytoplankton (first column), zoo-

plankton (second column) and fish (third column) are population

densities of the spatial system (1)–(3). Spatial patterns are obtained

with diffusivity coefficients Da ¼ 0:02, Db ¼ 0:04, Dc ¼ 0:02 and

harvesting h ¼ 0:01 at different time levels: for T ¼ 10, T ¼ 100,

T ¼ 400

Fig. 12 Spatial distribution of phytoplankton (first column), zoo-

plankton (second column) and fish (third column) are population

densities of the spatial system (1)–(3). Spatial patterns are obtained

with diffusivity coefficients Da ¼ 0:2, Db ¼ 0:4, Dc ¼ 0:6 and

harvesting h ¼ 1; 1:5; 2 at different time levels: for T ¼ 10,

T ¼ 100, T ¼ 400

Fig. 13 Spatial distribution of phytoplankton (first column), zoo-

plankton (second column) and fish (third column) are population

densities of the spatial system (1)–(3). Spatial patterns are obtained

with diffusivity coefficients Da ¼ 0:02, Db ¼ 0:04, Dc ¼ 0:06 and

time T ¼ 100 at different harvesting values h ¼ 1:5, 2.5, 3.5
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da3
dl ¼ 3q1l2 þ 2q2lþ q3;

it gives,

r2f ¼ �q2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2
2
�3q1q3

p
3q1

:

where, d2a3
dl2 [ 0: Hence p2 [ 0 and q2

2 � 3q1q3 [ 0; then

it is simple to verify Turing instability around equilibrium

point,if

a3 r2f

� �
¼ 2q3

2
�9q1q2q3þ27q2

1
q4�2ðq2

2
�3q1q3Þ

3
2

27q2
1

\0

For the turing instability we need to show that

a1ðr2Þa2 r2ð Þ � a3 r2ð Þ\0:

r is wave number.

Now,

/ðlÞ ¼ u0l3 þ u1l2 þ u2lþ u3;

where, u0; u0; u0; u0 and E1;E2;E3 are as above.

/ðr2Þ is minimum at some r2;
d/
dl ¼ 3u0l2 þ 2u1lþ u2 ¼ 0

where, l ¼ r2 and d2/
dl2

[ 0: Clearly, /ðr2Þ has mini-

mum at

r2f ¼ �u1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
1
�3u0u2

p
3u0

:

if we choose u1\0 and u2\0, if condition

/ðr2Þ ¼ 2u3
1
�9u0u1u2þ27u2

0
u3�2ðu2

1
�3u0u2Þ

3
2

27u2
0

\0

holds, It shows that Turing instability occurs.

We use some parameter values are r ¼ 0:0002,

K ¼ 0:01, c ¼ 0:45, d1 ¼ 0:1, r1 ¼ 0:3, s ¼ 4, a ¼ 0:2,

i ¼ 2, K1 ¼ 0:9, K2 ¼ 8, r2 ¼ 10, h ¼ 0:0001.

4.3 Pattern Formation

In this section, we will examine the system (1)–(3) that is

used to create patterns in two-dimensional space with zero-

flux boundary conditions. For Figs. (11, 12, 13 and 14), we

used the finite difference approach to Îgenerate numerical

results with MATLAB(2014a) software, and also used the

same parametric parameters as in the previous section to

determine the starting geographical distributions of each

species at random.

Now, we can see in Figs. (11, 12, 13 and 14), how the

dynamics of systems are distributed spatially throughout

time. We found that when coupling parameters varied, the

spatial system’s spatial structure changed over time as well

as one parameter’s value. Figures (11 and 12) shows the

population distribution in space with well-organized

structures. It also shows how, as time T increases from 10

to 400, the population density of the various population

classes becomes uniform throughout the area and Figs. (13

and 14) demonstrates the harvesting effects using a fixed

time constant and diffusivity.

Finally, all of these figures show the qualitative differ-

ences in the spatial density distribution of the spatial sys-

tem for each species.

5 Discussions and Conclusions

In this work, we analyzed the interactions between free-

living, mobile prey and their herbivorous predators in

aquatic ecosystems. We have investigated three dimen-

sional plankton fish model with Holling type-II and Holling

type-IV functional response. Temporal and spatiotemporal

model are discussed in this artical. For the temporal sys-

tem, we first determine the equilibrium points and bound-

edness of the system, and then we examine the stability of

each equilibrium point and the Hopf bifurcation condition.

It has been shown that the rate of interactions is quite

sensitive. Determine the stability of the bifurcating peri-

odic solutions as well (1–5). Under certain situations, the

system can allow Hopf bifurcation with a constant har-

vesting rate, as shown in the Figs. 6 and 7.

Analytically, a system is said to be permanent if it is

dissipative (i.e., there is a fixed bounded region such that

all the trajectories lie in the region for a sufficiently long

time t) and uniformly persistent (i.e., there must exist a

region in the phase space, at a nonzero distance from the

boundary, in which all the population victories must lie

eventually). Optimal management of renewable resources

is connected to the analysis of population dynamic systems

with harvesting constant rate. The appropriate integration

Fig. 14 Spatial distribution of phytoplankton (first column), zoo-

plankton (second column) and fish (third column) are population

densities of the spatial system (1)–(3). Spatial patterns are obtained

with diffusivity coefficients Da ¼ 0:2, Db ¼ 0:4, Dc ¼ 0:6 and time

T ¼ 100 at different harvesting values h ¼ 1:5, 2.5, 3.5
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of various harvesting policies in a predator–prey system

can debate and suggest a number of topics pertaining to

practical hazard in the ecological reality (such as the

coexistence of interacting species). From a biological

perspective, we may infer that when prey is captured, it

gets a chance to consolidate or come together. We may

infer from this that the prey tends to use collective defense

to thwart its harvest, and that stronger group defense is seen

at higher harvesting rates that are comparable to the out-

come attained.

We have also examined the analytical and numerical

conditions that lead to Turing instability in the spatiotem-

poral system (see Figs. (8, 9 and 10). Additionally, spot

patterns may be seen as the diffusivity coefficient rises (11

and 12). Figures (13 and 14) also show the emergence of a

pattern when the harvesting rate is constant.

Since the plankton population is slow, compared to the

fish population, which grows much more quickly, it is

possible to see the fast-slow dynamics from an other angle.

Since people eat a lot of fish, both freshwater and marine,

predators are harvesting fish populations for food. This

research is crucial in ecological conservation, sustainable

management of fisheries, and enhancing our knowledge of

how ecosystems react to environmental variations. Such

studies are pivotal in securing the long-term sustainability

and strength of aquatic ecosystems, as well as the welfare

of human communities that rely on them.
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