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Abstract
In the current paper, we introduce an efficient methodology to solve nonlinear stochastic differential equations (SDEs)

driven by variable order fractional Brownian motion (vofBm) with appropriate initial condition. SDEs have many

applications throughout pure mathematics and are used to model various behaviors of stochastic models such as stock

prices, random growth models or physical systems that are subjected to thermal fluctuations. The mechanism of our

proposed approach, which is based on Bernoulli polynomials operational matrices, is that it first transforms the problem

under consideration into a nonlinear stochastic integral equation (SIE) driven by vofBm by using given initial condition

and integrating from both sides of nonlinear SDE over the interval [0, t], where t 2 ½0;T�. Then, operational matrices of

integration (omi) based on Bernoulli polynomials are utilized to significantly reduce the complexity of solving obtained

SIE through converting such SIE into a nonlinear system of algebraic equations. Error analysis and convergence of

suggested technique are also analyzed under some mild conditions. It is concluded that by increasing n̂, the approximate

solution more accurately estimates the exact solution, where n̂ denotes the number of elements in the used Bernoulli vector.

Finally, some test problems are included to emphasize that the introduced idea is accurate, efficient and applicable. One of

the most important innovations of this paper is the numerical simulation of vofBm, which is done in two steps. In the first

step, standard Brownian motion (sBm) is constructed via spline interpolation scheme and then block-pulse and hat

functions are used in the second step to simulate vofBm. Moreover, the obtained numerical results are also compared with

achieved results from Chebyshev cardinal wavelets (Ccw) method to confirm the superiority of the presented method

respect to the previous methods. This paper finishes with presenting a real application of this model and solving it via our

method.

Keywords Stochastic differential equations � Variable order fractional Brownian motion � Bernoulli polynomials �
Operational matrix method � Error analysis

1 Introduction

The significant part of contents in numerical analysis field

is designing and analyzing of efficient algorithms to meet

demands that have been appeared in other sciences. Among

the available methods, the operational matrix methods

(omm) have dedicated itself a lot of researches. These

methods are based on expansion of all functions in the

problem under investigation with various basic functions

and using popular matrices which are named omi and

operational matrix of differentiation (omd). Different

functions and polynomials have been extensively utilized

as basic functions by mathematicians to approximate the

solution of underlying problem. For examples, Chebyshev

polynomials have been employed by Heydari et al. to solve

variable order fractional biharmonic equation and nonlin-

ear Ginzburg–Landau equation in Heydari and Avazzadeh

(2018) and Heydari et al. (2019), respectively. Abbasbandy

et al. (2015) applied Legendre functions to estimate the

solution of time fractional convection-diffusion equation.

An applicable technique based on Bernoulli polynomials
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together with its accuracy analysis has been introduced by

Singh et al. (2018). Euler polynomials have been used as

basic functions in Balcı and Sezer (2016) to find the

numerical solution of generalized linear Fredholm integro-

differential difference equations. A numerical technique

based on Bernstein polynomials has been improved by

Chen et al. to estimate the solution of variable order linear

cable equation in Chen et al. (2014). Finally, block-pulse

functions have been proposed by Maleknejad et al. (2012),

delta functions have been used by Roodaki and Almasieh

(2012), triangular functions have been employed by Asgari

and Khodabin (2017), hat functions have been suggested

by Tripathi et al. (2013), to solve various and numerous

problems of mathematics.

Fractional calculus has gained the attention of scholars

as a mathematical modeling tool to describe occurred

phenomena in many various disciplines. Fractional order

models are more appropriate than integer order models to

survey the behavior of processes with memory and

hereditary features. The mathematical scientists have to

focus on numerical schemes due to only a few number of

such equations have analytical solution. The many efforts

of researchers to estimate the solution of fractional prob-

lems have led to the development of various numerical

techniques. The common methods are wavelet method (ur

Rehman and Khan 2011), operational matrix methods

(Mirzaee and Samadyar 2019; Rahimkhani et al. 2017),

Galerkin method (Kamrani 2016), collocation method

(Rahimkhani et al. 2019), finite difference method (Li

et al. 2011), finite element method (Li et al. 2018), mesh-

less method (Mirzaee and Samadyar 2019), spectral ele-

ment method (Dehghan and Abbaszadeh 2018), the

multistep Laplace optimized decomposition method

(Maayah et al. 2022), etc.

Existence of various stochastic perturbation factors and

production of powerful computing tools have led us that

occurred phenomena in real life are modeled via different

types of stochastic problems to reveal more accurate details

in behavior description of such phenomena. In addition to

no having the exact solution of such equations in many

situations, it is also difficult obtaining their numerical

solution. Thereby among introduced schemes in published

papers, one method can play a more important role among

other numerical methods if it produces more accurate

results and can be extended to solve other problems. Finite

difference method which has been utilized to solve linear

stochastic integro-differential equations in Dareiotis and

Leahy (2016) can be caused many difficulties in real life

problems. For instance, discretization of domain and gen-

erating meshes is a time consuming and costly activity.

Furthermore, some finite difference ideas are uncondi-

tionally stable. In the last decade, omm have been extre-

mely used to obtain sufficiently high accuracy and alleviate

accumulation of truncated error, complexity, computa-

tional operations and CPU times. For example, it has been

greatly utilized to solve stochastic Volterra–Fredholm

integral equations in Khodabin et al. (2012). Stochastic

Volterra integral equations has been numerically solved by

this method based on block-pulse and triangular functions

in Maleknejad et al. (2012) and Khodabin et al. (2013),

respectively. Samadyar et al. introduced orthonormal Ber-

noulli polynomials and applied them to approximate solu-

tion of stochastic Itô–Volterra integral equations of Abel

type in Samadyar and Mirzaee (2020). In Heydari et al.

(2016), omm based on second kind Chebyshev wavelets

has been suggested by Heydari et al. to achieve an accurate

numerical solution of stochastic heat equation. Shifted

Legendre Spectral Collocation Algorithm has been applied

to investigate the existence and uniqueness of the solution

of fractional stochastic integro differential equations and

obtain its numerical simulation in Badawi et al. (2022).

The approximate solution of fractional stochastic integro

differential equations using Legendre-shifted spectral

approach and Legendre Gauss spectral collocation method

has been presented by Badawi et al. in the papers Badawi

et al. (2023a, b), respectively.

Sheng et al. (2011) introduced vofBm in the Riemann–

Liouville sense as follows:

BHðtÞðtÞ ¼ 1

CðHðtÞ þ 1
2
Þ

Z t

0

ðt � sÞHðtÞ�1
2dBðsÞ; ð1Þ

where HðtÞ 2 ð0; 1Þ. Notice that specific situations of this

process are classical fBm and sBm that obtain by consid-

ering HðtÞ ¼ H and HðtÞ ¼ 1
2
, respectively. Although

solving stochastic problems driven by sBm and classical

fBm is difficult, there have been more works on the

numerical solution of such equations rather than the

numerical solution of stochastic problems driven by

vofBm. Providing a flexible method together with analyz-

ing its convergence to solve stochastic evolution equations

driven by fBm has been done in Kamrani and Jamshidi

(2017). Nonlinear stochastic Itô–Volterra integral equa-

tions driven by fBm have been solved by omm based on hat

functions and modification of hat functions in Hashemi

et al. (2017) and Mirzaee and Samadyar (2018), respec-

tively. It is essential that mentioned that classical fBm is

appropriate only for modeling mono fractal phenomena

which have similar global irregularity and fixed memory.

On the other hand, global self-similarity is rarely appeared

and fixed scaling is only satisfied for a series of certain

finite intervals. Moreover, experimental data show that

scaling exponent and order of similarity have multivalues

and there exist phenomena in real life which have multi-

fractal properties with variable space and time dependent

memory. Thus, vofBm is a suitable way to overcome these
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limitations and it has been recently used for modeling

events with variable irregularities or variable memory

properties.

Suppose that BHðtÞðtÞ; t� 0, be a vofBm process which is

defined in Eq. (1). An differential equation of the form

Heydari et al. (2019)

dUðtÞ ¼ l
�
t;UðtÞ

�
dtþ r

�
t;UðtÞ

�
dBHðtÞðtÞ; t 2 ½0; 1�;

Uð0Þ ¼ U0;

(

ð2Þ

where the functions lðu; tÞ and rðu; tÞ are known smooth

functions and U(t) is an unknown stochastic process

defined on a certain probability space ðX;F ;PÞ, is named

nonlinear SDE driven by vofBm. The process B(t) denotes

a sBm defined on same probability space and U0 is a given

deterministic initial value. The functions lðu; tÞ and rðu; tÞ
are called the coefficients of this equation.

Equation of the form (2) is seen in modeling various

problems such as signal processing (Sheng et al. 2012),

geophysics (Echelard et al. 2010), financial time series

(Corlay et al. 2014), but unfortunately its exact solution in

many situations is not available. In the present time, it is

very difficult to solve the nonlinear SDEs driven by vofBm

either analytically or numerically. So, there are not many

published literatures on this subject. In this paper, we

introduced an efficient idea to find the numerical solution

of nonlinear SDE expressed in Eq. (2). The structure of this

method is such that it first transform the mentioned SDE

into a corresponding SIE driven by vofBm and expand all

functions in the obtained SIE with Bernoulli polynomials.

In the sequel, stochastic omi driven by vofBm based on

Bernoulli polynomials is derived, and then it together with

ordinary omi are used to convert solving the mentioned

problem into solving a set of nonlinear equations. That

way, we try to find the numerical solution of this equation

with higher accuracy and lower computational perfor-

mance. The most important advantages of the presented

method are as follows:

• Using this method, equation under consideration is

converted to a system of algebraic equations which can

be easily solved. Therefore, the complexity of this

equation, which is caused by fractional and stochastic

terms, becomes very simple.

• The unknown coefficients of the approximation of the

function with these basis are easily calculated without

any integration. Therefore, the computational cost of

the proposed numerical method is low.

• Because of the simplicity of Bernoulli polynomials, this

method is a powerful mathematical tool to solve various

kinds of equations with little additional works. In other

words, Bernoulli polynomials are the simple basis

functions, so the proposed method is easy to implement

and it is a powerful mathematical tool to obtain the

numerical solution of various kind of problems with

little additional works.

• The proposed scheme is convergent. Also, when the

exact solution of the problem is a polynomial of degree

n, we obtain the exact solution.

The outline of the rest of this paper is organized as follows.

Simulation of vofBm by using block-pulse and hat func-

tions has been done in Sect. 2. The definition of Bernoulli

polynomials and some of their properties are presented in

Sect. 3. In Sect. 4, a numerical method for solving the

nonlinear SDEs driven by vofBm is proposed. The error

analysis has been investigated in Sect. 5. The numerical

results and application of under consideration problem in

real world are carried out in Sect. 6 and Sect. 7, respec-

tively. Finally, the conclusion is included in the Sect. 8.

2 Simulation of vofBm

.

2.1 Variable Order Fractional Integral Operator

Definition 1 Suppose that aðtÞ� 0 is a known continuous

function. The Riemann–Liouville fractional integral of

function f(t) of variable order aðtÞ is defined as follows

(Chen et al. 2014):

�
I aðtÞf

�
ðtÞ ¼

1

CðaðtÞÞ

Z t

0

ðt � sÞaðtÞ�1f ðsÞds; aðtÞ[ 0;

f ðtÞ; aðtÞ ¼ 0:

8<
:

ð3Þ

2.2 The Block-Pulse Functions

Definition 2 (Maleknejad et al. 2012) Consider a vector of

block-pulse functions with m̂ components over the interval

½0;TÞ as follows:

Um̂
�!ðtÞ ¼ ½/1ðtÞ;/2ðtÞ; . . .;/m̂ðtÞ�T ; ð4Þ

where the ith components of this vector is defined by

/iðtÞ ¼
1; ði � 1ÞT

m̂
� t\i

T

m̂
;

0; otherwise;

8<
: i ¼ 1; 2; . . .; m̂: ð5Þ
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Any absolutely integrable function f(t), defined over the

interval ½0;TÞ, can be expanded by m̂ terms of block-pulse

functions as follows:

f ðtÞ ’ fm̂ðtÞ ¼
X̂m

i¼1

fi/iðtÞ ¼ Fm̂
�!T

Um̂
�!ðtÞ; ð6Þ

where Um̂
�!ðtÞ is defined in Eq. (4) and

Fm̂
�! ¼ ½f1; f2; . . .; fm̂�T . Furthermore, ith component of vec-

tor Fm̂
�!

is calculated by the following relation

fi ¼
m̂

T

Z iTm̂

ði�1ÞTm̂
f ðtÞ/iðtÞdt ¼

m̂

T

Z iT
m̂

ði�1ÞT
m̂

fðtÞdt

’ f
�ð2i � 1ÞT

2m̂

�
; i ¼ 1; 2; . . .; m̂:

ð7Þ

Remark 1 (Kilicman and Al Zhour 2007) Integration and

differentiation of block-pulse functions vector Um̂
�!ðtÞ for l-

times is approximated as follows:

Z t

0

. . .

Z t

0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
l�times

Um̂
�!ðsÞds ’ I

ðlÞ
m̂ Um̂
�!ðtÞ; dl Um̂

�!ðtÞ
dtl

’ D
ðlÞ
m̂ Um̂
�!ðtÞ;

ð8Þ

where I
ðlÞ
m̂ and D

ðlÞ
m̂ are called block-pulse omi and omd of l-

times, respectively, and are given by

I
ðlÞ
m̂ ¼

�T
m̂

�l 1

ðl þ 1Þ!

1 n1 n2 . . . nm̂�1

0 1 n1 . . . nm̂�2

0 0 1 . . . nm̂�3

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . 1

0
BBBBBBB@

1
CCCCCCCA

m̂�m̂

;

ð9Þ

and

D
ðlÞ
m̂ ¼ ðl þ 1Þ!

�m̂

T

�l

1 f1 f2 . . . fm̂�1

0 1 f1 . . . fm̂�2

0 0 1 . . . fm̂�3

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . 1

0
BBBBBBB@

1
CCCCCCCA

m̂�m̂

;

ð10Þ

where nj ¼ ðj þ 1Þlþ1 � 2jlþ1 þ ðj � 1Þlþ1
and fj ¼

�
Pj

i¼1 nifj�i and f0 ¼ 1.

2.3 The Hat Functions

Definition 3 (Hashemi et al. 2017) In a hat functions

vector Wm̂
�!ðtÞ ¼ ½w0ðtÞ;w1ðtÞ; . . .;wm̂�1ðtÞ�

T
over the

interval ½0;TÞ with m̂ components, the first component is

defined as follows:

w0ðtÞ ¼
h � t

h
; 0� t\h;

0; otherwise:

8<
: ð11Þ

The ith component is defined as follows:

wiðtÞ ¼

t � ði � 1Þh
h

; ði � 1Þh� t\ih;

ði þ 1Þh � t

h
; ih� t\ði þ 1Þh;

0; otherwise;

8>>>><
>>>>:

i ¼ 1; 2; . . .; m̂ � 2:

ð12Þ

Finally, the last component is defined as follows:

wm̂�1ðtÞ ¼
t � ðT� hÞ

h
; T� h� t\T;

0; otherwise;

8<
: ð13Þ

where h ¼ T
m̂�1

.

Every continuous function g(t) can be approximated by

using m̂ terms of hat functions as follows:

gðtÞ ’ gm̂ðtÞ ¼
X̂m�1

i¼0

giwiðtÞ ¼ Gm̂
�!T

Wm̂
�!ðtÞ; ð14Þ

where Gm̂
�! ¼ ½g0; g1; . . .; gm̂�1�T , and gi ¼ gðihÞ for

i ¼ 0; 1; . . .; m̂ � 1.

Theorem 1 (Heydari et al. 2019) Consider positive con-

tinuous function aðtÞ : ½0;TÞ ! Rþ and hat functions

vector Wm̂
�!ðtÞ. The Riemann–Liouville fractional integra-

tion Wm̂
�!ðtÞ of variable order aðtÞ is represented by�

IaðtÞWm̂
�!�

ðtÞ, and is estimated as follows:

�
I aðtÞWm̂

�!�
ðtÞ ’ L

aðtÞ
m̂ Wm̂

�!ðtÞ; ð15Þ

where L
aðtÞ
m̂ is called fractional omi of variable order aðtÞ

for hat functions and is computed as follows:

L
aðtÞ
m̂ ¼

0 q1 q2 . . . qm̂�2 qm̂�1

0 .1;1 .1;2 . . . .1;m̂�2 .1;m̂�1

0 0 .2;2 . . . .2;m̂�2 .2;m̂�1

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 . . . .m̂�2;m̂�2 .m̂�2;m̂�1

0 0 0 . . . 0 .m̂�1;m̂�1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

m̂�m̂

;

ð16Þ

where
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qj ¼
haðjhÞ

CðaðjhÞ þ 2Þ
�
ðj � 1ÞaðjhÞþ1 þ jaðjhÞ

�
aðjhÞ � j þ 1

��
;

j ¼ 1; 2; . . .; m̂ � 1;

and for i; j ¼ 1; . . .; m̂ � 1,

.i;j ¼

0; j\i;

haðjhÞ

CðaðjhÞ þ 2Þ ; j ¼ i;

haðjhÞ

CðaðjhÞ þ 2Þ

�
ðj � i þ 1ÞaðjhÞþ1

�2ðj � iÞaðjhÞþ1 þ ðj � i � 1ÞaðjhÞþ1
�
; j[ i;

8>>>>>>>>><
>>>>>>>>>:

Theorem 2 (Heydari et al. 2019) Assume that Um̂
�!ðtÞ and

Wm̂
�!ðtÞ denote the block-pulse and hat functions vectors,

respectively. The vector Um̂
�!ðtÞ can be estimated as follows:

Um̂
�!ðtÞ ’ Rm̂Wm̂

�!ðtÞ; ð17Þ

where Rm̂ ¼ ðrijÞ is a matrix of order m̂ � m̂ which its

elements are computed from the following formula

rij ¼ /i

�
ðj � 1Þh

�
; i; j ¼ 1; 2; . . .; m̂: ð18Þ

2.4 The vofBm Process Simulation

In this section, block-pulse and hat functions which are

introduced in Subsects. 2.2 and 2.3 are employed to sim-

ulate the vofBm process. The strategy of constructing this

stochastic process is divided into two parts. The sBm

process is constructed in the first step by using the prop-

erties of this process and spline interpolation method. It is

essential to mention that in this step other interpolation

methods such as ‘‘linear’’, ‘‘nearest’’, ‘‘cubic’’ and ‘‘pchip’’

can be used instead of spline interpolation method. In the

second step, first the simulated sBm process is estimated by

block-pulse functions, and then, the relationship between

block-pulse and hat functions is applied to obtain the

vofBm process.

Step 1. Simulation of sBm process: Let’s start by

hinting the properties of sBm process. This

process is denoted by BðtÞ; t 2 ½0;T� and has

the following properties (Mirzaee and Samad-

yar 2018):

• Bð0Þ ¼ 0.

• The increment BðtÞ � BðsÞ where

0� s\t �T has normal distribution with

mean 0 and variance t � s, i.e., BðtÞ �

BðsÞ�
ffiffiffiffiffiffiffiffiffiffi
t � s

p
N ð0; 1Þ such that N ð0; 1Þ

denotes normal distribution with mean 0

and variance 1.

• The increments BðtÞ � BðsÞ and

BðvÞ � BðuÞ, where 0� u\v\s\t �T

are independent.

To construct sBm, first we choose a large

positive integer number N 2 Zþ and let

dt ¼ T
N. Then, we consider distinguished nodal

points tj ¼ jdt for j ¼ 0; 1; . . .;N. The first

condition of sBm tell us that Bð0Þ ¼ 0 with

probability 1, and the second and third con-

ditions ensure us that BðtjÞ ¼ Bðtj�1Þ þ dBðtjÞ
where j ¼ 1; 2; . . .;N, and

dBðtjÞ�
ffiffiffiffi
dt

p
N ð0; 1Þ is independent random

variable. This procedure create a discretized

sBm and then spline interpolation scheme is

used to achieve a continuous function for

sBm. The Matlab code for simulating sBm

process over the interval [0, 1] with N ¼ 100

has been presented in Algorithm 1. The

command ‘‘randn’’ has been used to create a

random number with normal distribution and

mean 0 and variance 1.

Step 2. Simulation of vofBm. As we mentioned in

Sect. 2.2, every absolutely integrable function

can be expanded in terms of block-pulse

functions. So, the extension of sBm can be

written as follows:

BðtÞ ’ Bm̂
�!T

Um̂
�!ðtÞ; ð19Þ

where Bm̂
�! ¼ ½b1; b2; . . .; bm̂�T , bi ’ B

�
ð2i�1ÞT

2m̂

�
for

i ¼ 1; 2; . . .; m̂, and the block-pulse vector Um̂
�!ðtÞ has been

introduced in Eq. (4). By substituting Eq. (19) into Eq. (1),

we obtain

BHðtÞðtÞ ’ 1

CðHðtÞ þ 1
2
Þ

Z t

0

ðt � sÞHðtÞ�1
2d
�

Bm̂
�!T

Um̂
�!ðsÞ

�
:

ð20Þ

From Eqs. (8) and (17), we conclude

BHðtÞðtÞ ’ Bm̂
�!T

D
ð1Þ
m̂ Rm̂

CðHðtÞ þ 1
2
Þ

Z t

0

ðt � sÞHðtÞ�1
2Wm̂
�!ðsÞds

¼ Bm̂
�!T

D
ð1Þ
m̂ Rm̂

�
IHðtÞþ1

2Wm̂
�!�

ðtÞ:
ð21Þ

Finally, Eq. (15) yields

BHðtÞðtÞ ’ Bm̂
�!T

D
ð1Þ
m̂ Rm̂L

HðtÞþ1
2

m̂ Wm̂
�!ðtÞ: ð22Þ
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The vofBm process simulation steps are summarized in

Algorithm 2.

Algorithm 1. Algorithm 2.

N ¼ 100; Input: m̂;HðtÞ.
T ¼ 1; Output: BHðtÞðtÞ.
dt=T

N; Step 1: Compute the value of

h ¼ T
m̂�1

.

for i ¼ 0 : N Step 2: Compute the vector

Bm̂
�! ¼ ½b1; b2; . . .; bm̂�T .

tði þ 1; 1Þ ¼ i dt; Step 3: Compute matrix D
ðlÞ
m̂ for l ¼

1 from Eq. (10).

end Step 4: Compute matrix Rm̂ from

Theorem 2.

B ¼ zerosðN þ 1; 1Þ; Step 4: Compute matrix L
aðtÞ
m̂ for

aðtÞ ¼ HðtÞ þ 1
2
.

for i ¼ 2 : N þ 1 Step 5: Compute BHðtÞðtÞ from
Eq. (22).

Bði; 1Þ ¼ Bði � 1; 1Þ þffiffiffiffi
dt

p
randn;

end

sBm=plot(t, B);

3 Bernoulli Polynomials

Definition 4 (Bazm 2015) The Bernoulli polynomials

satisfy in the following formula

Xj

i¼0

j þ 1

i

	 

BiðtÞ ¼ ðj þ 1Þtj; j ¼ 0; 1; 2; . . .: ð23Þ

Equation (23) can be written in the following matrix

form

Gn̂ !n̂
�!ðtÞ ¼ Xn̂

�!ðtÞ; ð24Þ

where Xn̂
�!ðtÞ ¼ ½1; t; t2; . . .; tn̂�1�T , !n̂

�!ðtÞ ¼
½B0ðtÞ;B1ðtÞ; . . .;Bn̂�1ðtÞ�T denotes Bernoulli basic vec-

tor, and Gn̂ ¼ ðgijÞ is a lower triangular matrix of order

n̂ � n̂ and

gij ¼
1

i

i

j � 1

	 

; i� j;

0; i\j;

8<
: i; j ¼ 1; 2; . . .; n̂: ð25Þ

Since all diagonal elements of matrix Gn̂ are nonzero, then

the matrix Gn̂ is nonsingular and Bernoulli basic vector can

be directly calculated from

!n̂
�!ðtÞ ¼ G�1

n̂ Xn̂
�!ðtÞ: ð26Þ

Every integrable function u(t) can be expanded by using n̂

terms of Bernoulli polynomials as follows:

uðtÞ ’ un̂ðtÞ ¼
X̂n�1

i¼0

uiBiðtÞ ¼ Un̂
�!T

!n̂
�!ðtÞ; ð27Þ

where Un̂
�! ¼ ½u0; u1; . . .; un̂�1�T , and the component ui is

computed from the following formula

ui ¼
1

i!

Z 1

0

diuðtÞ
dti

dt; i ¼ 0; 1; . . .; n̂ � 1: ð28Þ

Theorem 3 (Bazm 2015) The integral of Bernoulli vector

!n̂
�!ðsÞ respect to variable s over the interval [0, t] can be

estimated as follows:Z t

0

!n̂
�!ðsÞds ’ Pn̂ !n̂

�!ðtÞ; ð29Þ

where the matrix Pn̂ is named omi based on Bernoulli

polynomials and is computed as follows:

Pn̂ ¼

�B1ð0Þ 1 0 . . . 0 0

�B2ð0Þ
2

0
1

2
. . . 0 0

..

. ..
. ..

. . .
. ..

. ..
.

�Bn̂�1ð0Þ
n̂ � 1

0 0 . . . 0
1

n̂ � 1

�Bn̂ð0Þ
n̂

0 0 . . . 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

n̂�n̂

: ð30Þ

In the following, a theorem is stated for the first time in

relation to stochastic omi driven by vofBm and then is

proved by authors.

Theorem 4 The stochastic integral of Bernoulli polyno-

mials vector !n̂
�!ðsÞ respect to vofBm BHðsÞðsÞ over the

interval [0, t] can be approximated as follows:Z t

0

!n̂
�!ðsÞdBHðsÞðsÞ ’ P

s

n̂ !n̂

�!ðtÞ; ð31Þ

where P
s

n̂ is a matrix of order n̂ � n̂ and is called stochastic

omi driven by vofBm. Also, we have P
s

n̂ ¼ G�1
n̂ An̂Gn̂

where An̂ ¼ ðaijÞ is a diagonal matrix with the following

diagonal components
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aij ¼
�
1� i � 1

4

�
BHð0:5Þð0:5Þ

�
�i � 1

2i�1

�
BHð0:25Þð0:25Þ; i ¼ j ¼ 1; 2; . . .; n̂:

ð32Þ

Proof From Eq. (26), we haveZ t

0

!n̂
�!ðsÞdBHðsÞðsÞ ¼ G�1

n̂

Z t

0

Xn̂
�!ðsÞdBHðsÞðsÞ: ð33Þ

Using part by part integration idea, we conclude

Z t

0

Xn̂
�!ðsÞdBHðsÞðsÞ ¼

R t

0
dBHðsÞðsÞR t

0
sdBHðsÞðsÞ

..

.

R t

0
sn̂�1dBHðsÞðsÞ

0
BBBBB@

1
CCCCCA

¼

BHðtÞðtÞ
tBHðtÞðtÞ �

R t

0
BHðsÞðsÞds

..

.

tn̂�1BHðtÞðtÞ �
R t

0
ðn̂ � 1Þsn̂�2BHðsÞðsÞds

0
BBBBB@

1
CCCCCA

¼ BHðtÞðtÞ

1

t

..

.

tn̂�1

0
BBBB@

1
CCCCA�

0R t

0
BHðsÞðsÞds

..

.

R t

0
ðn̂ � 1Þsn̂�2BHðsÞðsÞds

0
BBBBB@

1
CCCCCA
:

Let Nn̂
�!ðtÞ ¼

R t

0
Xn̂
�!ðsÞdBHðsÞðsÞ, where Nn̂

�!ðtÞ ¼
½-0ðtÞ;-1ðtÞ; . . .;-n̂�1ðtÞ�T and

-lðtÞ ¼ tlBHðtÞðtÞ �
Z t

0

lsl�1BHðsÞðsÞds; l ¼ 0; 1; . . .; n̂ � 1:

ð34Þ

The existing integral in Eq. (34) is calculated via composite

trapezoidal numerical integration rule. Thus, we obtain

-lðtÞ ’ tlBHðtÞðtÞ � tl

4

�
2
� t

2

�l�1
BHð t

2
Þ� t

2

�
þtl�1BHðtÞðtÞ

�

¼
�
1� l

4

�
tlBHðtÞðtÞ �

� l

2l

�
tlBHð t

2
Þ� t

2

�

¼
�
1� l

4

�
BHðtÞðtÞ �

� l

2l

�
BHð t

2
Þ� t

2

�	 

tl; l ¼ 0; 1; . . .; n̂ � 1:

ð35Þ

The values of BHðtÞðtÞ and BHð t
2
Þ� t

2

�
in Eq. (35) for

0� t � 1 can be approximated by - :¼ BHð0:5Þð0:5Þ and

. :¼ BHð0:25Þð0:25Þ, respectively. So, we can write

Nn̂
�!ðtÞ ’

- 0 . . . 0

0
3

4
-� 1

2
. . . . 0

..

. ..
. . .

. ..
.

0 0 . . .
�
1� n̂ � 1

4

�
-�

�n̂ � 1

2n̂�1

�
.

0
BBBBBBB@

1
CCCCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
An̂

1

t

..

.

tn̂�1

0
BBBB@

1
CCCCA

¼ An̂ Xn̂
�!ðtÞ:

ð36Þ

Using Eqs. (24), (33) and (36), we have
Z t

0

!n̂
�!ðsÞdBHðsÞðsÞ ¼ G�1

n̂ An̂ Xn̂
�!ðtÞ ¼ G�1

n̂ An̂Gn̂ !n̂

�!ðtÞ ¼ P
s

n̂ !n̂

�!ðtÞ;

ð37Þ

where P
s

n̂ ¼ G�1
n̂ An̂Gn̂. h

4 Numerical Scheme

The nonlinear SDE (2) can be written in the following SIE

form

UðtÞ ¼ U0 þ
Z t

0

l
�
s;UðsÞ

�
ds þ

Z t

0

r
�
s;UðsÞ

�
dBHðsÞðsÞ; t 2 ½0; 1�:

ð38Þ

Let

xðtÞ ¼ l
�
t;UðtÞ

�
; hðtÞ ¼ r

�
t;UðtÞ

�
: ð39Þ

Thus, we should solve the following SIE driven by vofBm

UðtÞ ¼ U0 þ
Z t

0

xðsÞds þ
Z t

0

hðsÞdBHðsÞðsÞ; t 2 ½0; 1�:

ð40Þ

From Eqs. (39) and (40), we have

xðtÞ ¼ l
�
t;U0 þ

R t

0
xðsÞds þ

R t

0
hðsÞdBHðsÞðsÞ

�
;

hðtÞ ¼ r
�
t;U0 þ

R t

0
xðsÞds þ

R t

0
hðsÞdBHðsÞðsÞ

�
:

(
ð41Þ

The unknown functions xðtÞ and hðtÞ can be expanded in

terms of Bernoulli polynomials as follows:

xðtÞ ’ Xn̂
�!T

!n̂
�!ðtÞ; hðtÞ ’ Hn̂

�!T
!n̂
�!ðtÞ; ð42Þ

where Xn̂
�!

and Hn̂
�!

are Bernoulli coefficient vectors of xðtÞ
and hðtÞ, respectively. By inserting the approximations (42)

into Eq. (41), we have

Xn̂
�!T

!n̂
�!ðtÞ ¼ l

�
t;U0 þ

R t

0
Xn̂
�!T

!n̂
�!ðsÞds þ

R t

0
Hn̂
�!T

!n̂
�!ðsÞdBHðsÞðsÞ

�
;

Hn̂
�!T

!n̂
�!ðtÞ ¼ r

�
t;U0 þ

R t

0
Xn̂
�!T

!n̂
�!ðsÞds þ

R t

0
Hn̂
�!T

!n̂
�!ðsÞdBHðsÞðsÞ

�
:

8>><
>>:

ð43Þ

Using operational matrices of integration defined in

Eqs. (29) and (31), we have
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Xn̂
�!T

!n̂
�!ðtÞ ¼ l

�
t;U0 þ Xn̂

�!T
Pn̂ !n̂

�!ðtÞ þ Hn̂
�!T

P
s

n̂ !n̂
�!ðtÞ

�
;

Hn̂
�!T

!n̂
�!ðtÞ ¼ r

�
t;U0 þ Xn̂

�!T
Pn̂ !n̂

�!ðtÞ þ Hn̂
�!T

P
s

n̂ !n̂
�!ðtÞ

�
:

8>><
>>:

ð44Þ

We consider n̂ Newton-Cotes collocation nodes which are

calculated as follows:

tl ¼
2l þ 1

2n̂
; l ¼ 0; 1; . . .; n̂ � 1: ð45Þ

By inserting collocation points tl into Eq. (44), we obtain

the following nonlinear system of 2n̂ algebraic equations

and 2n̂ unknowns

Xn̂
�!T

!n̂
�!ðtlÞ ¼ l

�
tl;U0 þ Xn̂

�!T
Pn̂ !n̂

�!ðtlÞ þ Hn̂
�!T

P
s

n̂ !n̂
�!ðtlÞ

�
;

Hn̂
�!T

!n̂
�!ðtlÞ ¼ r

�
tl;U0 þ Xn̂

�!T
Pn̂ !n̂

�!ðtlÞ þ Hn̂
�!T

P
s

n̂ !n̂
�!ðtlÞ

�
:

8>><
>>:

ð46Þ

The approximate solution of Eq. (2) is determined after

solving system (46) and computing unknown vectors as

follows:

UðtÞ ’ Un̂ðtÞ ¼ U0 þ Xn̂
�!T

Pn̂ !n̂
�!ðtÞ þ Hn̂

�!T
P

s

n̂ !n̂
�!ðtÞ:

ð47Þ

The process of the proposed method is described in the

step-by-step in Algorithm 3.

Algorithm 3.

Input: The number n̂, the vofBm BHðtÞðtÞ, the initial value U0,

and the functions l; r : ½0; 1� � R ! R.

Output:The numerical solution of

UðtÞ ’ U0 þ Xn̂
�!T

Pn̂ !n̂
�!ðtÞ þ Hn̂

�!T
P

s

n̂ !n̂
�!ðtÞ.

Step 1: Construct the vector !n̂
�!ðtÞ ¼ ½B0ðtÞ;B1ðtÞ; . . .;Bn̂�1ðtÞ�T

which BiðtÞ
for i ¼ 0; 1; . . .; n̂ � 1 satisfied in Eq. (23).

Step 2: Let xðtÞ ¼ l
�
t;UðtÞ

�
and hðtÞ ¼ r

�
t;UðtÞ

�
.

Step 3: Define the Bernoulli coefficient vectors of xðtÞ and hðtÞ which
are denoted by Xn̂

�!
and Hn̂

�!
.

Step 4: Compute the matrix Pn̂ using Eq. (30).

Step 5: Compute the matrix Gn̂ ¼ ðgijÞ, which gij for i; j ¼ 1; 2; . . .; n̂

are computed

using Eq. (25).

Step 6: Compute the matrix An̂ ¼ ðaijÞ , which aij for i; j ¼ 1; 2; . . .; n̂
are computed

using Eq. (32).

Step 7: Calculate the matrix P
s

n̂ ¼ G�1
n̂ An̂Gn̂.

Step 8: Consider n̂ Newton-Cotes collocation nodes tl for l ¼
0; 1; . . .; n̂ � 1 using Eq. (45).

Step 9: Put

Xn̂
�!T

!n̂
�!ðtlÞ ¼ l

�
tl;U0 þ Xn̂

�!T
Pn̂ !n̂

�!ðtlÞ þ Hn̂
�!T

P
s

n̂ !n̂
�!ðtlÞ

�
Hn̂
�!T

!n̂
�!ðtlÞ ¼ r

�
tl;U0 þ Xn̂

�!T
Pn̂ !n̂

�!ðtlÞ þ Hn̂
�!T

P
s

n̂ !n̂
�!ðtlÞ

�
8<
: .

Algorithm 3.

Step 10: Solve the nonlinear system in Step 9 and compute the

unknown vectors Xn̂
�!

and Hn̂
�!

.

5 Error Analysis

Theorem 5 (Tohidi et al. 2013) Suppose that f(t) is an

infinity continuous function over the interval [0, 1] and

fn̂ðtÞ is the approximate function of f(t) via Bernoulli

polynomials. The following upper error bound has been

achieved

f ðtÞ � fn̂ðtÞj j � 1

ðn̂ � 1Þ! max
t2½0;1�

Bn̂�1ðtÞ max
t2½0;1�

dn̂�1f ðtÞ
dtn̂�1

: ð48Þ

Theorem 6 Assume that xðtÞ ¼ lðt;UðtÞÞ and hðtÞ ¼
rðt;UðtÞÞ be the exact solutions of Eq. (41) such that

satisfy in the Lipschitz condition, i.e.,

jlðt;UÞ � lðt;VÞj þ jrðt;UÞ � rðt;VÞj �LjU � Vj:
ð49Þ

Let

xn̂ðtÞ ¼ l
�
t;Un̂ðtÞ

�
; hn̂ðtÞ ¼ r

�
t;Un̂ðtÞ

�
; ð50Þ

and consider

xn̂
n̂ðtÞ ¼ ln̂

�
t;Un̂ðtÞ

�
; hn̂

n̂ðtÞ ¼ rn̂

�
t;Un̂ðtÞ

�
; ð51Þ

as the approximate solutions of the mentioned equation,

where xn̂
n̂ðtÞ and hn̂

n̂ðtÞ are the estimation of xn̂ðtÞ and hn̂ðtÞ
via Bernoulli polynomials. Also, suppose that the following

assumption is satisfied

1� L�Hn̂L[ 0: ð52Þ

Then, the following upper error bound is obtained

jUðtÞ � Un̂ðtÞj �
W n̂ þHn̂T n̂

1� L�Hn̂L
; ð53Þ

where

Hn̂ ¼ max
t2½0;1�

BHðtÞðtÞ;

W n̂ ¼ max
t2½0;1�

jxn̂ðtÞ � xn̂
n̂ðtÞj ¼

1

ðn̂ � 1Þ! max
t2½0;1�

Bn̂�1ðtÞ max
t2½0;1�

dn̂�1xn̂ðtÞ
dtn̂�1

;

T n̂ ¼ max
t2½0;1�

jhn̂ðtÞ � hn̂
n̂ðtÞj ¼

1

ðn̂ � 1Þ! max
t2½0;1�

Bn̂�1ðtÞ max
t2½0;1�

dn̂�1hn̂ðtÞ
dtn̂�1

:

ð54Þ
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Proof According to Eq. (49) and Theorem 5, we have

jxðtÞ � xn̂
n̂ðtÞj � jxðtÞ � xn̂ðtÞj þ jxn̂ðtÞ � xn̂

n̂ðtÞj �LjUðtÞ � Un̂ðtÞj þW n̂;

jhðtÞ � hn̂
n̂ðtÞj � jhðtÞ � hn̂ðtÞj þ jhn̂ðtÞ � hn̂

n̂ðtÞj �LjUðtÞ � Un̂ðtÞj þ T n̂;

ð55Þ

where W n̂ and T n̂ have been defined in Eq. (54). On the

other hand, the approximate solution of Eq. (40) is as

follows:

Un̂ðtÞ ¼ U0 þ
Z t

0

xn̂
n̂ðsÞds þ

Z t

0

hn̂
n̂ðsÞdBHðsÞðsÞ; t 2 ½0; 1�:

ð56Þ

Equations (40) and (56) yield

jUðtÞ � Un̂ðtÞj � max
t2½0;1�

jxðtÞ � xn̂
n̂ðtÞj þHn̂ max

t2½0;1�
jhðtÞ � hn̂

n̂ðtÞj; ð57Þ

where Hn̂ ¼ maxt2½0;1� BHðtÞðtÞ. From Eqs. (55) and (57),

we get

jUðtÞ � Un̂ðtÞj �LjUðtÞ � Un̂ðtÞj þW n̂ þHn̂LjUðtÞ � Un̂ðtÞj þHn̂T n̂:

ð58Þ

From Eqs. (58) and (52), we conclude

jUðtÞ � Un̂ðtÞj �
W n̂ þHn̂T n̂

1� L�Hn̂L
: ð59Þ

h

Remark 2 Equation (53) tells us that if n̂ ! 1 then

W n̂; T n̂;Hn̂ ! 0, and therefore W n̂þHn̂T n̂

1�L�Hn̂L
! 0. It means

that by increasing n̂, the approximate solution Un̂ðtÞ tends
to the exact solution U(t).

6 Numerical Results

Two numerical examples are solved in this section via

proposed method to check applicability and computational

efficiency of the suggested technique. In reporting the

values of absolute errors (AEs) for some used Bernoulli

polynomials n̂, we pursue two goals. The first goal is that

the presented theoretical results in Sect. 5 are numerically

investigated in this section, and the second goal is that

presented numerical method is compared with Ccw method

(Heydari et al. 2019).

Example 1 (Heydari et al. 2019) Consider the following

SDE driven by vofBm

dUðtÞ ¼ m2 cos
�
UðtÞ

�
sin3

�
UðtÞ

�
dt� m sin2

�
UðtÞ

�
dBHðtÞðtÞ;

Uð0Þ ¼ U0;

(

ð60Þ

such that its exact solution is given by

UðtÞ ¼ arccot
�
mBHðtÞðtÞ þ cotðU0Þ

�
: ð61Þ

• The presented method in the Sect. 4 has been employed

to solve this example for three values n̂ ¼ 6; 8; 10 and

two functions HðtÞ ¼ 0:5þ 0:3 sinðptÞ and

HðtÞ ¼ 0:6� 0:2 expð�2tÞ, and obtained AEs at some

nodal points are reported in Tables 1 and 2, respec-

tively. Other variable parameters are considered as

T ¼ 1;N ¼ 50; m̂ ¼ 100, and U0 ¼ m ¼ 1
20
. It is men-

tioned in Heydari et al. (2019) that the values of AEs

obtained by considering M ¼ 3 and k ¼ 3; 4; 5. So,

authors have applied Ccw vector with 2kM ¼ 24; 48; 96

elements which this caused to generating larger matri-

ces and more computations. The results of these

tables reveal that our suggested method is more

accurate and efficient than Ccw method, and indicate

the effect of n̂ on the approximate solution. The value

of n̂ have inverse relation with the values of AEs, and

by increasing n̂ AEs decrease.

• Also, the behavior of AEs by considering mentioned

parameters is illustrated in Fig. 1. The truth of our

claim that the values of AEs decrease by increasing

Bernoulli vector’s size, can be more clearly seen from

this diagram.

• For investigating the effect of initial value and m on the

values of AEs, we consider the rest of the parameters as

N ¼ 100; m̂ ¼ 100; n̂ ¼ 6;T ¼ 1;HðtÞ ¼ 0:3þ
0:2 cosð�3tÞ; and run the Matlab code for different

values of U0 ¼ 1
10
; 1
20
; 1
30

and m ¼ 1
20
. Once again, we

consider the value of U0 ¼ 1
20

fixed and run program-

ming code for various values of m ¼ 1
10
; 1
20
; 1
30
. The

obtained results are reported in Table 3 and are plotted

in Fig. 2 which demonstrate that there is a direct

relation between initial value and the values of AEs.

Furthermore, the values of AEs are also related on m
directly.

Example 2 (Heydari et al. 2019) Consider the following

SDE driven by vofBm

dUðtÞ ¼ m2UðtÞ
�
U2ðtÞ � 1

�
dtþ m

�
1� U2ðtÞ

�
dBHðtÞðtÞ;

Uð0Þ ¼ U0;

(

ð62Þ

such that its exact solution is given by

UðtÞ ¼ ð1þ U0Þ expð2mBHðtÞðtÞÞ þ U0 � 1

ð1þ U0Þ expðmBHðtÞðtÞÞ � U0 þ 1
: ð63Þ

Iranian Journal of Science (2023) 47:1633–1647 1641

123



• The presented method in the Sect. 4 has been employed

to solve this example for three values n̂ ¼ 8; 10; 12 and

two functions HðtÞ ¼ 0:7þ 0:2 sinðptÞ and

HðtÞ ¼ 0:7� 0:25 expð�tÞ, and obtained AEs at some

nodal points are reported in Tables 4 and 5, respec-

tively. Other variable parameters are considered as

T ¼ 1;N ¼ 50; m̂ ¼ 100, U0 ¼ 0:01, and m ¼ 1
30
. It is

mentioned in Heydari et al. (2019) that the values of

AEs obtained by considering M ¼ 2 and k ¼ 4; 5; 6. So,

authors have applied Ccw vector with 2kM ¼
32; 64; 128 elements which this caused to generating

larger matrices and more computations. The results of

these tables reveal that our suggested method is more

accurate and efficient than Ccw method, and indicate

the effect of n̂ on the approximate solution. The value

of n̂ have inverse relation with the values of AEs, and

by increasing n̂ AEs decrease.

• Also, the behavior of AEs by considering mentioned

parameters is illustrated in Fig. 3. The truth of our

claim that the values of AEs decrease by increasing

Bernoulli vector’s size, can be more clearly seen from

this diagram.

• For investigating the effect of initial value and m on the

values of AEs, we consider the rest of the parameters as

N ¼ 100; m̂ ¼ 100; n̂ ¼ 8;T ¼ 1;HðtÞ ¼ 0:4þ 0:3t2;

and run the Matlab code for different values of U0 ¼
0:01; 0:005; 0:001 and m ¼ 1

30
. Once again, we consider

the value of U0 ¼ 0:01 fixed and run programming code

for various values of m ¼ 1
20
; 1
30
; 1
40
. The obtained results

are reported in Table 6 and are plotted in Fig. 4 which

Table 1 Comparison of AEs of

our method and Ccw method for

Example 1 with

HðtÞ ¼ 0:5þ 0:3 sinðptÞ

Ccw method Our method

tl k ¼ 3 k ¼ 4 k ¼ 5 n̂ ¼ 6 n̂ ¼ 8 n̂ ¼ 10

0.2 2.7463�10�6 3.8793�10�6 1.4045�10�6 2.5981�10�6 2.1483�10�7 2.4771�10�7

0.4 6.2365�10�6 2.4425�10�7 3.9707�10�7 2.1713�10�6 1.1339�10�7 7.6957�10�8

0.6 1.3982�10�6 4.9411�10�7 3.4729�10�7 2.4453�10�6 2.8758�10�7 4.0530�10�8

0.8 3.2472�10�6 3.1180�10�6 9.6406�10�7 3.0202�10�6 1.8635�10�7 2.3194�10�7

1.0 2.8907�10�6 2.5445�10�6 3.9374�10�7 3.3302�10�6 6.3521�10�7 6.3279�10�7

Table 2 Comparison of AEs of

our method and Ccw method for

Example 1 with

HðtÞ ¼ 0:6� 0:2 expð�2tÞ

Ccw method Our method

tl k ¼ 3 k ¼ 4 k ¼ 5 n̂ ¼ 6 n̂ ¼ 8 n̂ ¼ 10

0.2 5.0008�10�6 2.9191�10�6 1.8266�10�6 2.4119�10�5 7.0514�10�6 2.8825�10�8

0.4 2.8066�10�5 2.6119�10�6 1.0112�10�6 3.3385�10�5 3.6715�10�6 5.6289�10�7

0.6 5.1922�10�6 2.1989�10�6 1.5571�10�6 2.1511�10�5 1.3684�10�6 7.2972�10�8

0.8 5.0562�10�6 4.9267�10�6 1.7644�10�7 2.6766�10�5 1.5293�10�6 4.6274�10�7

1.0 6.1019�10�6 2.6561�10�6 1.7949�10�6 6.7492�10�5 4.3734�10�6 1.6665�10�6

Fig. 1 The graph of AEs for

Example 1 with two selected

H(t)
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Table 3 Investigating influence

of the values U0 and m on the

values of AEs

m ¼ 1
20

U0 ¼ 1
20

tl U0 ¼ 1
10

U0 ¼ 1
20

U0 ¼ 1
30

m ¼ 1
10

m ¼ 1
20

m ¼ 1
30

0.2 3.4867�10�4 8.1241�10�5 5.1581�10�5 9.6260�10�5 4.1608�10�5 1.4877�10�5

0.4 2.4509�10�4 8.8081�10�6 1.9126�10�5 7.3460�10�5 2.7682�10�5 1.7641�10�5

0.6 4.0395�10�4 6.6373�10�5 2.0259�10�6 1.7593�10�4 2.4037�10�5 8.4145�10�6

0.8 3.7852�10�4 1.3575�10�4 2.9688�10�5 3.4780�10�5 4.0285�10�5 3.9365�10�5

1.0 2.4989�10�4 1.9926�10�4 6.3116�10�5 3.0326�10�4 1.9249�10�4 3.7012�10�5

Fig. 2 Investigating the effect

of U0 (left) and parameter m
(right) on the values of AEs

Table 4 Comparison of AEs of

our method and Ccw method for

Example 2 with

HðtÞ ¼ 0:7þ 0:2 sinðptÞ

Ccw method Our method

tl k ¼ 4 k ¼ 5 k ¼ 5 n̂ ¼ 8 n̂ ¼ 10 n̂ ¼ 12

0.2 3.2850�10�5 2.4033�10�4 1.4634�10�5 2.2231�10�4 2.5254�10�5 7.0943�10�6

0.4 7.7123�10�5 1.2578�10�5 8.2132�10�6 2.0816�10�4 1.8391�10�5 2.3021�10�6

0.6 1.1454�10�4 5.1047�10�5 4.6802�10�5 1.0375�10�4 1.8600�10�5 1.0191�10�5

0.8 3.7300�10�6 3.6659�10�6 2.9566�10�6 1.3822�10�4 6.6835�10�5 6.1411�10�6

1.0 1.0563�10�3 5.0603�10�4 3.0478�10�4 4.5514�10�5 1.6431�10�4 1.4041�10�6

Table 5 Comparison of AEs of

our method and Ccw method for

Example 2 with

HðtÞ ¼ 0:7� 0:25 expð�tÞ

Ccw method Our method

tl k ¼ 4 k ¼ 5 k ¼ 5 n̂ ¼ 8 n̂ ¼ 10 n̂ ¼ 12

0.2 1.0811�10�4 6.9681�10�4 1.2367�10�4 2.9124�10�4 1.9955�10�4 2.0255�10�5

0.4 2.4154�10�4 1.4780�10�4 3.6764�10�4 3.5388�10�4 5.3817�10�5 4.6241�10�5

0.6 4.9532�10�4 8.0529�10�5 5.7225�10�4 5.6374�10�4 7.2291�10�5 9.7434�10�6

0.8 1.9303�10�4 1.6314�10�4 6.4132�10�5 1.6360�10�4 8.9914�10�5 2.6797�10�5

1.0 1.9402�10�3 8.4869�10�4 7.1071�10�4 7.4854�10�4 7.1312�10�6 4.2582�10�5
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demonstrate that there is a direct relation between initial

value and the values of AEs. Furthermore, the values of

AEs are also related on m directly.

7 Application in Real World

One of the most well-known equation in the ecology sci-

ence is logistic equation which has the following form

dUðtÞ ¼ rUðtÞ
�
1� UðtÞ

s

�
dt;

Uð0Þ ¼ U0:

8<
: ð64Þ

In Eq. (64), UðtÞ; s[ 0 and r denote the population size at

time t, carrying capacity of environment, and population

growth rate, respectively. As we know, the rate of popu-

lation growth is uncertain in real world and it can be per-

turbed by white noise process nðtÞ as r ! r þ mnðtÞ where
nðtÞ ¼ dBðtÞ

dt
and m is a constant number. So, the classical

logistic equation (64) is transformed to the following

stochastic logistic equation

Fig. 3 The graph of AEs for

Example 2 with two selected

H(t)

Fig. 4 Investigating the effect

of U0 (left) and parameter m
(right) on the values of AEs

Table 6 Investigating influence

of the values U0 and m on the

values of AEs

m ¼ 1
30

U0 ¼ 0:01

tl U0 ¼ 0:01 U0 ¼ 0:005 U0 ¼ 0:001 m ¼ 1
20

m ¼ 1
30

m ¼ 1
40

0.2 3.9930�10�4 3.9096�10�4 4.6791�10�5 3.8651�10�4 1.3383�10�4 5.6613�10�5

0.4 5.4163�10�4 1.2033�10�4 2.0930�10�5 7.3352�10�4 2.2147�10�4 7.3401�10�6

0.6 4.2137�10�4 1.0810�10�4 6.8061�10�7 8.6288�10�4 3.4467�10�4 9.9247�10�6

0.8 7.1816�10�4 3.9517�10�5 8.0232�10�6 2.8120�10�4 2.5354�10�4 6.3250�10�5

1.0 6.6846�10�4 1.1204�10�4 3.8278�10�5 1.5401�10�3 2.2873�10�4 2.4994�10�5
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dUðtÞ ¼ rUðtÞ
�
1� UðtÞ

s

�
dtþ mUðtÞ

�
1� UðtÞ

s

�
dBðtÞ;

Uð0Þ ¼ U0:

8<
:

ð65Þ

Since the rate of population growth depends on time t, it is

better to study non-autonomous form of stochastic logistic

equation which obtain from r ! rðtÞ þ mðtÞnðtÞ. Further-
more, stochastic form of logistic equation driven by vofBm

is introduced as follows:

dUðtÞ ¼ rðtÞUðtÞ
�
1� UðtÞ

s

�
dtþ mðtÞUðtÞ

�
1� UðtÞ

s

�
dBHðtÞðtÞ;

Uð0Þ ¼ U0:

8<
:

ð66Þ

The introduced method in Sect. 4 is applied to solve

Eq. (66) for HðtÞ ¼ 0:5þ 0:3 cosð1000tÞ and HðtÞ ¼ 0:3þ
0:3 expð�tÞ and obtained results are plotted in Fig. 5. Also,

other parameters are considered as N ¼ 100; m̂ ¼ 100; n̂ ¼
8;U0 ¼ 0:3; rðtÞ ¼ 0:2; s ¼ 1 and three values mðtÞ ¼
0; mðtÞ ¼ 0:8þ 0:2 cosðtÞ and mðtÞ ¼ 0:7þ 0:2 sinðtÞ.

8 Conclusion and Future Works

The studied model in this paper is a nonlinear SDE driven

by vofBm that it has no analytical solution in many situ-

ations. On the other hand, the complexity of this model is

so great that until now only one numerical method has been

proposed to solve it. In order to solve this model, first we

have derived stochastic omi driven by vofBm, then this

operator together with ordinary omi based on Bernoulli

polynomials are used to convert mentioned model to a

nonlinear system of algebraic equations. The obtained

system is solved via Newton’s numerical method and the

approximate solution of this equation is achieved. In

Sect. 5, we theoretically proved that by increasing the

number of used Bernoulli polynomials n̂, the approximate

solution tends to the exact solution. The effect of the

number of used Bernoulli polynomials n̂, initial value U0,

and constant coefficient m, on the AEs values have been

investigated in Sect. 6. Also, the presented method has

been compared with Ccw method in the same section to

confirm the superiority of our method respected to previous

methods. The numerical results for different values of n̂ are

reported in order to is established that by increasing n̂ the

approximate solution converges to the exact solution.

Reported numerical results in Sect. 6 confirm that one can

obtain accurate approximate solution even by using small

number of basic functions and performing few calculation

efforts. Also, numerical results demonstrate that the values

of U0 and m have an direct relationship with the values of

AEs, i.e., by reducing the values of U0 and m, the AEs

values are also reduced. It seems that the values of N and m̂

are affected on the error values which investigation of this

fact is recommended for future research works.
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Echelard A, Véhel JL, Barrière O (2010) Terrain modeling with

multifractional Brownian motion and self-regulating processes,

International conference on computer vision and graphics, Berlin

Heidelberg: Springer

Hashemi B, Khodabin M, Maleknejad K (2017) Numerical solution

based on hat functions for solving nonlinear stochastic Itô-
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