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Abstract
It is well known that free vibration of a taut string having mass per unit m(x) and frequency x is governed by ordinary

differential equation y00 þ x2mðxÞy ¼ 0: In this paper, first we discretize the differential equation by using Numerov’s

method to obtain a matrix eigenvalue problem of the form �Au ¼ KBMu, where A and B are constant tridiagonal matrices

and M is a diagonal matrix related to mass function m(x). In direct problem, for a given m(x), we approximate the first N

eigenvalues of the string equation by making a new correction on the eigenvalues of matrix pair ð�A;BMÞ. Also we obtain

the error order of corrected eigenvalues. For inverse problem, we propose an efficient algorithm for constructing unknown

mass function m(x) by using given spectra by solving a nonlinear system. We solve the nonlinear system by using modified

Newton’s method and a regularization technique. The convergence of Newton’s method is proved. Finally, we give some

numerical examples to illustrate the efficiency of the proposed algorithm.
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1 Introduction

The free vibration of a taut string having mass per unit m(x)

and frequency x is described by ordinary differential

equation of the following form

y00 þ kmðxÞy ¼ 0; 0\x\1; ð1Þ

where k ¼ x2, (Gladwell 2004). Equation (1) is called

string equation which is a special form of Sturm-Liouville

equation. Usually, boundary conditions at end points are

considered for differential equation (1). The most impor-

tant boundary conditions are fixed-fixed (yð0Þ ¼ yð1Þ ¼ 0),

fixed-free (yð0Þ ¼ 0; y0ð1Þ ¼ 0) and free-free (y0ð0Þ ¼ 0;

y0ð1Þ ¼ 0). It is well known that differential equation (1)

with one set of the boundary conditions has infinite number

of eigenvalues fkng11 such that

0� k1\k2\ � � �\kn\ � � � ; kn ! þ1:

For more details see (Freiling and Yurko 2001; Gladwell

2004; Kirsch 1996). In this paper, we investigate two types

of problems related to differential equation (1). First, we

consider direct problem i.e. approximating the first N

eigenvalues of the string equation with given boundary

conditions. Second, we solve the corresponding inverse

problem i.e. we construct unknown mass function m(x)

using informations of spectral data. By solving inverse

problem for a string, we may design a string with a pre-

scribed frequences. It is proved that if m(x) is symmetric

with respect to mid point x ¼ 1
2
, i.e. mðx� 1

2
Þ ¼ mðxÞ, then

one spectrum corresponding to fixed-fixed boundary con-

dition suffices to construct m(x), uniquely. But for non

symmetric case of m(x) two spectra corresponding to two

boundary conditions e.g. fixed-fixed and fixed-free are

required to construct m(x), uniquely (Gladwell 2004; Jiang

and Xu 2019). Since m(x) is a positive function, for com-

putational purpose we define mðxÞ ¼ q2ðxÞ. If
R 1

0
qðxÞdx ¼

1 then by changing of variables
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dn
dx

¼ qðxÞ; zðnÞ ¼ ðqðxÞÞ
1
2; vðnÞ ¼ zðnÞyðxÞ; ð2Þ

the string equation (1) can be transformed to the following

Sturm-Liouville problem (Gladwell 2004; Jiang and Xu

2019)

€vðnÞ þ ðk� qðnÞÞvðnÞ ¼ 0; 0\n\1; ð3Þ

where

qðnÞ ¼ €zðnÞ
zðnÞ ; : � d

dn
: ð4Þ

Direct and inverse Sturm-Liouville problems are well

studied problems in the literature. For more details see

(Andrew 2005; Ezhak and Telnova 2020; Freiling and

Yurko 2001; Gladwell 2004; Jiang et al. 2021; Kirsch

1996; Mirzaei 2017; Perera and Böckmann 2020, 2019;

Mosazadeh and Akbarfam 2020; Neamaty and Akbarpoor

2016). Note that construction of m(x) from q(x) using (3)

and (4) needs more information and conditions on m(x).

That is why the direct and inverse problem corresponding

to the string equation have been studied, independently. In

papers (Andrew 2003; Andrew and Paine 1986; Andrew

2000; Gao et al. 2015, 2017, 2018; Paine et al. 1981), the

direct and inverse problems of Sturm-Liouville equation

(3) are studied by using finite difference, finite element and

Numerov’s methods. They find approximations for the first

N eigenvalues as follows

kk ¼ Kk þ �r;k; k ¼ 1; 2; . . .;N; ð5Þ

where Kk is the kth eigenvalue of the matrix obtained by

discretization of the Sturm-Liouville equation (3) and �r;k is

the difference between the kth eigenvalue of (3) and the kth

eigenvalue of the matrix form of (3) for qðxÞ ¼ 0. It is

proved that

�r;k ¼ k2p2 �
12 sin2ðkph

2
Þ

h2½3þ ð1� rÞ sin2ðkph
2
Þ�
;

r ¼ 1; 2; 3; k ¼ 1; 2; . . .;N;

ð6Þ

where r is a parameter that depends on the discretization

method. For finite difference method r ¼ 1, for Numerov’s

method r ¼ 2 and r ¼ 3 for finite element method. In

general, solving the direct and inverse problems of the

string equation has been less studied comparing to the

classical Sturm-Liouville equation. In Jiang and Xu

(2019, 2021) construction of the mass function m(x) is

considered by using trace formula. In Rundell and Sacks

(1992) mass function constructed by an iterative procedure

based on Goursat problem. In general, computing eigen-

values and eigenfunctions of the string equation for non

constant mass function is impossible, explicitly. In prac-

tice, however, finite dimensional numerical methods are

used to estimate the spectral data. Using such methods

Eq. (1) is then transformed to a matrix eigenvalue problem

where the eigenvalues of the resulting matrix become

approximations for the first N eigenvalues of the string

equation. The eigenvalues of matrix equation can be used

to approximate the eigenvalues of lower indices but for

eigenvalues of higher indices they generally lead to poor

numerical results. In this paper, we discretize the string

equation by using Numerov’s method to obtain the corre-

sponding matrix eigenvalue problem. In order to make

good approximations for the eigenvalues of the string

equation we add a new suitable correction term to the

eigenvalues of the matrix obtained from Numerov’s

method. Then we propose an algorithm to solve direct and

inverse problems corresponding to the string equation in

the cases of symmetric and non symmetric function m(x).

Our results show that Numerov’s method together with

correction technique can be applied successfully to solve

direct and inverse problems. To our knowledge, correction

idea has not been applied to direct and inverse problems of

the string equation.

The rest of the paper is arranged in the following

manner. In Sect. 2, we discretize the string equation to

obtain a matrix eigenvalue problem. By making new cor-

rection on the eigenvalues of resulting matrix eigenvalue

problem we approximate the first N eigenvalues of the

string equation. Moreover, the error analysis of corrected

eigenvalues and some numerical results are presented in

this section. In Sect. 3, a method based on correction

technique of Sect. 2 is proposed to solve inverse problem

of the string equation in symmetric and non symmetric

cases. Finally, some different numerical examples are

given in Sect. 4 to show the good efficiency of this tech-

nique for inverse problem.

2 Direct Problem

In this section, we study direct problem of Eq. (1). First we

discretize Eq. (1) by using Numerov’s method. For this aim

we divide the interval [0, 1] into N subintervals of length h

and evaluate Eq. (1) at xi ¼ ih as follows

y00i þ kmiyi ¼ 0; i ¼ 1; 2; . . .;N � 1; ð7Þ

where mi ¼ mðxiÞ and yi ¼ yðxiÞ. Using central difference

formula we have

y00i ¼
yiþ1 � 2yi þ yi�1

h2
� h2

12
y
ð4Þ
i þ Oðh4Þ: ð8Þ

Using Eq. (1) we have y
ð4Þ
i ¼ �kðmðxÞyÞ00i . Approximating

the second derivative by central difference formula gives

the following approximation for y
ð4Þ
i
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y
ð4Þ
i ¼ �k

miþ1yiþ1 � 2miyi þ mi�1yi�1

h2
þ Oðh2Þ: ð9Þ

Substituting (9) in (8) and approximating y00i by (7), we find

�yiþ1 þ 2yi � yi�1 ’
h2

12
Kðmiþ1yiþ1

þ10miyi þ mi�1yi�1Þ; i ¼ 1; 2; . . .;N � 1:

ð10Þ

Equation (10) can be written in the following matrix form

�Au ¼ KBMu; ð11Þ

where K and u ¼ ½u1; u2; . . .; uN�1�T are approximations for

k and y ¼ ½y1; y2; . . .; yN�1�T , respectively. For fixed-fixed
boundary conditions the matrices A and B are as follows:

A ¼ 1

h2

�2 1

1 � 2 1

. .
. . .

. . .
.

� 2 1

1 � 2

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

;

B ¼ 1

12

10 1

1 10 1

. .
. . .

. . .
.

10 1

1 10

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

;

and M ¼ diagðm1;m2; � � � ;mN�1Þ. We have B ¼ I þ h2

12
A.

For fixed-free boundary conditions the condition y0ð1Þ ¼ 0

can be discretized by using a first or second order

approximation. But in this paper we use Remark 2 to

transform the non symmetric string equation on [0, 1] to

symmetric string equation on [0, 2] with fixed-fixed

boundary conditions. Throughout the paper the eigenvalues

of string equation with fixed-fixed boundary conditions are

denoted by fkig and the eigenvalues with fixed-free

boundary conditions are denoted by flig, respectively.

Similarly, the eigenvalues of the matrix Eq. (11) corre-

sponding to fixed-fixed boundary conditions are denoted by

fK1
i g and the eigenvalues of the matrix equation (11)

corresponding to fixed-free boundary conditions are

denoted by fK2
i g. Note that K

1
i and K2

i are approximations

for fkig and flig, respectively which are good approxi-

mations for lower eigenvalues but we have poor results for

higher indices, see Tables 1 and 2. In order to improve the

results, we extend the correction technique (Paine et al.

1981) to the string equation.

If
R 1

0
qðxÞdx ¼ 1, then Eqs. (1) and (3) are isospectral,

i.e. they have the same eigenvalues. Therefore it is natural

to expect that the correction (5) may be used to

approximate the eigenvalues of Eq. (1). If
R 1

0
qðxÞdx ¼ c 6

¼ 1 then we may modify Eq. (1) as follows

y00 þ k�m�ðxÞyðxÞ ¼ 0; ð12Þ

where k� ¼ c2k and m� ¼ 1
c2
mðxÞ. Making correction (5)

for Eq. (12) we find

k�k ’ K�
k þ �2;k ¼) kk ’ ~Kk:¼Kk þ

1

c2
�2;k: ð13Þ

Thus, if c 6¼ 1, selecting the correction term as �2;k does not

make a good approximation. In this case we must choose

the correction term as 1
c2
�2;k.

2.1 Error Analysis of Corrected Eigenvalues

In this part, using some lemmas and theorems we find the

error order for corrected eigenvalues ~Kk. We prove the

results for the case c ¼ 1 and fixed-fixed boundary condi-

tion. The results can be extend to the case c 6¼ 1 and other

boundary conditions, similarly. It is obvious that the

eigenvalues of problem (1) with mðxÞ ¼ 1 and fixed-fixed

boundary condition, are k�k ¼ k2p2 and corresponding

eigenfunctions are y�kðxÞ ¼ sin kpx. We have the following

lemma for the matrix pair ð�A;BÞ.

Lemma 1 (Andrew 2000; Chawla and Katti 1980) For

matrix pair ð�A;BÞ we have

(i) �Ask ¼ K�
kBsk; K�

k¼ 12
h2

sin2ðkp
2NÞ

3�sin2ðkp
2NÞ

;

sk ¼ ðsin kpx1; . . .; sin kpxN�1Þ,
(ii) K�

k ¼ k2p2 þ Oðk6h4Þ.

Lemma 2 (Andrew 2000; Chawla and Katti 1980) If
R 1

0
qðxÞdx ¼ 1; then

(i) kk ¼ k2p2 þ Oð 1k2Þ,

Table 1 Errors of uncorrected and corrected eigenvalues for mðxÞ ¼
1� 0:3e�20ðx�0:5Þ2 with n ¼ 32

i ki jki � K1
i j jki � ~K

1

i j

1 12.1880 3:1e� 7 5:1e� 8

4 101.8304 1:1e� 3 3:8e� 5

8 550.8877 7:0e� 2 2:5e� 3

12 910.5795 8:0e� 1 2:8e� 2

16 1360.2085 4:5eþ 0 1:6e� 1

20 1899.7650 1:8eþ 1 6:4e� 1

24 2529.2479 5:3eþ 1 2:0eþ 0

28 3248.6568 1:36eþ 2 5:3eþ 0

32 3248.6568 3:07eþ 2 1:3eþ 1
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(ii) ykðxÞ ¼ sin kpxþ Oð1kÞ,
(iii) jkk � Kkj ¼ Oðk6h4Þ.

Note that for arbitrary function f(x), we use the boldface

vector f, for ðf ðx1Þ; f ðx2Þ; . . .; f ðxnÞÞ.

Lemma 3 Suppose that eðxÞ ¼ yðxÞ � sin kpx, e ¼ y� s

and � ¼ u� s, then we have

ðK� kÞuTMy ¼ ðK�
k � k2p2ÞuTs

þ sTðe00 � B�1AeÞ þ �Tðe00 � B�1AeÞ:
ð14Þ

Proof By transposing Eq. (11) then multiplying by y we

obtain

�uTB�1Ay ¼ KuTMy: ð15Þ

Writing (7) in matrix form and multiplying by uT we get

�uTy00 ¼ kuTMy: ð16Þ

Subtracting (16) from (15) we find

ðK� kÞuTMy ¼ uTðy00 � B�1AyÞ; ð17Þ

substituting y ¼ eþ s, s00 ¼ �k2p2s, u ¼ �þ s in the right

hand side of (17) we find

ðK� kÞuTMy ¼ uTðe00 þ s00 � B�1Aðeþ sÞÞ
¼ uTðe00 � k2p2sþ K�

ks� B�1AeÞ
¼ ðK�

k � k2p2ÞuTsþ uTðe00 � B�1AeÞ
¼ ðK�

k � k2p2ÞuTsþ sTðe00 � B�1AeÞ
þ �Tðe00 � B�1AeÞ:

h

Remark 1 We can rewrite the string equation as

y00ðxÞ þ kyðxÞ ¼ kð1� mðxÞÞyðxÞ. Also, the discrete equa-

tion (11) can be written as �Auþ KBðI �MÞu ¼ KBu.
From Andrew and Paine (1985) by comparing these

equations with corresponding equations in canonical

Sturm-Liouville problem we conclude that for higher index

k, jyk � skj and juk � skj are of order O 1
k

� �
.

Lemma 4 For the function e(x) we have

eðxÞ ¼ 1

kp

Z x

0

ðk2p2 � kmðtÞÞ sin kpðx� tÞyðtÞdt; ð18Þ

eðjÞðxÞ ¼ Oðkðj�1ÞÞ; j ¼ 0; 1; . . .; ð19Þ

eð0Þ ¼ eð1Þ ¼ e00ð0Þ ¼ e00ð1Þ ¼ 0: ð20Þ

Proof Differentiating twice of eðxÞ ¼ yðxÞ � sinðkpxÞ we

obtain

e00ðxÞ ¼ y00ðxÞ þ k2p2 sin kpx

¼ �kmðxÞyðxÞ þ k2p2½yðxÞ � eðxÞ�;

Table 2 Errors of uncorrected

and corrected eigenvalues for

mðxÞ ¼ 2þ sinðpðx� 1Þ2Þ with
n ¼ 32

i ki jki � K1
i j jki � ~K

1

i j li jli � K2
i j jli � ~K

2

i j

1 3.723 3:1e� 6 1:5e� 6 1.056 1:5e� 7 1:3e� 7

2 15.569 1:3e� 4 2:7e� 5 8.674 2:5e� 5 8:1e� 6

3 35.341 1:3e� 3 1:7e� 4 24.461 4:5e� 4 7:3e� 5

4 63.048 7:0e� 3 6:7e� 4 48.203 3:2e� 3 3:5e� 4

5 98.680 2:6e� 2 2:1e� 3 79.873 1:4e� 2 1:2e� 3

6 142.235 7:8e� 2 5:5e� 3 119.467 4:6e� 2 3:4e� 3

7 193.710 2:0e� 1 1:3e� 2 166.982 1:3e� 1 8:5e� 3

8 253.106 4:4e� 1 2:7e� 2 222.418 3:0e� 1 1:9e� 2

9 320.421 8:9e� 1 5:3e� 2 285.774 6:3e� 1 3:8e� 2

10 395.657 1:7eþ 0 9:8e� 2 357.049 1:2eþ 0 7:3e� 2

11 478.812 3:0eþ 0 1:7e� 1 436.244 2:3eþ 0 1:3e� 1

12 569.887 5:1eþ 0 2:9e� 1 523.359 3:9eþ 0 2:3e� 1

13 668.881 8:3eþ 0 4:8e� 1 618.394 6:5eþ 0 3:7e� 1

14 775.795 1:3eþ 1 7:6e� 1 721.348 1:0eþ 1 6:0e� 1

15 890.629 2:0eþ 1 1:2eþ 0 832.222 1:6eþ 1 9:4e� 1

16 1013.382 2:9eþ 1 1:8eþ 0 951.015 2:4eþ 1 1:4eþ 0

17 1077.728 3:6eþ 1 2:1eþ 0
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thus e00 þ k2p2e ¼ ½k2p2 � kmðxÞ�yðxÞ. This equation with

boundary conditions eð0Þ ¼ 0 and eð1Þ ¼ 0, has the solu-

tion of the form (18). Using Lemma 2, part (ii) we find

eðxÞ ¼ O 1
k

� �
. Differentiating (18), implies (19). Simple

calculation conclude (20). h

Theorem 1 Suppose that

f ðxÞ ¼ ðk2p2 � kmðxÞÞyðxÞ;

aðx; hÞ ¼
Z xþh

x

f ðtÞ sin kpðxþ h� tÞdt;
ð21Þ

Ej ¼ aðxj; hÞ � aðxj;�hÞ; ð22Þ

then

Ae� Be00 � ðk2p2 � K�
kÞBe ¼ 1þ h2K�

k

12

� �
E

kph2
� Bf:

ð23Þ

Proof We have e00 þ k2p2e ¼ f, therefore

Be00 ¼ Bf � k2p2Be: ð24Þ

On the other hand by using (18) and part (i) of Lemma 1,

for the jth entry of the vector Ae we have

kph2ðAeÞj ¼ kpðejþ1 � 2ej þ ej�1Þ

¼
Z xj

0

f ðtÞ½sinkpðxjþ1 � tÞ � 2sinkpðxj � tÞ

þ sinkpðxj�1 � tÞ� þ Ej

¼ � h2K�
k

12

Z xj

0

f ðtÞ½sinkpðxjþ1 � tÞ

þ 10sinkpðxj � tÞ þ sinkpðxj�1 � tÞ� þ Ej

¼ � h2K�
kkp

12
½eðxjþ1Þ þ 10eðxjÞ þ eðxj�1Þ�

þ ð1þ h2K�
k

12
ÞEj;

dividing both sides to kph2 we obtain

Ae ¼ �K�
kBeþ

1

kph2
ð1þ h2K�

k

12
ÞE: ð25Þ

Subtracting (24) from (25) we obtain the required result. h

Theorem 2 Suppose that mðxÞ 2 C4½0; 1�, then there exists

constant c1 such that

j�TðB�1Ae� e00 þ ðK�
k � k2p2Þej � c1k

5h3

Proof By definition of Ej we have

Ej ¼
Z xjþ1

xj

f ðtÞ sin½kpðxjþ1 � tÞ�dt

þ
Z xj�1

xj

f ðtÞ sin½kpðxj�1 � tÞ�dt;

Applying Taylor’s expansion of the function f(x) around xj,

then using integration by parts we find

Ej ¼
2

kp
1� cosðkphÞ½ �fj þ

h2

kp

� ��

� 2

ðkpÞ3
ð1� cosðkphÞÞ

)

f 00j þ O kh6 f ð4Þ
�
�

�
�
1

� 	
:

On the other hand we have

Bf ¼ f þ h2Af

12
¼ f þ h2

12
f 00 þ Oðh4 fð4Þ

�
�

�
�
1Þ:

Thus

1

kp
1þ h2K

�

k

12

� �

Ej � h2ðBfÞj

¼ 2

k2p2

� �

ð1� cosðkphÞÞ 1þ h2K
�

k

12

� �

� h2
� 


fj

þ h2
1

k2p2
1� 2

k2p2h2

� �

ð1� cosðkphÞÞ
� �

1þ h2K
�

k

12

� ��

� h2

12




f 00j þ O h6 f ð4Þ
�
�

�
�
1

� 	

¼ h2

k2p2
ðK�

k � k2p2Þfj

þ h2

k4p4
ðk2p2 � K

�

kÞ 1� h2k2p2

12

� �

f 00j

þ O h6 f ð4Þ
�
�

�
�
1

� 	
:

ð26Þ

Since K�
k � k2p2 ¼ Oðk6h4Þ, 1� h2k2p2

12
¼ Oð1Þ, and

kf ðjÞk1 ¼ Oðkðjþ2ÞÞ. Thus all terms in (26) are of order

Oðk6h6Þ. Therefore we find

1

kp
1þ h2K

�

k

12

� �

Ej � h2 Bfð Þj¼ O k6h6
� �

: ð27Þ

Using Remark 1 we have k�k1 ¼ Oð1kÞ. Also kB�1k ¼
Oð1Þ and n ¼ Oð1hÞ. Thus, using (23) and (27) we obtain

2T B�1Ae� e00 þ K
�

k � k2p2
� �

e
� ��

�
�
�

� n 2k k1 Bk k Ae� Be00 þ K
�

k � k2p2
� �

Be
�
�

�
�
1

� c1k
5h3:

h

Theorem 3 If mðxÞ 2 C4½0; 1� then there exists constant c2
such that
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sT f
�
�

�
�
1 � c2k

5h3: ð28Þ

Proof Define FðxÞ ¼ f ðxÞ sin kpx. The function F(x) has

the following properties

Fð0Þ ¼ Fð1Þ ¼ 0; F0ð0Þ ¼ F0ð1Þ ¼ 0: ð29Þ

Substituting x ¼ 1 in (18) we find
R 1

0
FðxÞdx ¼ 0. Suppose

that ThF denote the trapezoidal integration formula of F(x)

with step size h on [0, 1]. Using Euler-Maclurin formula

(Davis and Rabinowitz 1975), we have

sT f ¼ h�1ThF ¼ h�1

Z 1

0

FðxÞdx
�

þ B4h
4

4!
½F000ð1Þ � F000ð0Þ� � h4

Z 1

0

p4
x

h

� 	
Fð4ÞðxÞdx




;

ð30Þ

where B4 is Bernoulli number and fpig are piecewise

polynomials of period one satisfying

p0jþ1 ¼ pj; p2jþ1ð0Þ ¼ p2jþ1ð1Þ ¼ 0; p1ðxÞ ¼ x� 1

2
:

Simple calculations show that

F000ð1Þ � F000ð0Þ ¼ 3kpðð�1Þkf 00ð1Þ � f 00ð0ÞÞ;
f 00ð0Þ ¼ �2km0ð0Þy0ð0Þ; f 00ð1Þ ¼ �2km0ð1Þy0ð1Þ:

Since k ¼ Oðk2Þ, y0 ¼ OðkÞ, m0 ¼ Oð1Þ, we find

F000ð1Þ � F000ð0Þ ¼ Oðk4Þ. Substituting this in (30), we get

sT f




 ¼ h3

Z 1

0

p4
x

h

� 	
Fð4ÞðxÞdx









þ Oðk4h3Þ: ð31Þ

By simple calculations, we obtain

Fð4ÞðxÞ ¼ �8k4p4gðxÞ cos 2kpxþ Oðk5Þ

where gðxÞ ¼ k2p2 � kmðxÞ. By similar procedure in proof

of Lemma 6 in Andrew and Paine (1985), we obtain

Z 1

0

P4

x

h

� 	
Fð4ÞðxÞdx

�
�
�
�

�
�
�
� ¼ Oðk5Þ: ð32Þ

Combining (31) and (32) we obtain the result (28). h

Theorem 4 Suppose that mðxÞ 2 C4½0; 1�, then we have

j ~Kk � kkj � ck6 h4.

Proof Using part (i) of Lemma 1 then adding and sub-

tracting k2p2sTe we obtain

sTðe00 � B�1AeÞ ¼ sTðe00 þ K�
keþ k2p2e� k2p2eÞ

¼ sTðe00 þ k2p2eÞ
þ ðK�

k � k2p2ÞsTe:

According to the proof of Lemma 4 we have

e00 þ k2p2e ¼ f, thus we obtain

sTðe00 � B�1AeÞ ¼ sT f þ ðK�
k � k2p2ÞsTe:

On the other hand we have uTy ¼ uTsþ sTeþ �Te. Using

these relations and Theorems 1, 2 and 3 we find

j ~K� kjjuTMyj ¼ jðK� kÞuTMy� ðK�
k � k2p2ÞuTy

þ ðK�
k � k2p2ÞuTðI �MÞyj

¼ jðK� kÞuTMy� ðK�
k � k2p2ÞðuTsþ sTeþ �TeÞ

þ ðK�
k � k2p2ÞuTðI �MÞyj

¼ jsTðe00 � B�1AeÞ þ �Tðe00 � B�1AeÞ
� ðK�

k � k2p2Þ½sTeþ �Te� uTðI �MÞy�j
� c1k

5h3 þ c2k
5h3 þ jðK�

k � k2p2ÞuTðI �MÞyj:

Thus we get

j ~K� kj � ðc1k5h3 þ c2k
5h3Þ

juTMyj

þ jK�
k � k2p2j ju

TðI �MÞyj
juTMyj :

Using Remark 1 we have

ky� sk1 ¼ Oð1kÞ; ku� sk1 ¼ Oð1kÞ. Also we have 1
sTMs ¼

OðhÞ (Andrew and Paine 1986, 1985). Thus we obtain
1

uTMy ¼ OðhÞ. On the other hand we have

K�
k � k2p2 ¼ Oðk6h4Þ, thus we obtain j ~K� kj � ck6 h4:h

In Tables 1 and 2, the eigenvalues of string equation

corresponding to mass functions mðxÞ ¼ 1� 0:3e�20ðx�0:5Þ2

and mðxÞ ¼ 2þ sinðpðx� 1Þ2Þ are approximated using

new correction term given by (13). The exact eigenvalues

are computed by Matslise package (Ledoux et al. 2005).

The results for jkk � Kkj and jkk � ~Kkj show the efficiency

of the correction term 1
c2 �2;k to approximate the eigenvalues

of the string equation. We state the following remark to

obtain the eigenvalues of non symmetric mass functions.

Remark 2 Let fkign1 and flig
nþ1
1 be the eigenvalues of the

string equation (1) with fixed-fixed and fixed-free boundary

conditions, respectively. If m(x) is extended to interval

[0, 2] as a symmetric function, then it is well known that

fk�i g
2nþ1
1 defined by

k�2i�1 ¼ li; k�2i ¼ ki; i ¼ 1; 2; � � � ; nþ 1;
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are the eigenvalues of the string equation on interval [0, 2]

with symmetric mass function and fixed-fixed boundary

condition (Gladwell 2004). Thus we conclude that the

nonsymmetric case on [0, 1] is equivalent to symmetric

case on [0, 2]. Note that by change of variable (2) the

coefficient c in correction term (13) for nonsymmetric

function m(x) is computed as c ¼ 1
2

R 2

0
qðxÞdx.

To confirm the results of Theorem 4, we compute the

values of scaled errors jki � ~Kij=h4i6 in Tables 3 and 4. As

expected, the results are bounded and more smaller than

the corresponding results for Ki. The results show that for

string equation uncorrected and corrected Numerov’s

method are of order Oðh4i6Þ. But, correction term reduces

the asymptotic error constant, significantly.

3 Inverse Problem

In this section, we want to construct unknown mass func-

tion m(x) in the differential equation (1) by using spectral

data. If m(x) is symmetric then one spectrum corresponding

to fixed-fixed boundary condition will be sufficient to

construct it, uniquely. For non symmetric case we need two

spectra for unique construction of m(x). Here we use the

spectra correspond to fixed-fixed and fixed-free boundary

conditions. We state the main inverse problem as follows:

Inverse Problem 1 Let n 2 N and fkignþ1
1 be a given set of

positive and distinct real numbers. Construct a symmetric

mass function m(x) such that fkignþ1
1 are the first ðnþ 1Þ

eigenvalues of the equation (1) with fixed-fixed boundary

condition.

Inverse Problem 2 Let n 2 N and fkign1, flig
nþ1
1 be two

given set of distinct and positive real numbers such that

li\ki\liþ1. Construct a mass function m(x) such that

fkign1 and flig
nþ1
1 are the first eigenvalues of the equation

(1) with fixed-fixed and fixed-free boundary conditions,

respectively.

First we verify the solution for Inverse Problem 1. Let

N ¼ 2n (also we can take N ¼ 2nþ 1). Using Numerov’s

method the string equation can be written in the matrix

eigenvalue problem �Au ¼ KBMu. According to sym-

metric assumption of m(x) we have

mi ¼ mN�i; i ¼ 1; 2; 3; . . .; n: ð33Þ

Therefore the Inverse Problem 1 is equivalent to construct

fmign1 by using prescribed eigenvalues fkignþ1
1 . The con-

struction procedure is as follows. First we find the eigen-

values K1
i of the matrix pair ð�A;BMÞ by the procedure

given in Sect. 2. Using Eq. (13) we may write

K1
i ¼ ki � b�2;i; i ¼ 1; 2; . . .; nþ 1; ð34Þ

where b ¼ 1
c2
¼ 1

ð
R 1

0
qðxÞdxÞ2

. Note that b is an unknown

parameter, since mðxÞ ¼ q2ðxÞ is unknown. Thus we have

to find b and fmign1 such that fK1
i g

nþ1
1 defined by (34) are

eigenvalues of the matrix pair ð�A;BMÞ. Indeed b and

fmign1 must be the solutions of the following nonlinear

system of algebraic equations

Table 3 Scaled errors of Ki and ~Ki for mðxÞ ¼ 1� 0:3e�20ðx�0:5Þ2 and

h ¼ 1
32

1
64

1
128

i jKi � kij=h4i6 j ~Ki � kij=h4i6

1 12.57 12.97 13.53 0.054 0.056 0.066

4 10.87 11.19 11.36 0.0098 0.010 0.010

8 10.92 11.21 11.37 0.0099 0.010 0.010

12 10.99 11.23 11.37 0.010 0.010 0.010

16 11.10 11.25 11.38 0.010 0.010 0.010

20 11.24 11.29 11.39 0.010 0.010 0.010

24 11.39 11.34 11.40 0.011 0.010 0.010

28 11.56 11.39 11.41 0.011 0.010 0.010

32 11.73 11.45 11.43 0.012 0.010 0.010

36 11.52 11.45 0.011 0.010

40 11.59 11.47 0.011 0.010

44 11.67 11.50 0.011 0.010

Table 4 Scaled Errors of Ki and ~Ki for mðxÞ ¼ 2þ sinðpðx� 1Þ2Þ
and h ¼ 1

32
1
64

1
128

i jKi � kij=h4i6 j ~Ki � kij=h4i6

1 2.56 2.56 2.54 2.16 2.14 2.14

4 0.515 0.514 0.513 0.0785 0.0779 0.0777

8 0.447 0.445 0.444 0.0383 0.0376 0.0374

12 0.438 0.432 0.432 0.0295 0.0286 0.0283

16 0.438 0.430 0.428 0.0266 0.0252 0.0249

20 0.442 0.430 0.426 0.0257 0.0237 0.0233

24 0.447 0.430 0.426 0.0258 0.0230 0.0224

28 0.453 0.432 0.426 0.0265 0.0227 0.0219

32 0.460 0.434 0.426 0.0280 0.0226 0.0216

36 0.436 0.426 0.0226 0.0214

40 0.439 0.427 0.0228 0.0213

44 0.442 0.428 0.0231 0.0212
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PiðmÞ :¼ K1
i ðmÞ � kiðmðxÞÞ þ b�2;i ¼ 0;

i ¼ 1; 2; . . .; nþ 1;
ð35Þ

where m ¼ ½m1;m2; � � � ;mn; b�. Note that parameter b can

be computed as follows:

b ¼ lim
i!1

ki
i2p2

; ð36Þ

See (Chawla and Katti 1980). Here we can approximate

b ’ kn
n2p2. But computing the parameter b by solving non-

linear system (35), leads to efficient results for inverse

problem, see Tables 6, 7, 8, and 9. We can solve the system

(35) by using modified Newton’s method (Stoer and

Bulirsch 2002). The sequence of recursive Newton’s

method is given by:

mkþ1 ¼ mk � G�1PðmkÞ; m0 ¼ ½1; 1; . . .; 1�;
k ¼ 1; 2; . . .;

ð37Þ

where G is Jacobian matrix of system (35) at point

m ¼ m0. For this aim, we need the eigenpairs of (11)

corresponding to mðxÞ � 1 and Jacobian matrix G. The

eigenpairs are as follows:

Lemma 5 (Yueh 2005) The orthonormal eigenvector y�i of

the matrix pair ð�A;BÞ is given by

y�i;j ¼
ffiffiffiffi
2

N

r

sin
ijp
N

� �

; j ¼ 1; 2; . . .;N � 1: ð38Þ

We find the Jacobian matrix in the following lemma.

Lemma 6 Jacobian matrix corresponding to nonlinear

system (35) at m ¼ m0 is given by:

Gði; jÞ ¼ � 4

N
K�

i sin
2 ijp

N

� �

; i ¼ 1; 2; . . .; nþ 1;

j ¼ 1; 2; . . .; n;

Gði; nþ 1Þ ¼ �2;i; i ¼ 1; 2; . . .; nþ 1:

Proof Using Eq. (35) we find

oPi

omj
¼ oK1

i

omj
;

oPi

ob
¼ �2;i: ð39Þ

Taking partial derivative from both sides of �B�1Aui ¼
K1

i Mui with respect to mj we have

�B�1A
oui
omj

¼ oK1
i

omj
Mui þ K1

i

oM

omj
ui þ K1

i M
oui
omj

:

Multiplying both sides of the last equation by yTi we obtain

�uTi B
�1A

oui
omj

¼ oK1
i

omj
uTi Mui

þ K1
i u

T
i

oM

omj
ui þ K1

i u
T
i M

oui
omj

:

ð40Þ

Orthogonality of the eigenvectors with respect toM implies

that uTi Mui ¼ 1. On the other hand �B�1A is a symmetric

matrix (Chawla and Katti 1980). Therefore �uTi B
�1A oui

omj
¼

K1
i u

T
i M

oui
omj

: Considering these properties in (40) we obtain

Table 5 Condition number of Jacobian matrix G

n 4 8 16 32 64

Cond(G) 63.21 179.05 823.21 4:12eþ 3 2:2eþ 4

Table 6 Results of the Example 1 for m1ðxÞ using PiðmÞ ¼ 0

xi n

5 10 15 20

0.1 7:4e� 4 2:0e� 5 1:0e� 5 6:2e� 6

0.2 4:3e� 5 4:1e� 7 1:1e� 6 6:9e� 7

0.3 3:3e� 5 2:9e� 8 3:7e� 7 2:5e� 7

0.4 2:3e� 5 4:9e� 8 2:2e� 7 1:5e� 7

0.5 2:1e� 5 4:8e� 8 1:9e� 7 1:3e� 7

b 0.3210 0.3240 0.3246 0.3248

k ~m�mk2 7:5e� 4 4:6e� 4 3:6e� 4 3:4e� 4

k ~m�mk2;n 2:5e� 3 1:0e� 3 1:5e� 4 4:2e� 4

Table 7 Results of the Example 1 for m2ðxÞ using PiðmÞ ¼ 0

xi n

5 10 15 20

0.1 3:1e� 4 1:8e� 4 7:7e� 5 3:8e� 5

0.2 1:7e� 4 3:3e� 5 1:3e� 5 6:7e� 6

0.3 1:5e� 4 1:5e� 5 9:1e� 6 5:6e� 6

0.4 7:6e� 5 1:6e� 5 1:0e� 5 9:4e� 6

0.5 2:8e� 5 2:4e� 5 1:1e� 5 1:3e� 5

b 1.2000 1.1927 1.1914 1.1910

k ~m�mk2 4:0e� 4 4:4e� 4 5:9e� 4 1:1e� 4

k ~m�mk2;n 1:5e� 3 2:5e� 3 5:0e� 3 6:7e� 3
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oK1
i

omj
¼ �K1

i u
T
i

oM

omj
ui:

Computing oM
omj

and substituting ui;K
1
i corresponding to

m ¼ m0 we find

oK1
i

omj
jm¼m0

¼ � 4

N
K�

i sin
2 ijp

N

� �

: ð41Þ

Combining Eqs. (39) and (41) we find the entries of the

required Jacobian matrix. h

Remark 3 The matrix G is a nonsingular constant matrix

and independent of mass function m(x). The condition

number of G is given in Table 5 for different values of n.

For some large values of n, we may need to apply a reg-

ularization method for solving nonlinear system (35). Here

we apply the quasi-Newton’s method as follows

mkþ1 ¼ mk � akðGtGþ rIÞ�1GtPðmkÞ; ð42Þ

where ak satisfy the Wolf conditions (Gilbert 1997) and

r[ 0 is a regularization parameter.

Remark 4 The equation (1) is a special case of the Sturm-

Liouville equation ðpy0Þ0 þ ðkwþ qÞy ¼ 0 thus, the

parameter k is a differentiable function with respect to

m(x) (Zhang and Li 2020).

The following theorem shows the convergence of

modified Newton’s sequence (37).

Theorem 5 Let n 2 N, p	 1 and k:kp denotes the Lp norm
on [0, 1], there exists a positive number cpðnÞ such that if

kmðxÞ � 1kp\cpðnÞ and the sequence mk obtained from

(37) be positive, then the recursive sequence (37) with

initial value m0 is convergent to the solution of the system

(35).

Fig. 1 Results for m1ðxÞ with n ¼ 20. a With correction term �2;i, b without correction term, c with correction term b�2;i, d the error ð ~mi � miÞ
with correction term b�2;i
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Proof Let k:k denote a norm on Rnþ1. Suppose that

Srðm0Þ:¼fmjkm�m0k\rg. First we prove that PðmÞ is

an analytic function with respect to m and a differentiable

function with respect to m(x). The matrix �B�1A is posi-

tive definite (Chawla and Katti 1980), thus positivity of mk

implies that the eigenvalues K1
i ðmÞ of matrix pair

ð�B�1A;MÞ are positive and simple (see (Gladwell 2004),

chapter 3). Thus PðmÞ is an analytic function of m (Sun

1990). Also by Remark 4, the eigenvalues kiðmðxÞÞ are

differentiable function of m(x). Since G is nonsingular and

Table 8 Results of the Example 2 for m3ðxÞ using PiðmÞ ¼ 0:

xi n

5 10 15 20

0.2 1:3e� 3 4:7e� 4 1:5e� 4 3:4e� 4

0.4 7:1e� 3 4:5e� 5 1:6e� 5 3:8e� 5

0.6 4:0e� 3 1:2e� 5 1:4e� 5 2:7e� 5

0.8 3:2e� 3 1:0e� 5 2:5e� 5 3:6e� 5

1.0 2:8e� 3 9:4e� 6 3:3e� 5 4:1e� 5

b 0.5576 0.4405 0.4337 0.4312

k ~m�mk2 9:3e� 3 4:1e� 3 1:4e� 3 2:8e� 3

k ~m�mk2;n 3:9e� 2 1:0e� 2 2:1e� 2 3:8e� 2

Table 9 Results of the Example 2 for m4ðxÞ using PiðmÞ ¼ 0

xi n

5 10 15 20

0.2 2:4e� 2 2:6e� 3 1:4e� 3 2:2e� 4

0.4 2:7e� 2 5:1e� 4 2:4e� 4 1:5e� 5

0.6 3:2e� 2 1:1e� 3 1:9e� 5 4:2e� 6

0.8 3:4e� 2 1:5e� 3 5:3e� 5 1:0e� 5

1.0 3:5e� 2 1:7e� 3 9:1e� 5 5:3e� 6

b 1.0007 1.1361 1.2019 1.1760

k ~m�mk2 6:9e� 2 6:2e� 3 4:7e� 3 2:6e� 3

k ~m�mk2;n 7:2e� 2 1:4e� 2 2:0e� 2 2:8e� 2

Fig. 2 Results for m2ðxÞ with n ¼ 20. a With correction term �2;i, b without correction term, c with correction term b�2;i, d the error ð ~mi � miÞ
with correction term b�2;i
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P is analytic with respect to m, there exists a constant

K[ 0 such that kG�1ðP0ðmÞ � P0ðm0ÞÞk�Kkm�m0k.
Suppose that g ¼ kG�1Pðm0Þk, q ¼ Kg and r� ¼ 1�

ffiffiffiffiffiffiffiffi
1�2q

p

K .

If kmðxÞ � 1kp ¼ 0, then for i ¼ 1; 2; . . .; nþ 1 we have

Piðm0Þ ¼ K�
i ðm0Þ � kiðmðxÞÞ þ b�2ði; hÞ ¼ 0:

Thus for all p	 1, there exists cpðnÞ, such that for all

m 2 Lp½0; 1�, if kmðxÞ � 1kp � cpðnÞ, then 0\q\ 1
2
and

r�\r. By theory of modified Newton’s method (Stoer and

Bulirsch 2002), we conclude that all mk lie in Sr�ðm0Þ and
the sequence fmkg converges to a solution of PðmÞ ¼ 0. h

Corollary 1 By Remark 2, we can solve the Inverse

problem 2 using the method of Inverse problem 1 on the

interval [0, 2].

Using the following algorithm we can solve the inverse

problem to construct m(x).

Fig. 3 Results for m3ðxÞ with n ¼ 20. a With correction term �2;i, b without correction term, c with correction term b�2;i, d the error ð ~mi � miÞ
with correction term b�2;i
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4 Numerical Results

In this section, we propose some numerical examples to

show the efficiency of the presented algorithm for con-

struction of mass function by solving the nonlinear system

PiðmÞ:¼K1
i ðmÞ � kiðmðxÞÞ þ b�2;i ¼ 0. The computed

solution of the nonlinear system is denoted by ~m. We

denote the L2 error of constructed m(x) by k ~m�mk2 when
the parameter b is obtained by solving nonlinear system

PiðmÞ ¼ 0 and by k ~m�mk2;n when the parameter b is

approximated by (36). Moreover, in the numerical exam-

ples we try to construct m(x) by solving uncorrected system

TiðmÞ:¼K1
i ðmÞ � kiðmðxÞÞ ¼ 0 and system

HiðmÞ:¼K1
i ðmÞ � kiðmðxÞÞ þ �2;i ¼ 0 with correction term

�2;i. The results of these systems are compared in the

numerical examples. All computations were performed

with MATLAB R2015a on an Intel(R) Core(TM) i5

desktop computer.

Example 1 We consider the mass functions m1ðxÞ ¼ 3þ
ðx� 0:5Þ2 and m2ðxÞ ¼ 1� 0:3e�20ðx�0:5Þ2 on the interval

[0, 1]. These functions are symmetric with respect to

x ¼ 0:5, thus we can construct them using one spectrum

fkignþ1
i . Tables 6 and 7 show the L2 errors and absolute

errors in some points. Also parameter b is obtained in these

tables. The results of m2ðxÞ for n ¼ 15 and n ¼ 20 are

obtained using regularized quasi-Newton’s method (42).

Figures 1 and 2 show the numerical results corresponding

to uncorrected scheme (TiðmÞ ¼ 0) and corrected

scheme with correction terms � (HiðmÞ ¼ 0) and b�
(PiðmÞ ¼ 0). Numerical results show the good efficiency of

the correction term b�2;i. The mass function m2ðxÞ is

Fig. 4 Results for m4ðxÞ with n ¼ 20. a With correction term �2;i, b without correction term, c with correction term b�2;i, d the error ð ~mi � miÞ
with correction term b�2;i
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constructed in Jiang and Xu (2019). There is an agreement

between the results of our method and Jiang and Xu (2019).

Example 2 We consider the non symmetric mass functions

m3ðxÞ ¼ 2þ sinðpðx� 1Þ2Þ and
m4ðxÞ ¼ 0:98� 0:04 cosðpxÞ � 0:03 cosð2pxÞ

þ 0:26 cosð3pxÞ þ 0:07 cosð4pxÞ � 0:04 cosð5pxÞ;

on the interval [0, 1]. We need two spectra fkign1 and

flignþ1
1 for constructing these functions. The L2 errors and

absolute errors in some selected points are listed is

Tables 8 and 9. For uncorrected and corrected schemes the

numerical results are compared and depicted in Figs. 3 and

4. The results of m4ðxÞ for n ¼ 15; 20 are obtained using

regularized quasi-Newton’s method (42). The mass func-

tion m4ðxÞ is constructed in Jiang and Xu (2021). There is

an agreement between the results of our method and Jiang

and Xu (2021).

5 Conclusion

In this paper, we used Numerov’s method along with a new

correction term to approximate the eigenvalues and con-

struct mass function of the string equation. It was shown

that, unlike to canonical Sturm-Liouville and vibrating Rod

equations, for the string equation the correction term �2;i
does not work and we must consider the correction term as

b�2;i. Therefore, we introduced the parameter b that plays

an important role in approximating the eigenvalues and

constructing the mass function m(x). Numerical results

show that the correction technique is able to reduce the

asymptotic error constant of Numerov’s method, signifi-

cantly. This leads to efficient results for direct and inverse

problems of the string equation.
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