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Abstract
Nonlinear propagation of a highly intense circularly polarized electromagnetic wave through a 3-component relativistic

quantum plasma (RQP) is studied. The plasma is composed of relativistic degenerate electrons, dynamic-degenerate ions,

and a beam of non-relativistic degenerate electrons. The relativistic degenerate electrons are modeled by a Klein–Gordon

equation (KGE), whereas the degenerate ions and beam of electrons are described by Schrödinger equations (SEs). The

dynamics of the CPEM wave through the plasma is governed by the Maxwell and Poisson equations. Four modes have

been observed through the linear analysis. It has been observed that the opacity of the plasma increases with an increase in

the beam electron concentration. Stimulated Raman scattering, modulational instability, and stimulated Brillouin scattering

have been studied, and an optimum value of the CPEM wave intensity has been found for the growth of these scattering

instabilities. The growth rates of the SRS and SBS have been found to drop with increase in the quantum parameter

(associated with the density) of the plasma. It has also been observed that the scattering spectra in both the SRS and SBS

get restricted to very small wave number regions. The spectrum and the growth rate of the MI also show dependence on the

quantum parameter.

Keywords 3-Component relativistic quantum plasma � Electron-acoustic waves � Nonlinear interaction of electromagnetic

waves

Mathematics Subject Classification 52.25.Dg � 52.27.Cm � 52.30.Ex � 52.35.-g

1 Introduction

In an extremely dense plasma, commonly referred to as the

quantum plasma, where the interparticle distance reduces

to a limit such that the wave functions of the constituent

particles start overlapping, particles’ dynamics have to be

treated quantum mechanically (Shukla and Eliasson 2011;

Haas 2011; Bonitz et al. 2014). Not only in the extreme

astrophysical environment where the presence of ultra-

strong magnetic field in excess of the critical quantum

electrodynamical (QED) limit (B ¼ m2
ec

3

e�h ’ 4:4 � 1013 G)

makes the electron cyclotron energy equal to the electron

rest mass energy (mec
2 ¼ 0:51 MeV), some of the con-

stituent particles in dense plasmas produced by the inter-

action of ultra-intense (� 1021 W/cm2) laser pulses with

matter may also acquire relativistic speed (Bonitz et al.

2014; Marklund and Shukla 2006). This necessitates the
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inclusion of relativistic corrections in addition to the

quantum mechanical treatment in modeling the plasma

dynamics. The Quark–Gluon plasmas (QGP) produced

during the relativistic heavy-ion collision (RHIC) experi-

ments (Arsene et al. 2005) is yet another example of rel-

ativistic quantum plasmas. The subject of relativistic

quantum plasma (RQP) has, thus, been actively pursued by

the astrophysical and plasma physics community (Melrose

2008; Asenjo et al. 2011; Mendonça 2011; Eliasson and

Shukla 2011; Haas et al. 2012; Behery et al. 2016; Haas

2019; Islam et al. 2017; Singh et al. 2019; Jamil et al.

2019; Goshadze et al. 2019). Melrose (2008) has presented

an excellent account of the various aspects of waves in

unmagnetized relativistic-quantum plasmas using full QED

formalism. This work has later been extended to include

the magnetized cases (Melrose and Weise 2009, 2012).

With the help of fluid formalism, employing the Dirac

equation for the spin-half RQP, a dispersion relation for an

electromagnetic wave sustained by such a system is

derived in Ref. (Asenjo et al. 2011), indicating higher

transparency with the inclusion of the spin. Eliasson and

Shukla (2011) have investigated the laser–plasma interac-

tions in the relativistic quantum regime by employing a

Kelin–Gordon equation for the relativistic degenerate

electrons coupled with electromagnetic waves through

Maxwell and Poisson equations. Recently, we have studied

(Ikramullah et al. 2017) different properties of the rela-

tivistic quantum plasma, which comprises of relativistic

degenerate electrons and positrons, and dynamic degener-

ate ions by extending the Eliasson–Shukla model (Eliasson

and Shukla 2011). It was found that the presence of posi-

trons has insignificant effect on the dispersion. However,

enhancement in the plasma opacity was observed, and the

growth rate of different parametric instabilities was shown

to be affected by the inclusion of positrons in the system.

We further extended the model by incorporating the Tho-

mas–Fermi distribution of electrons in the background of

relativistic quantum plasma composed of relativistic

degenerate electrons and positrons and non-relativistic

degenerate ions (Ikramullah et al. 2018). An electron-

acoustic wave was observed in addition to the other two

modes associated with positrons and ions, respectively. The

spectrum and growth rates of different instabilities were

also affected with the change in the quantum parameter and

with the intensity of the circularly polarized electromag-

netic (CPEM) wave.

In the present work, the Eliasson–Shukla model (Elias-

son and Shukla 2011) is further extended to study different

physical phenomena like dispersion of electrostatic waves,

self-induced transparency and plasma opacity, the occur-

rence and growth rates of different parametric instabilities

in 3-component plasma by including a beam of non-rela-

tivistic quantum electrons along with degenerate

relativistic electrons and dynamic-degenerate ions. Ions are

quantum-mechanically treated in Ref. (Shukla and Stenflo

2006) through the inclusion of Bohm potential, but in our

case, the plasma is 3-component having two types of

electrons (the relativistic degenerate electrons, and the

beam of non-relativistic degenerate electrons) and the

dynamic degenerate ions. The spin dynamics have not been

included in the present study. We feel that the work pre-

sented in this article has relevance to both space and lab-

oratory plasmas such as the high-density plasmas that can

be produced by interacting ultrashort and ultra-intense laser

pulses with solids.

This paper is organized in the following manner: in Sect.

2, a mathematical model based on the Klein–Gordon

Equation (KGE) for relativistic degenerate electrons and

Schrödinger Equations (SEs) for the dynamical degenerate

ions and beam of non-relativistic degenerate electrons has

been outlined. These equations are then coupled with the

Maxwell’s equations in order to describe the nonlinear

coupling between the relativistic quantum plasma and the

CPEM waves. In Sect. 3, we derive the dispersion relations

by using the Fourier analysis and have discussed the linear

properties of electrostatic oscillations. The Sect. 4 deals

with the phenomena of relativistic nonlinear propagation

and opacity of plasma. In Sect. 5, we study the stimulated

Raman scattering (SRS) and modulational instabilities (MI)

in a relativistic 3-component quantum plasma. In Sect. 6,

we have derived the dispersion relation by considering ion

dynamics and numerically studied the stimulated Brillouin

scattering (SBS) instability. We concluded our work in

Sect. 7.

2 Mathematical Model

The mathematical model of the problem composed of the

KGE for the degenerate relativistic electrons, SE for the

degenerate ions (beam-electrons), and Maxwell’s and

Poisson equations for the propagation and interaction of

intense CPEM wave with the relativistic quantum plasma.

We use W ¼ i�h o
ot þ e/ and P ¼ �i�hrþ eA in order to

introduce electromagnetic interaction in KGE, given by

W2we � c2P2we � m2
ec

4we ¼ 0: ð1Þ

Here, we represents an ensemble of degenerate relativistic

electrons, meðeÞ is an electron mass (charge), and /ðAÞ is

the electromagnetic scalar (vector)-potential, respectively.

In this case, the charge and current densities have the

following expressions, respectively:

qe ¼
�e

2mec2

�
w�
eWwe þ weðWweÞ

��; ð2Þ

and

1810 Iranian Journal of Science (2023) 47:1809–1819

123



je ¼
�e

2me

�
w�
ePwe þ weðPweÞ

��: ð3Þ

The coupling of an electromagnetic wave with the degen-

erate ions (non-relativistic beam electrons) is represented

by

i�h
o

ot
� q/

� �
wm ¼

ð�i�hr� qAÞ2

2mm
wm; ð4Þ

where, the wavefunction wm represents an ions ensemble

(non-relativistic beam electrons), q is the charge of an ion

(non-relativistic electron), and mm is an ion (electron) mass,

respectively. The electric charge and current densities of

ions (non-relativistic beam-electrons) then take the fol-

lowing forms, respectively:

qm ¼ qjwmj
2; ð5Þ

and

jm ¼
iq�h

2mm

�
wmrw�

m � w�
mrwm

�
� q2

mm
jwmj

2A: ð6Þ

To close the model, the scalar and vector potential (/, A)

are obtained from the electromagnetic wave equation

o2A

ot2
þ c2r� r� Að Þ þ r o/

ot
¼ l0c

2jT ; ð7Þ

and

r2/þr � oA
ot

¼ � 1

�0

qe þ
X

m¼i;eb

qm

 !

; ð8Þ

where l0 and �0 are the permeability and permittivity of

vacuum, respectively, and jT ¼ je þ
P

m¼i;eb

jm is the total

current density. The symbol eb represents the beam

electrons.

By taking the divergence of Eq. (7) and then using r �
A ¼ 0 (Coulomb gauge), we obtain from Eqs. (7) and (8),

respectively,

r2 o2A

ot2
� c2r2A

� �
¼ �c2l0r� r� jTð Þ; ð9Þ

and

r2/ ¼ � 1

�0

qe þ
X

m¼i;eb

qm

 !

: ð10Þ

Equations (1), (9), and (10) constitute the complete model

that describes the nonlinear coupling between the intense

CPEM wave and the non-magnetized relativistic degener-

ate plasma.

3 Electrostatic Oscillations

For electrostatic waves, the electromagnetic vector poten-

tial (A) is assumed to be zero. The electrostatic oscillations

arise due to the charge density fluctuations in the plasma.

At wavelengths comparable to the interparticle distances,

the quantum effects can cause dispersion of electrostatic

waves. When the wavelength associated with an electron is

of the order of the Compton length, the electron speed

becomes relativistic that can change the dispersion relation

for the electrostatic waves.

To derive a dispersion relation for the electrostatic

waves, we transform the wavefunction we by using the

following transformation:

we ¼ eweexp �ic2met=�h
� �

: ð11Þ

The modified wavefunction ewe then obeys the following

KGE:

i�h
o

ot
þ mec

2 þ e/

� �2

ewe þ �h2c2r2ewe � m2
ec

4ewe ¼ 0;

ð12Þ

and the charge density of electron becomes

qe ¼
�ie�h

2mec2
ew�
e

oewe

ot
� ewe

oew�
e

ot

 !

� 1 þ e/
mec2

� �
ejewej

2:

ð13Þ

The dynamics of ions (non-relativistic beam electrons) in

the electrostatic case is governed by the SE:

i�h
owm

ot
� q/wm ¼ � �h2r2

2mm
wm: ð14Þ

The ion (beam electrons) charge density is given by

Eq. (5):

We linearize the system of Eqs. (10), (12), and (14) by

using / ¼ /1, ewe ¼ ew0e þ ew1e, and wm ¼ w0m þ w1m. Here,

jew0ej
2 ¼ n0e, and jw0mj

2 ¼ n0m are the unperturbed number

densities of the relativistic-degenerate electrons and the

degenerate ions (non-relativistic beam electrons), respec-

tively. We Fourier decompose this by using /1 ¼
b/ exp

�
iK � r� iXt

�
þ c:c:; ew1e ¼ bwþe exp

�
iK � r�

iXt
�
þ bw�e exp

�
� iK � rþ iXt

�
, and w1m ¼

wþm exp
�
iK � r� iXt

�
þ w�m exp

�
� iK � rþ iXt

�
.

Separating Fourier modes, and then eliminating the dif-

ferent Fourier coefficients, we get a dispersion relation for

the electrostatic waves as follow:

e ¼ 1 þ ve þ
X

m¼i;eb

vm ¼ 0: ð15Þ

Here,
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ve ¼
x2

pe

�
4m2

ec
4 � �h2

�
X2 � c2K2

��

�h2
�
X2 � c2K2

�2 � 4m2
ec

4X2
; ð16Þ

and

vm ¼ �
4x2

pmm
2
m

4m2
mX

2 � �h2K4
; ð17Þ

are the electric susceptibilities of the relativistic degenerate

electrons and ions (beam electrons), respectively. Here,

xpe ¼
�
n0ee

2=�0me

�1=2
and xpm ¼

�
n0me

2=�0mm

�1=2
are,

respectively, the plasma oscillation frequencies of rela-

tivistic electrons and ions ( beam electrons ).

To study the electron-acoustic and ion-acoustic waves

associated with the low-frequency fluctuations, we apply

the low-frequency limits on the Eq. (15). Assuming

X\\cK, and ignoring the high powers of X, we obtain

the following dispersion relation:

1 þ �ve þ
X

m¼i;eb

vm ¼ 0: ð18Þ

Here,

�ve ¼
x2

pe

�
4m2

ec
2 þ �h2k2

�

�h2c2k4 � 4m2
ec

2X2
; ð19Þ

is the electric susceptibility of the low-frequency electrons.

The ratio of the densities of the non-relativistic degen-

erate beam electrons and the relativistic degenerate elec-

trons is denoted by b.

In Fig. 1, the solution of Eq. (15) is plotted where four

different frequency branches are observed. The dashed

curve is associated to the relativistic electrons having initial

oscillation at the electrons plasma frequency. The dashed-

dotted curve is ascribed to the ion waves, and the dotted

curve represents the acoustic waves associated with the

non-relativistic beam of electrons. The solid curve with the

largest frequency may be attributed to the so-called ‘‘pair

branch’’ or ‘‘positronic’’ states. The value of the plasma

density (hence the quantum parameter H) is chosen 1034

m�3 (H ¼ 0:007) and b ¼ 10�5. We see that the phase

velocity of the acoustic waves associated with the non-

relativistic degenerate beam electrons is initially higher

than the ion-acoustic waves and increases with a uniform

rate to a certain K values beyond which it starts to decrease

with a uniform rate.

In Fig. 2, Eq. (18) is plotted showing the low-frequency

limit (X\\cK) for a 3-component plasma composed of

the relativistic degenerate electrons, dynamic degenerate

ions, and non-relativistic beam electrons by using H ¼
0:007 and b ¼ 10�5. The phase velocity of the electron-

acoustic waves changes linearly in this low-frequency limit

case.

We observe a behavior almost similar to what we saw in

our previous studies (Ikramullah et al. 2017, 2018). The

corresponding ion and the non-relativistic beam electrons

wave frequencies increase as K ! 0 by increasing the

value of the quantum parameter. The beam and ion modes,

both, behave in the same way. However, in this case, the

low-frequency waves resulted from the beam of electrons

are lower in frequency as compared to the low-frequency

waves in the Thomas–Fermi distributed electrons (Ikra-

mullah et al. 2018). Similarly, the frequency of ion-

acoustic waves is also lower in the beam case than the

Thomas–Fermi case.

4 Nonlinear Propagation of Intense
Electromagnetic Waves Through
Degenerate Plasma

We use the Klein–Gordon–Schrödinger–Maxwell model to

study the propagation of intense CPEM wave through the

3-component plasma. We consider nonlinear effects pro-

duced from the coupling of a CPEM wave A ¼
A 0

�
x̂ cos

�
kz� xtÞ

�
� ŷ sin

�
kz� xt

�	
with the 3-com-

ponent relativistic degenerate plasma. Here, x and k are the

Fig. 1 Dispersion curves,

obtained by plotting the solution

of Eq. (15), for a plasma

consisting of relativistic

degenerate electrons, dynamic

degenerate ions, and non-

relativistic electrons beam for

H ¼ 0:007 and b ¼ 10�5
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angular frequency and wave number of the incident elec-

tromagnetic wave. We choose CPEM wave in a manner

that the nonlinear term, which is proportional to A 2 in the

KGE and SEs, vanish. It is further assumed that the plas-

mas oscillate transversely to the propagation direction of

electromagnetic wave and, therefore, we put / ¼ 0. Fur-

ther, assuming that we and wm are time dependent only, we

get the following equations from the KGE. (1) and SE (4),

respectively:

�h2 o
2we

ot2
þ c2

�
� i�hrþ eA

�2
we þ m2

ec
4we ¼ 0; ð20Þ

and

i�h
owm

ot
¼ q2A2

2mm
wm: ð21Þ

By putting the value of A, and further simplifying the

above equations Eqs. (20) and (23), we get

�h2 o
2we

ot2
þ m2

ec
4cAwe ¼ 0; ð22Þ

and

i�h
owm

ot
¼ q2A2

0

2mm
wm: ð23Þ

Here, cA ¼
�

1 þ e2 A 2
0=m

2
ec

2
�1=2

is the relativistic gamma

factor signifying an increase in the mass of electron due to

interaction with the intense CPEM waves. The solution of

Eqs. (22) and (23) are:

we ¼w0eexp
�
� imec

2cAt=�h
�
; ð24Þ

wm ¼w0mexp
�
� ie2A2

0t=2mm�h
�
: ð25Þ

The electron number density in equilibrium can be deter-

mined by putting Eq. (24) in Eq. (2), and using qe ¼ �en0e

as,

jw0ej
2 ¼ n0e=cA: ð26Þ

Similarly, the unperturbed ion (non-relativistic beam

electrons) number density is calculated by putting qm ¼
qn0m and Eq. (25) in Eq. (5),

jw0mj
2 ¼ n0m: ð27Þ

The current densities are calculated by using Eq. (24) in

Eq. (3) and Eq. (25) in Eq. (6) as

Je ¼ � e2jw0ej
2

me
A ¼ � e2n0e

cAme
A; ð28Þ

and

Jm ¼ � q2jw0mj
2

mm
A ¼ � q2n0m

mm
A: ð29Þ

Using Eqs. (28) and (29), and the expression of total cur-

rent density JT in Eq. (9), we get the following relation:

1o2A

c2ot2
�r2A ¼ � l0e

2n0e

cAme
A� l0q

2n0m

mm
A: ð30Þ

By putting the value of A in Eq. (30), we get the nonlinear

dispersion relation as in follow:

x2 ¼ k2c2 þ
x2

pe

cA
þ
X

m¼i;eb

x2
pm: ð31Þ

If ions are considered to be static, the nonlinear dispersion

relation changes to the following relation:

x2 ¼ k2c2 þ
x2

pe

cA
þ x2

peb: ð32Þ

Figure 3 shows the dispersion of carrier waves for dif-

ferent b (non-relativistic quantum beam electrons concen-

tration) at fixed wave amplitude. It is observed that the

opacity of the plasma increases with the increase in b.

Fig. 2 Figure showing the

dispersion in the low-frequency

limit, obtained by plotting the

solution of Eq. (18), using H ¼
0:007 and b ¼ 10�5
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5 Stimulated Raman Scattering
and Modulational Instabilities

In the simulated Raman scattering (SRS), the decay of

CPEM wave results in a scattered electromagnetic wave

and an electron plasma wave. We assume the ions to be

static, serving as a uniform neutralizing background. For

simplicity, we introduce the transformation

we ¼ eweexp
�
� imecAc

2t=�h
�
, where cA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ e2 A 2

0=m
2
ec

2

q
is the gamma factor and A 0 is the

amplitude of the incident CPEM wave. The modified wave

function ewe then obeys the KGE in the following form:

i�h
o

ot
þ cAmec

2 þ e/

� �2

ewe � c2 �i�hrþ eAð Þ2ewe�

m2
ec

4ewe ¼ 0;

ð33Þ

The charge density then takes the following form:

qe ¼
�ie�h

2mec2
ew�
e

oewe

ot
� ewe

oew�
e

ot

 !

� cA þ
e/
mec2

� �
ejewej

2:

ð34Þ

The system of Eqs. (4), (9), (10), (33), and (34) in the SRS

case are linearized by using eweðr; tÞ ¼ ew0e þ ew1eðr; tÞ,
webðr; tÞ ¼ w0eb þ w1ebðr; tÞ, Aðr; tÞ ¼ A0ðr; tÞ þ A1ðr; tÞ
and /ðr; tÞ ¼ /1ðr; tÞ to obtain the following linearized

equations:

�h2 � o2ew1e

ot2
þ c2r2ew1e

 !

þ 2i�hcAmec
2 o
ew1e

ot

þ 2i�hc2eA0 � rew1e þ e 2cAmec
2/1 þ i�h

o/1

ot

� �
ew0e

� 2c2e2A0 � A1
ew0e ¼ 0;

ð35Þ

r2/1 ¼ ie�h

2�0mec2

�
ew�

0e

oew1e

ot
� ew0e

oew�
1e

ot

�

þ ecA
�0

�
ew�

0e
ew1e þ ew�

1e
ew0e

�
þ

x2
pe

cAc2
/1

þ e

�0

�
w�

0ebw1eb þ w�
1ebw0eb

�
;

ð36Þ

i�h
oweb

ot
þ ew0eb/1 ¼ 1

2me

�
� �h2r2 þ 2e2w0ebA0 � A1

�
web

ð37Þ

r2
� o2A1

ot2
� c2r2A1 þ

x2
pe

cA
A1 þ x2

pebA1

�

¼
x2

pe

n0e
r�

�
r�

�
A0

�ew�
0e
ew1e þ ew�

1e
ew0e

���

þ
x2

peb

n0eb
r�

�
r�

�
A0

�
w�

0ebw1eb þ w�
1ebw0eb

���

ð38Þ

The term A0 � rew1e in the Eq. (35) is associated with the

two-plasmon decay, which will not be considered in this

study. In what follows, we use the following Fourier rep-

resentations: ew1e ¼ bwþe exp
�
i
�
K � r� Xt

�	
þ bw�e exp

�
�

i
�
K � r� Xt

�	
; w1eb ¼ bwþeb exp

�
i
�
K � r� Xt

�	
þ

bw�eb exp
�
� i
�
K � r� Xt

�	
; /1 ¼ b/ exp

�
i
�
K � r� Xt

�	
þ

c:c:; A0 ¼ ð1=2ÞbA0 exp
�
i
�
k0 � r� x0t

�	
þ c:c: and A1 ¼

bAþ exp
�
i
�
kþ � r� xþt

�	
þ bA� exp

�
� i
�
k� � r� x�t

�	
þ

c:c: where x� ¼ x0 � X and k� ¼ k0 �K.

Now Fourier decomposing Eqs. (35), (36), (37), and

(38), and eliminating different Fourier coefficients, we get

the dispersion relation as follows:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
kλe

0.8

1

1.2

1.4

1.6

1.8

2

2.2

ω/
ω pe

β = 0.1
β = 0.001
β = 0.00001

a0 = 01

Fig. 3 Plots showing dispersion

of incident waves for ðb ¼
0:00001; 0:001; 0:1Þ and

a0 ¼ 01
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1 þ cAB
x2

pe

�
4cAx

2
pebm

2
eB

x2
peAC

¼
"
ð�X

02 þ x2
pe=cAÞ

A
þ

4x2
pebm

2
eX

02

AC
þ
x2

pebK
2�h2X

02

c2AC
�

4c2
Am

2
ec

2K2x2
peb

AC
þ

8cAx
2
pebc

2K2m2
e

AC
�
cAx

2
pebK

2ð�h2X
04 � 4c2

Am
2
ec

4X2Þ
c2x2

peAC

#

� c2e2M0;

ð39Þ

where

M0 ¼ j kþ � bA0 j
2

k2
þDAðxþ;kþÞ

þ j k� � bA0 j
2

k2
�DAðx�; k�Þ

;

A ¼ ð4c2
Am

2
ec

4 � �h2X
02Þ;

B ¼ ð�h2X
04 � 4c2

Am
2
ec

4X2Þ;
C ¼ ð4m2

eX
2 � �h2K4Þ;

X
02 ¼ ðX2 � c2K2Þ:

Here, relation DAðx�; k�Þ ¼ c2k2
� � x2

� þ x2
pe=cA þ x2

peb

governs the electromagnetic side-bands.

To evaluate the nonlinear dispersion relation Eq. (39)

numerically, we use a coordinate system such that k0 ¼
k0bz and bA0 ¼ A0ðbx þ ibyÞ. We take K ¼ Kkbz þ K?by.

Therefore, we have K2 ¼ K2
? þ K2

k ,

cA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ e2j bA0j2=m2

lc
2Þ

q
, jk� � bA0j2 ¼ j bA0j2½2ðk0 �

KkÞ2 þ K2
?� and k2

� ¼ K2
? þ ðk0 � KkÞ2

. The incident wave

A0 obeys the nonlinear dispersion relation given by:

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2k2

0 þ x2
peb þ x2

pe=cA
q

.

Now, we assume that X ¼ XR þ iXI , where XR and XI

are the real part of the frequency and the growth rate,

respectively, and we solve the Eq. (39) numerically.

In Fig. 4, we have shown the growth rate of the SRS

instability in the 3-component relativistic quantum plasma

with quantum parameter H = 0.007 for different CPEM

wave amplitudes. As was observed in Refs. (Eliasson and

Shukla 2011; Ikramullah et al. 2017) for the 2- and 3-

component plasma, we observe a spread in the spectrum

with the increasing amplitude of the CPEM wave. The

growth rate increases with an increase in the amplitude of

the CPEM wave and has an optimum value at a0 ¼ 05.

Figure 5 shows the growth rate of the MI at various

wave amplitudes, and at quantum parameter H ¼ 0:007. As

was noticed in the case of the Raman scattering, one can

see that both the spectrum and the growth rate reaches to an

optimum value at a0 ¼ 5:0 and then drops as one moves to

the higher CPEM wave amplitudes.

6 Stimulated Brillouin (SBS) Scattering

In the SBS instability, an incident electromagnetic wave

changes to a low-frquency ion-acoustic wave associated

with the ions density fluctuations and a high-frequency

scattered electromagnetic wave. In the 3-component

plasma undertaken here, the KGE describes the collective

Fig. 4 Plots displaying the SRS growth rate as function of the

wavenumbers Kk and K? for H ¼ 0:007, for CPEM amplitudes

a0 ¼ 1:0; 5:0; 20:0, and for the beam electrons concentration,

b ¼ 10�5
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oscillatory motion of electrons in the plasma. The lin-

earized KGE for electrons coupled with the CPEM waves

is given by Eq. (35). The ions (non-relativistic beam

electrons) dynamics is modeled by the Schrödinger equa-

tion coupled to the CPEM wave through Poisson and

Maxwell equations. By using ewmðr; tÞ ¼ ew0m þ ew1mðr; tÞ,
/ðr; tÞ ¼ /1ðr; tÞ and Aðr; tÞ ¼ A0ðr; tÞ þ A1ðr; tÞ, the

linearized Schrödinger equation is rewritten here while

neglecting the term proportional to the Two-Plasmon

Decay.

i�h
o

ot
w1m � qw0m/1 ¼ 1

2mm
��h2r2w1mþ
�

2c2w0mA0 � A1

� ð40Þ

The linearized wave and Poisson equations given by

Eqs. (9) and (10) in case of dynamical ions then take the

following form:

r2/1 ¼ ie�h

2�0mec2
ew�

0e

oew1e

ot
� ew0e

oew�
1e

ot

 !

þ ecA
�0

ew�
0e
ew1e þ ew�

1e
ew0e

� �
þ

x2
pe

cAc2
/1

�
X

m¼i;eb

q

�0

�
w0mw

�
1m þ w�

0mw1m

�
;

ð41Þ

and

r2 o2A1

ot2
� c2r2A1 þ

x2
pe

cA
A1 þ

X

m¼i;eb

x2
pmA1

 !

¼
x2

pe

n0e
r�

�
r�

�
A0

�ew�
0e
ew1e þ ew�

1e
ew0e

���

þ
X

m¼i;eb

x2
pm

n0m
r�

�
r�

�
A0

�
w�

0mw1m þ w�
1mw0m

���
:

ð42Þ

Now Fourier decomposing the above equations by using

w1m ¼ bwþm exp
�
i
�
K � r� Xt

�	
þ bw�m exp

�
� i
�
K � r�

Xt
�	
; /1 ¼ b/ exp

�
i
�
K � r� Xt

�	
þ c:c:; ewe ¼

bwþe exp
�
i
�
iK � r� iXt

�	
þ bw�e exp

�
� i
�
K � r� iXt

�	
;

A0 ¼ 1
2
bA0 exp

�
i
�
k0 � r� x0t

�	
þ c:c:; A1 ¼

bAþ exp
�
i
�
kþ� r� xþt

�	
þ bA� exp

�
i
�
k� � r� x�t

�	
þ

c:c:; where x� ¼ x0 � X and k� ¼ k0 �K and c.c. de-

notes the complex conjugate.

We now separate the Fourier modes by using the

Fourier decomposition in Eqs. (35), (40), (41), and (42),

and eliminating different Fourier coefficients, we get the

nonlinear dispersion relation in the following form:

1 þ cAB
x2

peA
�

4cAx
2
pim

2
i B

x2
peAD

�
4cAx

2
pebm

2
eB

x2
peAC

¼
"
ð�X

02 þ x2
pe=cAÞ

A
þ

4x2
pim

2
iX

02

AD
þ
x2

piK
2�h2X

02

c2AD
�

4c2
Am

2
ec

2K2x2
pi

AD
�

8cAx
2
pic

2K2memi

AD
�
cAx

2
piK

2B

c2x2
peAD

þ

4x2
pebm

2
eX

02

AC
þ
x2

pebK
2�h2X

02

c2AC
�

4c2
Am

2
ec

2K2x2
peb

AC
þ

8cAx
2
pebc

2K2m2
e

AC
�
cAx

2
pebK

2B

c2x2
peAC

þ

4cAxpi
2x2

pebK
2ðme þ miÞ2B

c2x2
peACD

#

� c2e2M0;

ð43Þ

where

Fig. 5 Plots depicting the growth rate of the MI as a function of the

wave numbers Kk and K? for CPEM amplitude of a0 ¼ 1:0; 5:0; 20,

quantum parameter H ¼ 0:007;, and beam electrons concentration,

b ¼ 10�5
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M0 ¼ j kþ � bA0 j2

k2
þDAðxþ; kþÞ

þ j k� � bA0 j2

k2
�DAðx�; k�Þ

;

D ¼ ð4m2
iX

2 � �h2K4Þ:

Here, DAðx�; k�Þ ¼ c2k2
� � x2

� þ
P

m¼i;eb

x2
pm þ x2

pe=cA
governs the electromagnetic sidebands.

In case of SBS, X\\cK, therefore, we neglect X2 and

its higher powers. We, therefore, get the following

expression from the nonlinear dispersion relation Eq. (43):

1 þ cAc
2E

x2
peF

�
4cAx

2
pim

2
i c

2E

x2
peED

�
4cAx

2
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2
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2
eK
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2
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cAx

2
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peFD

�
4x2
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2
eK

2
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pebK
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c2FC
�

4c2
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2
eK

2x2
peb

FC

þ
8cAx

2
pbK

2meme

ð4c2
Am

2
ec

2 þ �h2K2Þð4m2
eX

2 � �h2K4Þ
�
cAx

2
pebK

2E

c2x2
peFC

þ
4cAxpi

2x2
pebK

2ðme þ miÞ2E

x2
peFDC

#

� c2e2M00;

ð44Þ

where

M00 ¼ j kþ � bA0 j
2

k2þðc2k2
þ � ðx2

0 þ 2x0XÞ þ x2
pe=cA þ

P

m¼i;eb

x2
pmÞ

þ

j k� � cA0 j
2

k2�ðc2k2
� � ðx2

0 � 2x0XÞ þ x2
pe=cA þ

P

m¼i;eb

x2
pmÞ

;

E ¼ð�h2K4 � 4c2
Am

2
eX

2Þ;
F ¼ð4c2

Am
2
ec

2 þ �h2K2Þ:

To solve Eq. (44) numerically, we use the same coordinate

system as was used in the case of SRS and we simplify

various expressions in a fashion similar to what employed

in the case of Eq. (39).

From Fig. 6, we observe that the spectrum spreads with

the increasing values of the CPEM amplitude, and the

growth rate is maximum at a0 ¼ 05. We also note that the

growth rate of the instability enhances and that the spec-

trum spreads with an increase in the beam electrons

concentration.

Our study shows a signature of strong correlation

between the growth rates of these instabilities and the

relativistic quantum parameter H. This suggests a strong

association between the particles collective motion at the

quantum scale and the dispersive properties of the plasma,

thus, affecting the growth rates of the parametric instabil-

ities as was earlier observed by Shukla and Stenflo Ref.

(Shukla and Stenflo 2006).

Fig. 6 Figure depicting the growth rate of the SBS as a function of the

wavenumbers Kk and K? for the quantum parameter H ¼ 0:007,

CPEM amplitude a0 ¼ 1:0; 5:0; 20:0 and beam concentration,

b ¼ 10�5
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7 Conclusion

The extension of the models developed in Refs. (Eliasson

and Shukla 2011; Ikramullah et al. 2017) is carried out for

the 3-component relativistic quantum plasma comprising

of relativistic degenerate electrons, dynamic degenerate

ions, and non-relativistic quantum beam of electrons. The

KGE is used for the relativistic degenerate electrons, while

the dynamical degenerate ions and the non-relativistic

beam of degenerate electrons are modeled through the SEs.

Four modes have been observed in the dispersion. These

modes are affected by a change in the quantum parameter

(the density) of the plasma. The interaction of the intense

CPEM waves with the 3-component quantum plasma

shows that while an increase in the CPEM amplitude leads

to self-induced transparency due to the relativistic mass

increase, the addition of non-relativistic degenerate elec-

tron beam increases the plasma opacity. The growth rates

of both the SRS and the SBS instabilities reduce with an

increase in the quantum parameter H, and the scattering

spectra get restricted to small wave-number regions.

Whereas the spectra of these parametric instabilities remain

largely insensitive to the changes in the beam concentration

for small amplitude CPEM waves, the spectra change

significantly with a change in the beam concentration when

CPEM waves of large amplitude interact with the 3-com-

ponent plasma. Furthermore, the growth rates increase with

an increase in the non-relativistic electrons beam concen-

tration. The width of the scattering spectra increases with

an increase in the amplitudes of the CPEM wave. The

growth-rate first enhances and then reduces with the

increasing intensity of the CPEM wave. The growth rate of

the MI also shows dependence on the quantum parameter

as well as on the beam concentration.
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