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Abstract

It is well known that free vibration of a taut string having mass per unit m(x) and frequency o is governed by ordinary
differential equation y” + w?m(x)y = 0. In this paper, first we discretize the differential equation by using Numerov’s
method to obtain a matrix eigenvalue problem of the form —Au = ABMu, where A and B are constant tridiagonal matrices
and M is a diagonal matrix related to mass function m(x). In direct problem, for a given m(x), we approximate the first N
eigenvalues of the string equation by making a new correction on the eigenvalues of matrix pair (—A, BM). Also we obtain
the error order of corrected eigenvalues. For inverse problem, we propose an efficient algorithm for constructing unknown
mass function m(x) by using given spectra by solving a nonlinear system. We solve the nonlinear system by using modified
Newton’s method and a regularization technique. The convergence of Newton’s method is proved. Finally, we give some
numerical examples to illustrate the efficiency of the proposed algorithm.
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1 Introduction y'(1) = 0). It is well known that differential equation (1)
with one set of the boundary conditions has infinite number
The free vibration of a taut string having mass per unit m(x)  of eigenvalues {/,}]" such that
and frequency w is described by ordinary differential

equation of the following form

Y+ im(x)y = 0,

0<hi<h< - <Ay<:++, Ay — F00.

(1) For more details see (Freiling and Yurko 2001; Gladwell
2004; Kirsch 1996). In this paper, we investigate two types
of problems related to differential equation (1). First, we
consider direct problem i.e. approximating the first N
eigenvalues of the string equation with given boundary

O<x<l,

where 1 = w?, (Gladwell 2004). Equation (1) is called
string equation which is a special form of Sturm-Liouville
equation. Usually, boundary conditions at end points are

considered for differential equation (1). The most impor-
tant boundary conditions are fixed-fixed (y(0) = y(1) = 0),
fixed-free (y(0) =0,y'(1) =0) and free-free (3/'(0) =0,
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conditions. Second, we solve the corresponding inverse
problem i.e. we construct unknown mass function m(x)
using informations of spectral data. By solving inverse
problem for a string, we may design a string with a pre-
scribed frequences. It is proved that if m(x) is symmetric
with respect to mid point x = 1, i.e. m(x — ) = m(x), then
one spectrum corresponding to fixed-fixed boundary con-
dition suffices to construct m(x), uniquely. But for non
symmetric case of m(x) two spectra corresponding to two
boundary conditions e.g. fixed-fixed and fixed-free are
required to construct m(x), uniquely (Gladwell 2004; Jiang
and Xu 2019). Since m(x) is a positive function, for com-
putational purpose we define m(x) = p*(x). If fol p(x)dx =
1 then by changing of variables
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dé 1

o= P, 28 = (), v(E) =2Ey), (2)
the string equation (1) can be transformed to the following
Sturm-Liouville problem (Gladwell 2004; Jiang and Xu

2019)

V(&) + (A= q(&))v(¢) =0, 0<i<l, (3)
where

_d9 _d
(=15 =gz @)

Direct and inverse Sturm-Liouville problems are well
studied problems in the literature. For more details see
(Andrew 2005; Ezhak and Telnova 2020; Freiling and
Yurko 2001; Gladwell 2004; Jiang et al. 2021; Kirsch
1996; Mirzaei 2017; Perera and Bockmann 2020, 2019;
Mosazadeh and Akbarfam 2020; Neamaty and Akbarpoor
2016). Note that construction of m(x) from g(x) using (3)
and (4) needs more information and conditions on m(x).
That is why the direct and inverse problem corresponding
to the string equation have been studied, independently. In
papers (Andrew 2003; Andrew and Paine 1986; Andrew
2000; Gao et al. 2015, 2017, 2018; Paine et al. 1981), the
direct and inverse problems of Sturm-Liouville equation
(3) are studied by using finite difference, finite element and
Numerov’s methods. They find approximations for the first
N eigenvalues as follows

/Ik:Ak"l‘Gr,ka k=1,2,...,N, (5)

where Ay is the kth eigenvalue of the matrix obtained by
discretization of the Sturm-Liouville equation (3) and ¢, is
the difference between the kth eigenvalue of (3) and the kth
eigenvalue of the matrix form of (3) for ¢(x) = 0. It is
proved that

o= K — 12 sin? (“zh)
’ h2[3 + (1 — r) sin® (<] (6)
r=1,2,3, k=1,2,...,N,

where r is a parameter that depends on the discretization
method. For finite difference method » = 1, for Numerov’s
method r =2 and r =3 for finite element method. In
general, solving the direct and inverse problems of the
string equation has been less studied comparing to the
classical Sturm-Liouville equation. In Jiang and Xu
(2019, 2021) construction of the mass function m(x) is
considered by using trace formula. In Rundell and Sacks
(1992) mass function constructed by an iterative procedure
based on Goursat problem. In general, computing eigen-
values and eigenfunctions of the string equation for non
constant mass function is impossible, explicitly. In prac-
tice, however, finite dimensional numerical methods are
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used to estimate the spectral data. Using such methods
Eq. (1) is then transformed to a matrix eigenvalue problem
where the eigenvalues of the resulting matrix become
approximations for the first N eigenvalues of the string
equation. The eigenvalues of matrix equation can be used
to approximate the eigenvalues of lower indices but for
eigenvalues of higher indices they generally lead to poor
numerical results. In this paper, we discretize the string
equation by using Numerov’s method to obtain the corre-
sponding matrix eigenvalue problem. In order to make
good approximations for the eigenvalues of the string
equation we add a new suitable correction term to the
eigenvalues of the matrix obtained from Numerov’s
method. Then we propose an algorithm to solve direct and
inverse problems corresponding to the string equation in
the cases of symmetric and non symmetric function m(x).
Our results show that Numerov’s method together with
correction technique can be applied successfully to solve
direct and inverse problems. To our knowledge, correction
idea has not been applied to direct and inverse problems of
the string equation.

The rest of the paper is arranged in the following
manner. In Sect. 2, we discretize the string equation to
obtain a matrix eigenvalue problem. By making new cor-
rection on the eigenvalues of resulting matrix eigenvalue
problem we approximate the first N eigenvalues of the
string equation. Moreover, the error analysis of corrected
eigenvalues and some numerical results are presented in
this section. In Sect. 3, a method based on correction
technique of Sect. 2 is proposed to solve inverse problem
of the string equation in symmetric and non symmetric
cases. Finally, some different numerical examples are
given in Sect. 4 to show the good efficiency of this tech-
nique for inverse problem.

2 Direct Problem

In this section, we study direct problem of Eq. (1). First we
discretize Eq. (1) by using Numerov’s method. For this aim
we divide the interval [0, 1] into N subintervals of length i
and evaluate Eq. (1) at x; = ih as follows

y;/+)»miYi=0, i:1a2a"'7N_17 (7)

where m; = m(x;) and y; = y(x;). Using central difference
formula we have

i -2 i i— h2
7 — y+1 y +y 1 _ yl(4) + 0([’14) (8)

i h? 12
Using Eq. (1) we have yf4) = —A(m(x)y);. Approximating
the second derivative by central difference formula gives
)

i

the following approximation for y
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4 _ _MirYin = 2m;y; + m;_1yi_

W= 2 +Oom). (9

Substituting (9) in (8) and approximating y/ by (7), we find
h2
—Yit1 + 2y — yi1 = EA(miJrl)’iH (10)

+10mgy; + mi1yi-1), i=1,2,...,N — L.
Equation (10) can be written in the following matrix form
—Au = ABMu, (11)

T . .
where A and u = [uy,up,...,uy_]" are approximations for

Aand y = [y1,y2, .. .,yN,l]T, respectively. For fixed-fixed
boundary conditions the matrices A and B are as follows:

-2 1
1 -2 1
1 .
A:ﬁ . )
-2 1
1 -2
10 1
1 10 1
1 .
B =— . ,
12 :
10 1
1 10

and M = diag(my,my,---,my_1). We have B = I—&—%A.
For fixed-free boundary conditions the condition y'(1) =0
can be discretized by using a first or second order
approximation. But in this paper we use Remark 2 to
transform the non symmetric string equation on [0, 1] to
symmetric string equation on [0, 2] with fixed-fixed
boundary conditions. Throughout the paper the eigenvalues
of string equation with fixed-fixed boundary conditions are
denoted by {Z;} and the eigenvalues with fixed-free
boundary conditions are denoted by {;}, respectively.
Similarly, the eigenvalues of the matrix Eq. (11) corre-
sponding to fixed-fixed boundary conditions are denoted by
{A!} and the eigenvalues of the matrix equation (11)
corresponding to fixed-free boundary conditions are
denoted by {A7}. Note that A] and A? are approximations
for {;} and {y;}, respectively which are good approxi-
mations for lower eigenvalues but we have poor results for
higher indices, see Tables 1 and 2. In order to improve the
results, we extend the correction technique (Paine et al.
1981) to the string equation.

If jol p(x)dx = 1, then Egs. (1) and (3) are isospectral,
i.e. they have the same eigenvalues. Therefore it is natural
to expect that the correction (5) may be used to

Table 1 Errors of uncorrected and corrected eigenvalues for m(x) =

1 — 0.3e=206-05" with p = 32

i %i 2 = A 1 — Al
1 12.1880 31e—7 51¢—8
4 101.8304 I.le—3 3.8¢-5
8 550.8877 7.0¢ -2 2503
12 910.5795 8.0¢ — 1 2802
16 1360.2085 45640 1.6e — 1
20 1899.7650 1.8+ 1 6.4e — 1
2 25292479 53¢+ 1 2.0e+0
28 3248.6568 1.36¢ +2 53¢+0
32 3248.6568 3.07e+2 13e+ 1

approximate the eigenvalues of Eq. (1). If fol px)dx=c /
= 1 then we may modify Eq. (1) as follows

Y+ Am (x)y(x) =0, (12)

where * = ¢?/ and m* = Lm(x). Making correction (5)
for Eq. (12) we find

~ 1
iz ZAZ-l-Ez’k = b = A=A +§62”" (]3)

Thus, if ¢ # 1, selecting the correction term as €, 4 does not
make a good approximation. In this case we must choose
the correction term as ci2€2J<'

2.1 Error Analysis of Corrected Eigenvalues

In this part, using some lemmas and theorems we find the
error order for corrected eigenvalues Ar. We prove the
results for the case ¢ = 1 and fixed-fixed boundary condi-
tion. The results can be extend to the case ¢ # 1 and other
boundary conditions, similarly. It is obvious that the
eigenvalues of problem (1) with m(x) = 1 and fixed-fixed
boundary condition, are 1, = k*>m®> and corresponding
eigenfunctions are yg(x) = sinknx. We have the following
lemma for the matrix pair (—A, B).

Lemma 1 (Andrew 2000; Chawla and Katti 1980) For
matrix pair (—A, B) we have

2k
(1) —As; = AZBSky AZ_ 12 sin®(A%)

T W2 3=sin? kx>
sg = (sinkmxy, ..., sinkmxy_1),
(i) A =k + O(k°h*).

Lemma 2 (Andrew 2000; Chawla and Katti 1980) If
fol p(x)dx = 1, then

D) k=K1 +0@),

#2, §) Springer
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Table 2 Errors of uncorrected

and corrected eigenvalues for i i % — Ail' [4: — /i[l| Hi i — A12| |w; — /{,2|
. 2 .
mn) S 2hsin(al - 1) with 3723 31e—6 1.5¢ — 6 1.056 1.5e 7 1.3¢ — 7
2 15.569 1.3e — 4 2.7¢ — 5 8.674 2.5¢ -5 8.1le — 6
3 35.341 1.3¢e -3 1.7¢ — 4 24.461 4.5¢ —4 73e—5
4 63.048 7.0e — 3 6.7¢ — 4 48.203 32¢—-3 3.5¢—4
5 98.680 2.6e —2 2.1e—3 79.873 l.4e —2 1.2¢ -3
6 142.235 7.8¢ —2 5.5¢—-3 119.467 4.6¢ —2 34e—3
7 193.710 2.0e — 1 1.3¢ — 2 166.982 1.3¢ — 1 8.5¢ -3
8 253.106 4.4e — 1 2.7e —2 222.418 3.0e — 1 1.9¢ — 2
9 320.421 8.9¢ — 1 53e -2 285.774 6.3¢ — 1 3.8¢ —2
10 395.657 1.7¢e + 0 9.8¢ —2 357.049 1.2e 4+ 0 73e —2
11 478.812 3.0e +0 1.7¢ — 1 436.244 23e+0 1.3¢e —1
12 569.887 5.1le+0 2.9¢ — 1 523.359 39¢+0 23e—1
13 668.881 8.3¢+0 4.8¢ — 1 618.394 6.5¢ +0 3.7e — 1
14 775.795 1.3e+1 7.6¢ — 1 721.348 1.0e + 1 6.0e — 1
15 890.629 2.0e + 1 1.2¢+0 832.222 1.6e + 1 94e —1
16 1013.382 2.9e + 1 1.8¢+0 951.015 2.4e+1 1.4e+0
17 1077.728 3.6e + 1 2.1e+0
(i) yi(x) = sinknx + O(p), (A—u'My =u”(e" +s" — B 'A(e +5))
(111) Mk - Ak| = 0(k6h4). —_ uT(e" _ kZﬂ:ZS 4 AZS _ B—lAe)
Note that for arbitrary function f(x), we use the boldface = (A} - Kr*)u’s +u’ (e’ — B~'Ae)

vector £, for (f(x1),f(x2), ..., f(x)).

Lemma 3 Suppose that e(x) = y(x) — sinknx, e=y — s
and € = u — s, then we have

(A ="My = (A; — K*n*)u’s
+s7(e” — B 'Ae) + €' (" — B~ 'Ae).

(14)

Proof By transposing Eq. (11) then multiplying by y we
obtain

—u'B'Ay = Au’ My. (15)

Writing (7) in matrix form and multiplying by u’ we get

—u’y" = u’My. (16)
Subtracting (16) from (15) we find

(A= Au"My =’ (y’ — B 'Ay), (17)
substituting y = e + s, s” = —k?x’s, u = € + s in the right

hand side of (17) we find

52, €\ Springer

= (A} — K*n*)u’s +s"(¢" — B~'Ae)
+ €' (e” — B~ 'Ae).
U

Remark 1 We can rewrite the string equation as
¥ (x) + dy(x) = A(1 — m(x))y(x). Also, the discrete equa-
tion (11) can be written as —Au+ AB(I — M)u = ABu.
From Andrew and Paine (1985) by comparing these
equations with corresponding equations in canonical
Sturm-Liouville problem we conclude that for higher index

k, |y; — sk| and |u — s;| are of order O(}).

Lemma 4 For the function e(x) we have

e() = /O "k = am(s)) sinkn(x — 1)y(1)dt, (18)

eV (x)=0kV1),j=0,1,..., (19)
e(0) =e(1) =¢"(0) =¢"(1) = 0. (20)

Proof Differentiating twice of e(x) = y(x) — sin(knx) we
obtain

¢"(x) = y"(x) + k*n® sin kmx
—Im(x)y(x) + K’ [y(x) — e(x)],
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thus ¢’ + k*ne = [k*n* — Jm(x)]y(x). This equation with
boundary conditions ¢(0) = 0 and e(1) = 0, has the solu-
tion of the form (18). Using Lemma 2, part (ii) we find
e(x) = O(}). Differentiating (18), implies (19). Simple
calculation conclude (20). O

Theorem 1 Suppose that

f(x) = (Bn* = 2m(x))y(x),
x+h (21)
a(x, h) = Sf(t) sinkn(x + h — t)de,
Ej = OC(_X]', h) - O((xﬁ _h)7 (22)
then
WAL
_ "o 2.2 __A© — k _
Ae — Be" — (k A})Be (1 + B ) I
(23)
Proof We have e’ + k’n’e = f, therefore
Be” = Bf — k*n’Be. (24)

On the other hand by using (18) and part (i) of Lemma 1,
for the jth entry of the vector Ae we have

knh’(Ae); = kn(ejr1 — 2¢; + ¢j1)

= /x]f(t) [sinkm(xjs1 — 1) — 2sinkn(x; — 1)
0

+ sinkn(x;_y —1)] + E;

hz/\O
= / f(0)[sinkm(xj1 — 1)
+ 10smkn(
hzl\okn
12

xj —t) +sinkn(x;_y —1)] + E;

le(xj+1) + 10e(x;) + e(xj-1)]

A

1 KE;
+( + 12)]7

dividing both sides to kmh?> we obtain

M2 A2
o (15 E. (25)

Subtracting (24) from (25) we obtain the required result. [

= —A}Be + —

Theorem 2 Suppose that m(x) € C*|0, 1], then there exists
constant c¢| such that

| (B~ 'Ae — ¢’ + (A — K*n?)e| < cik°h

Proof By definition of E; we have

Xj+1

E= [ f)sinfkn(g. —nld

Xj

+ [0 st

Applying Taylor’s expansion of the function f(x) around x;,
then using integration by parts we find

2
- cos(knh))}ﬁ” +o(ke.).
On the other hand we have

h2Af W2

Bf_f+T:f+—f”+0h4||f )
Thus

: 1+h2A’°‘ E; — h*(Bf)

km 12 )7 J

- {(ﬁ)u . cos(knh))<1 +%) - hz}fj
+h2{k21 2 {1 B (kz;h) (1 cos(knh))} (1 +hi/2\>
} 7+ o)
(A; — P,
2

. h2k2n?
2.2
i K _Ak)(l 12 )ﬁ/

+0(h6\v(4)Hoo).

(26)
Since A — k*n® = O(k°h*), 1K — (1), and
If9||., = O(kU*?). Thus all terms in (26) are of order
O(k°h). Therefore we find
! Ay 2 61,6
E(l—i— B )E,—h (Bf);= O(K°h°). (27)

Using Remark 1 we have |¢[|,, = O(;). Also ||B7!| =
O(1) and n = O(3). Thus, using (23) and (27) we obtain

|7 (B7'Ae — €' + (A, — K*n’)e)
<nl€ll|Bl|/Ae — Be" + (A, — K*n’)Be||
<R
O

Theorem 3 If m(x) € C*|0, 1] then there exists constant c,
such that

52, €\ Springer
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[|s"E| <k’ (28)

Proof Define F(x) = f(x)sinknx. The function F(x) has
the following properties

F(0)=F(1)=0, F'(0)

Substituting x = 1 in (18) we find fo
that Tj,F denote the trapezoidal integration formula of F(x)
with step size & on [0, 1]. Using Euler-Maclurin formula
(Davis and Rabinowitz 1975), we have

—F(1) =0. (29)

x)dx = 0. Suppose

s"E=h""T,F = h‘{/ol F(x)dx
g%ﬂﬁ%n—wwm%%fév4ﬁFW“ﬂ%’
(30)

where B4 is Bernoulli number and {p;} are piecewise
polynomials of period one satisfying

Pt = Pjspajr1(0) = paina (1) = 0,p1 (x) = x — 5.

2
Simple calculations show that
F"(1) = F"(0) = 3kn((—1)f"(1) = £"(0)),
f(0) = =24m'(0)y'(0),£" (1) = =2m' (1)y/(1).
Since A=0(*),y =0(k), m =0(1), we find
F"(1) — F"(0) = O(k*). Substituting this in (30), we get
|s7¢| = 1 /0 s (%)F“)(x)dx + O, (31)

By simple calculations, we obtain
F®(x) = —8k*n*g(x) cos 2knx + O(k°)

where g(x) = k?>n? — Jm(x). By similar procedure in proof
of Lemma 6 in Andrew and Paine (1985), we obtain

| 7)o

Combining (31) and (32) we obtain the result (28). O

= 0(k). (32)

Theorem 4 Suppose that m(x) € C*[0,1], then we have
|Ak — i < ckSh?.

Proof Using part (i) of Lemma 1 then adding and sub-

tracting k’n’s’ e we obtain

22, Q) Springer

s’(e" — B 'Ae) =s" (e’ + Aje + k*n’e
— ST(e// +k2nze)

+ (A} — Kn?)s"e.

— k’n’e)

According to the proof of Lemma4 we have

e’ + k*n%e = f, thus we obtain

s’(e" — B 'Ae) = s"f + (A; — k*n?)s"e.

On the other hand we have u’y = u’s + s”e + ¢’ e. Using
these relations and Theorems 1, 2 and 3 we find

& — Allu"My] = (A — Au"My — (A — K)ol
+ (A} — P’ (1 — M)y|
=[(A = 2)u"My — (A] — i*7*)(u”s +s"e + ¢'e)
+(Ay = K’ )ul (1 — M)y|
= |s"(¢" — B 'Ae) + ¢’ (" — B 'Ae)
— (A — )5 e + Te — uT (I — M)y

<Al + ek’ + |(A] — )’ (1 - M)y|.
Thus we get
~ Kh? Kh?
A — 4| < (R + k)
lu” My|
u’ (7 — M)y|
A° — k2 2 |7
+| k n | |llTMy|
Using Remark 1 we have
Iy = sllc = O(). Ju— sll.c = O(). Also we have b =

( ) (Andrew and Paine 1986, 1985). Thus we obtain
W =O(h). On the other hand we have

A; — K212 = O(k°h*), thus we obtain |A — 4| < ckS h*.00

In Tables 1 and 2, the eigenvalues of string equation
corresponding to mass functions m(x) = 1 — 0.3¢=206=05)"
and m(x) =2+ sin(n(x — 1)?) are approximated using
new correction term given by (13). The exact eigenvalues
are computed by Matslise package (Ledoux et al. 2005).
The results for |4 — Ag| and |4 — Ak| show the efficiency
of the correction term Ciz €2 x to approximate the eigenvalues
of the string equation. We state the following remark to
obtain the eigenvalues of non symmetric mass functions.

Remark 2 Let {/;}} and {1;}1"" be the eigenvalues of the
string equation (1) with fixed- ﬁxed and fixed-free boundary
conditions, respectively. If m(x) is extended to interval
[0, 2] as a symmetric function, then it is well known that

{23! defined by

i;iflz.uh ;“;i:lia i:1727“'7n+17
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Table 3 Scaled errors of A; and A; for m(x) = 1 — 0.3¢~20605" and
Bl 1 1

T 32 64 128
i |A; — 2| /h*i® |A; — 4] /nti0
1 1257 1297 1353 0.054 0.056  0.066
1087  11.19  11.36  0.0098 0010  0.010
8 1092 11.21 1137 00099 0010 0010
12 1099 1123 1137 0010 0.010  0.010
16 1110 1125 1138 0010 0.010  0.010
20 1124 1129 1139 0010 0.010  0.010
24 1139 1134 1140 0011 0.010 0010
28 1156 1139 1141 0011 0.010  0.010
32 1173 1145 1143 0012 0.010 0010
36 1152 1145 0011 0.010
40 1159 1147 0011 0010
44 11.67  11.50 0011 0.010

Table 4 Scaled Errors of A; and A; for m(x) = 2 + sin(n(x — 1)*)
and h ==L L

32 64 128

i |A; — 2| /41 |A; — 74| /nti
1 2.56 2.56 2.54 2.16 2.14 2.14

0515 0514 0513 00785 00779  0.0777
8 0447 0445 0444 00383 00376  0.0374
12 0438 0432 0432 00295 00286  0.0283
16 0438 0430 0428  0.0266 00252  0.0249
20 0442 0430 0426 0.0257 00237  0.0233
24 0447 0430 0426 0.0258 00230  0.0224
28 0453 0432 0426 0.0265  0.0227  0.0219
32 0460 0434 0426 0.0280 00226  0.0216
36 0436  0.426 0.0226  0.0214
40 0439 0427 0.0228  0.0213
44 0442 0428 0.0231  0.0212

are the eigenvalues of the string equation on interval [0, 2]
with symmetric mass function and fixed-fixed boundary
condition (Gladwell 2004). Thus we conclude that the
nonsymmetric case on [0, 1] is equivalent to symmetric
case on [0, 2]. Note that by change of variable (2) the
coefficient ¢ in correction term (13) for nonsymmetric

function m(x) is computed as ¢ =} foz p(x)dx.

To confirm the results of Theorem 4, we compute the
values of scaled errors |A; — A;|/h*i in Tables 3 and 4. As
expected, the results are bounded and more smaller than
the corresponding results for A;. The results show that for

string equation uncorrected and corrected Numerov’s
method are of order O(h*i®). But, correction term reduces
the asymptotic error constant, significantly.

3 Inverse Problem

In this section, we want to construct unknown mass func-
tion m(x) in the differential equation (1) by using spectral
data. If m(x) is symmetric then one spectrum corresponding
to fixed-fixed boundary condition will be sufficient to
construct it, uniquely. For non symmetric case we need two
spectra for unique construction of m(x). Here we use the
spectra correspond to fixed-fixed and fixed-free boundary
conditions. We state the main inverse problem as follows:

Inverse Problem 1 Letn € N and {4} be a given set of
positive and distinct real numbers. Construct a symmetric

mass function m(x) such that {4, '11“ are the first (n+ 1)
eigenvalues of the equation (1) with fixed-fixed boundary

condition.

Inverse Problem 2 Let n € N and {4}!, {;};"" be two

given set of distinct and positive real numbers such that
U; </Zi <p;yq. Construct a mass function m(x) such that

{2} and {;1;}7"" are the first eigenvalues of the equation
(1) with fixed-fixed and fixed-free boundary conditions,
respectively.

First we verify the solution for Inverse Problem 1. Let
N = 2n (also we can take N = 2n + 1). Using Numerov’s
method the string equation can be written in the matrix
eigenvalue problem —Au = ABMu. According to sym-
metric assumption of m(x) we have

m; = my—_;, = 1,2,3,...,}’1. (33)

Therefore the Inverse Problem 1 is equivalent to construct
{m;}! by using prescribed eigenvalues {2;}""'. The con-
struction procedure is as follows. First we find the eigen-
values A of the matrix pair (—A, BM) by the procedure

given in Sect. 2. Using Eq. (13) we may write

A== Persy i=12...n+1, (34)

where ff=214= L Note that § is an unknown

(f; p(x)dx)
parameter, since m(x) = p*(x) is unknown. Thus we have
to find f and {m;}? such that {A!}!*" defined by (34) are
eigenvalues of the matrix pair (—A, BM). Indeed f and
{m;}] must be the solutions of the following nonlinear
system of algebraic equations
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Pl(m) = All (m) - ;bt(m(x)) + ﬁ€2,i =0,

35
i=1,2,..,n+1, (35)
where m = [my,my, - - -, my, f]. Note that parameter f§ can
be computed as follows:
2
B i P2 (36)

See (Chawla and Katti 1980). Here we can approximate
B~ nf';z. But computing the parameter f§ by solving non-

linear system (35), leads to efficient results for inverse
problem, see Tables 6, 7, 8, and 9. We can solve the system
(35) by using modified Newton’s method (Stoer and
Bulirsch 2002). The sequence of recursive Newton’s
method is given by:

my; = m; — G’lP(mk), my = [1, 1,..., 1],

37
k=1,2,..., (37)

where G is Jacobian matrix of system (35) at point
m = my. For this aim, we need the eigenpairs of (11)
corresponding to m(x) =1 and Jacobian matrix G. The
eigenpairs are as follows:

Lemma 5 (Yueh 2005) The orthonormal eigenvector y; of
the matrix pair (—A, B) is given by

R 2 . [ijn .
)’u:\/;sm(N)a i=1L2,..

We find the Jacobian matrix in the following lemma.

LN 1. (38)

Lemma 6 Jacobian matrix corresponding to nonlinear
system (35) at m = my is given by:

4 )
G(ij) = =y A sinz(%), i=1,2,...

i=1,2,...n,

G(i,n—&-l):ﬁzﬁi, 1:1,2,,n—|—1

Proof Using Eq. (35) we find

Table 5 Condition number of Jacobian matrix G

n 4 8 16 32 64

Cond(G) 63.21 179.05 823.21 4.12¢ +3 22e+4

52, €\ Springer

Table 6 Results of the Example 1 for m(x) using P;(m) =0

Xi n
5 10 15 20

0.1 T.4e —4 2.0e -5 1.0e — 5 6.2¢ — 6
0.2 43¢ -5 4.1e -7 l.le— 6 6.9¢ —17
0.3 33e—5 2.9¢ -8 3.7e -1 2.5¢—-1
0.4 23e—5 4.9e — 8 2.2e -7 1.5¢ =17
0.5 2.1le—=5 4.8¢ -8 1.9¢ —17 1.3e =17
p 0.3210 0.3240 0.3246 0.3248
[|m —ml||, 7.5¢ —4 4.6¢ —4 3.6e —4 34e—4
lm —mj,,, 2.5¢ -3 1.0e — 3 1.5¢ —4 42e —4

Table 7 Results of the Example 1 for m;(x) using P;(m) =0

Xi n

5 10 15 20
0.1 3.1le—4 1.8¢ — 4 7.7¢ -5 38¢—5
0.2 1.7¢ — 4 33e—5 1.3e —5 6.7¢ — 6
0.3 1.5¢ — 4 1.5¢ — 5 9.1e— 6 5.6e — 6
0.4 7.6e — 5 1.6e — 5 1.0e — 5 9.4e -6
0.5 2.8¢ — 5 2.4e -5 l.le—5 1.3¢ — 5
p 1.2000 1.1927 1.1914 1.1910
[|m — ml]|, 4.0e — 4 4.4e -4 5.9¢ — 4 l.le—4
|m—m],, 1.5¢ -3 2.5¢—-3 5.0e -3 6.7¢ — 3
oP; 0A] 0P, (39)
ot Rl ———
om; om0

Taking partial derivative from both sides of —B~'Au; =
A}Mui with respect to m; we have
ou; A | oM

=My + A —uw+AM
Gy~ Gy

6u,-
Om;

Multiplying both sides of the last equation by y? we obtain

; !
g Al A,
am]‘ ij

u! My,
(40)
+ A-lu-Ta—Mui +Ald"M Ou; .
1 1 amj 1 1 amj

Orthogonality of the eigenvectors with respect to M implies
that u/ Mu; = 1. On the other hand —B7'A is a symmetric
matrix (Chawla and Katti 1980). Therefore —u/B~'A 2% =

Ailul.TM g—r‘r‘l‘j Considering these properties in (40) we obtain
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4.2 T T T (a')

= = = Constructed
Exact

26 1 L L L L L L L L

3.25

= = = Constructed
Exact

32

295 s L L L L L L L L
0 005 01 015 02 025 03 035 04 045 05

X

= = = Constructed
Exact

L . L L L L L L L
015 02 025 03 035 04 045 05
X

-4 d
3519 ‘ . @

Error

1 L s L L L L L L L
0 005 01 015 02 025 03 035 04 045 05
X

Fig. 1 Results for m (x) with n = 20. a With correction term €, ;, b without correction term, ¢ with correction term fe,;, d the error (m; — m;)

with correction term fe; ;

OA] oM
L= —A}ul.T—u,-.
6mj amj
Computing g}—% and substituting u,~,/\l-1 corresponding to

m = mgy we find
OA; 4 ., (ijn
N (%)

Combining Egs. (39) and (41) we find the entries of the
required Jacobian matrix. [

(41)

Remark 3 The matrix G is a nonsingular constant matrix
and independent of mass function m(x). The condition
number of G is given in Table 5 for different values of n.
For some large values of n, we may need to apply a reg-
ularization method for solving nonlinear system (35). Here
we apply the quasi-Newton’s method as follows

my = m; — Oﬁk(GtG + al)flG’P(mk), (42)

where oy satisfy the Wolf conditions (Gilbert 1997) and
g > 0 is a regularization parameter.

Remark 4 The equation (1) is a special case of the Sturm-
Liouville equation (py')' + (Aw +¢)y =0 thus, the
parameter 4 is a differentiable function with respect to
m(x) (Zhang and Li 2020).

The following theorem shows the convergence of
modified Newton’s sequence (37).

Theorem 5 Letn € N,p>1and ||.|, denotes the L, norm
on [0, 1], there exists a positive number cp(n) such that if
[m(x) — 1||, <cp(n) and the sequence my obtained from
(37) be positive, then the recursive sequence (37) with

initial value my is convergent to the solution of the system
(35).

o — @ Springer
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1.05 T T T

= = = Constructed

’ Exact

0.7 . L L L L L L L L
0 005 01 015 02 025 03 035 04 045 05

= = = Constructed
Exact

0.95

=
€ 0.85

08

0.7 s L L L L L L L L
0 005 01 015 02 025 03 035 04 045 05

X

11 T T T ula)

= = = Constructed
Exact B

0.7 L . L L L L L L L
0 005 0.1 015 02 035 04

Error

3 L L L L L L L L L
0 005 01 015 02 025 03 035 04 045 05

X

Fig. 2 Results for my(x) with n = 20. a With correction term €, ;, b without correction term, ¢ with correction term fe,;, d the error (m; — m;)

with correction term fe,;

Table 8 Results of the Example 2 for mj3(x) using P;(m) = 0.

Table 9 Results of the Example 2 for my(x) using P;(m) =0

Xi n Xi n
5 10 15 20 5 10 15 20

0.2 1.3e -3 4.7e — 4 1.5¢ — 4 34e -4 0.2 2.4e -2 2.6e —3 1.4e -3 2.2e -4
0.4 7.1e -3 4.5¢ -5 1.6e — 5 3.8¢ -5 0.4 2.7e -2 S5.le—4 2.4e —4 1.5¢ — 5
0.6 4.0e —3 1.2e -5 l.4e -5 2.7e -5 0.6 32e -2 1.1e -3 1.9¢ — 5 42¢e—6
0.8 32e¢ -3 1.0e — 5 2.5¢ -5 3.6e — 5 0.8 34e -2 1.5¢ -3 53e—5 1.0e — 5
1.0 2.8¢ -3 9.4e -6 33e¢ -5 4.1e—-5 1.0 3.5¢ -2 1.7¢ - 3 9.1e -5 53e—-6
p 0.5576 0.4405 0.4337 0.4312 p 1.0007 1.1361 1.2019 1.1760
i — ml|, 93¢—3  4le—3  l4e—3  28¢—3 [m-ml|, 69¢—2  62e—3  47e—3  26e—3
lm —mj,,, 39¢ -2 1.0e —2 2.1e—-2 38¢—2 lm —mj,,, 7.2e -2 1.4e -2 2.0e —2 28¢—2
Proof Let |.|| denote a norm on R""'. Suppose that implies that the eigenvalues A](m) of matrix pair

S, (mg):={m|||m — my|| <r}. First we prove that P(m) is
an analytic function with respect to m and a differentiable
function with respect to m(x). The matrix —B~'A is posi-
tive definite (Chawla and Katti 1980), thus positivity of my

@ Springer

(—B~'A, M) are positive and simple (see (Gladwell 2004),
chapter 3). Thus P(m) is an analytic function of m (Sun
1990). Also by Remark 4, the eigenvalues A;(m(x)) are
differentiable function of m(x). Since G is nonsingular and
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3.2 T T T T
= = = Constructed
Exact

28

221

14

18 L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

= = = Constructed
Exact 4

2 L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

Fig. 3 Results for m3(x) with n = 20. a With correction term ¢, ;, b without correction term, ¢ with correction term fe,;, d the error (m; — m;)

with correction term fe, ;

P is analytic with respect to m, there exists a constant
K >0 such that ||G~'(P'(m) — P'(my))|| < K|m — my].
Suppose that 7 = |G 'P(my)||, p = Knand r_ = @.
If [|m(x) — 1||, = 0, then for i = 1,2,...,n + 1 we have

P;(mp) = AS(mo) — Ai(m(x)) + Bes(i, h) = 0.

Thus for all p>1, there exists ¢,(n), such that for all
m € Ly[0, 1], if |lm(x) — 1|, <cp(n), then 0<p< 1 and
r_ <r. By theory of modified Newton’s method (Stoer and
Bulirsch 2002), we conclude that all my lie in S, (mg) and
the sequence {my} converges to a solution of P(m) = 0. OJ

Corollary 1 By Remark 2, we can solve the Inverse
problem 2 using the method of Inverse problem 1 on the
interval [0, 2].

Using the following algorithm we can solve the inverse
problem to construct m(x).

Algorithm 1 Compute m(x)

. Input the eigendata {\;}77]' and initial guess

myo,
. Compute the Jacobian matrix G from Lemma
6

: Compute my by recursive sequence (37) or
(42).

-

v

o — @ Springer
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a
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Exact
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Exact
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Exact
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Error
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X

Fig. 4 Results for my4(x) with n = 20. a With correction term €, ;, b without correction term, ¢ with correction term fe,;, d the error (m; — m;)

with correction term fe; ;
4 Numerical Results

In this section, we propose some numerical examples to
show the efficiency of the presented algorithm for con-
struction of mass function by solving the nonlinear system
P;(m):=A;(m) — J;(m(x)) + Ber; = 0. The computed
solution of the nonlinear system is denoted by m. We
denote the L, error of constructed m(x) by ||m — m||, when
the parameter 5 is obtained by solving nonlinear system
Pi(m) =0 and by ||m —ml|,, when the parameter f§ is
approximated by (36). Moreover, in the numerical exam-
ples we try to construct m(x) by solving uncorrected system
T;(m):=A] (m) — /;(m(x)) =0 and
H;(m):=A](m) — 2;(m(x)) + e2; = 0 with correction term
€. The results of these systems are compared in the

system

numerical examples. All computations were performed

@ Springer

with MATLAB R2015a on an Intel(R) Core(TM) i5
desktop computer.

Example 1 We consider the mass functions m;(x) =3 +
(x —0.5)% and m(x) = 1 — 0.3¢"206=05 on the interval
[0, 1]. These functions are symmetric with respect to
x = 0.5, thus we can construct them using one spectrum

{2 }**". Tables 6 and 7 show the L, errors and absolute
errors in some points. Also parameter £ is obtained in these
tables. The results of my(x) for n =15 and n =20 are
obtained using regularized quasi-Newton’s method (42).
Figures 1 and 2 show the numerical results corresponding
to uncorrected scheme (7;(m)=0) and corrected
scheme with correction terms e (H;(m)=0) and fe
(P;(m) = 0). Numerical results show the good efficiency of
the correction term fe;;. The mass function my(x) is
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constructed in Jiang and Xu (2019). There is an agreement
between the results of our method and Jiang and Xu (2019).

Example 2 We consider the non symmetric mass functions
m3(x) = 2 + sin(z(x — 1)*) and
my(x) = 0.98 — 0.04 cos(nx) — 0.03 cos(27x)

+0.26 cos(3nx) + 0.07 cos(4nx) — 0.04 cos(57x),

on the interval [0, 1]. We need two spectra {/;}] and

{ ,ui}’f+l for constructing these functions. The L, errors and
absolute errors in some selected points are listed is
Tables 8 and 9. For uncorrected and corrected schemes the
numerical results are compared and depicted in Figs. 3 and
4. The results of my(x) for n = 15,20 are obtained using
regularized quasi-Newton’s method (42). The mass func-
tion my(x) is constructed in Jiang and Xu (2021). There is
an agreement between the results of our method and Jiang
and Xu (2021).

5 Conclusion

In this paper, we used Numerov’s method along with a new
correction term to approximate the eigenvalues and con-
struct mass function of the string equation. It was shown
that, unlike to canonical Sturm-Liouville and vibrating Rod
equations, for the string equation the correction term e;;
does not work and we must consider the correction term as
pea,i. Therefore, we introduced the parameter f§ that plays
an important role in approximating the eigenvalues and
constructing the mass function m(x). Numerical results
show that the correction technique is able to reduce the
asymptotic error constant of Numerov’s method, signifi-
cantly. This leads to efficient results for direct and inverse
problems of the string equation.
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