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Abstract
We consider the backward problem of reconstructing the initial condition of a nonhomogeneous time-fractional diffusion

equation from final measurements. The proposed method relies on the eigenfunction expansion of the forward solution and

the Tikhonov regularization to control the instability of the underlying inverse problem. We establish stability results and

we provide convergence rates under a priori and a posteriori parameter choice rules. The resulting algorithm is robust and

computationally inexpensive. Two examples are included to illustrate the effectiveness and accuracy of the proposed

method.
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1 Introduction

Over the past decade, time-fractional differential equations

have received considerable attention due to their potential

applications in modeling physical phenomena that cannot

be described by classical diffusion models (Uchaikin

2013). One such phenomenon is anomalous diffusion, also

known as subdiffusion (Metzler and Klafter 2000). This

type of diffusion has been observed in various transport

processes, including those in porous media (Fomin et al.

2011), protein diffusion within cells, movement of material

along fractals (Hatano and Hatano 1998), and turbulent

fluids and plasmas (Kilbas et al. 2006). For more infor-

mation, refer to Podlubny (1991) and the references

therein.

Recently, several inverse problems related to fractional

diffusion equations have been studied. These problems

mostly take the form of backward problems (Abdel et al.

2022; Djennadi et al. 2021a, 2021). In these problems, the

goal is to determine or recover the source term or initial

condition that leads to a known solution of the diffusion

equation at a fixed time T [ 0. In this paper, we study a

backward problem associated with the nonhomogeneous

time-fractional diffusion problem:

oat u� Du ¼ f ðx; tÞ; ðx; tÞ 2 X� ð0; TÞ;
uðx; tÞ ¼ 0; ðx; tÞ 2 oX� ð0; TÞ;
uðx; 0Þ ¼ gðxÞ; x 2 X;

8
><

>:
ð1Þ

where X is a bounded domain in Rd with sufficiently

smooth boundary oX, T [ 0 is a given final time,

a 2 ð0; 1Þ, and f is the source term which is assumed to be

known exactly. In Eq. (1), Du denotes the spatial Laplacian
of u, and oat u stands for the ath Caputo time-fractional

derivative of u.
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Finding the density u from a given source term f and

initial distribution g is usually termed as the forward

problem. However, in many practical situations, we often

do not know the initial density of the diffusing substance,

but we can measure (observe) the density at a positive

moment. Therefore, it is desirable to investigate the

important backward problem:

• Given a noisy measurement qdðxÞ of the final data

qðxÞ ¼ uðx; TÞ satisfying
kqd � qk� d; ð2Þ

estimate the initial state gðxÞ.
Here d[ 0 represents the noise level measured in the L2-

norm. Such an inverse problem can be used to recover the

initial concentration of a contaminant (or the initial tem-

perature profile in the case of a heat conduction problem) in

a sub-diffusive media occupying the domain X which is

important for example in environmental engineering,

hydrology, and physics. In such scenarios, knowledge of

the initial distribution of a substance is essential to pre-

dicting its contamination in porous media like soil. This

problem can also be applied to other disciplines, such as

image deblurring. In image processing and computer

vision, the final data qd represents a blurred image, while

g represents the original (sharp) image. Therefore, the

backward problem of diffusion can aid in reconstructing

the original image from the observed, blurred image.

As previously mentioned, time-fractional differential

equations have become increasingly popular due to their

promising applications in several fields. As a result, they

have been extensively studied, and their analytical aspects

and numerical treatments are well-developed. Readers

interested in a comprehensive analysis of fractional dif-

ferential equations can refer to Diethelm (2010), Meer-

schaert et al. (2009), Agrawal (2002), while (Jiang and Ma

2013; Alqhtani et al. 2022, 2023) provide recent numerical

methods. For a recent account of the applications of frac-

tional differential Eqs. (Al-Jamel et al. 2018; Hengamian

et al. 2022; Srivastava et al. 2022) are recommended.

Recently, inverse problems related to time-fractional

differential equations have been considered. In Trong and

Hai (2021), Trong and Hai used the modified quasi-method

to construct a stable approximation to the backward prob-

lem and gave optimal convergence rates in Hilbert scales.

Al-Jamal (2017a) proved uniqueness and stability results

concerning the reconstruction of the initial condition from

interior measurements. In Li and GUO B, (2013), Li and

Guo considered the identification of the diffusion coeffi-

cient and the order of the fractional derivative from

boundary data. In (Wang et al. 2013), Wang et al. con-

sidered time-fractional diffusion equations with variable

coefficients and used Tikhonov regularization to solve the

corresponding Fredholm integral Eq. Wang and Liu (2013)

used the total variation regularization to solve the back-

ward problem from given internal measurements. Deng and

Yang (2014) used the idea of reproducing kernel approxi-

mation to reconstruct the unknown initial heat distribution

from scattered measurements. In Kokila and Nair (2020),

Kokila and Nair utilized the Fourier truncation method to

solve the nonhomogeneous time-fractional backward heat

conduction problem. In Yang et al. (2019), Yang et al. used

the truncation regularization technique to solve the back-

ward problem for nonhomogeneous time-fractional diffu-

sion-wave equation. Tuan et al. (2017) used the filter

regularization method to determine the initial data from the

final value with deterministic and random noise. See also

(Al-Jamal et al. 2017; Djennadi et al. 2021b) for source

identification problems, Al-Jamal (2017b),Wang and Liu

(2012) for backward problems, and Jin and Rundell (2015),

Djennadi et al. (2020) for other inverse problems in frac-

tional differential equations.

Contrary to the forward problem, the backward problem

is ill-posed in the sense that small perturbations in the final

data result in large errors in the computed initial data. This

instability behavior will be demonstrated in the sequel.

Therefore, some regularization is required to obtain

stable solutions. In this paper, we utilize Tikhonov regu-

larization to tackle such instability of the backward prob-

lem. With the aid of the singular value expansion of the

forward map, an explicit formula for the regularized

solution will be provided. We will prove convergence

results and derive convergence rates under both a priori

and a posteriori parameter choice rules of the regulariza-

tion parameter. The suggested method can be easily

implemented, particularly for cubical domains where the

fast Fourier transform can be used. The results of the

numerical experiments are in good agreement with our

theoretical analysis.

The current work makes a significant contribution by

addressing an important inverse problem that has a wide

range of scientific applications. Unlike previous works, the

proposed method is not limited to one-dimensional

domains and does not require a homogeneous source term.

In addition, the method is characterized by its ease of

applicability and implementation, as well as its robustness

and computational speed.

The organization of this paper is as follows. In the next

section, we set up notations and terminologies and lay out

the necessary background material. In Sect. 3, we intro-

duce the regularization technique and develop the main

results. Section 4 is devoted to the practical implementa-

tion and numerical experiments.
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2 Preliminaries

We use the notation L2ðXÞ to denote the Hilbert space of

square integrable functions on X with inner product and

norm given respectively by

ðu; vÞ ¼
Z

X
uðxÞvðxÞdx; kuk ¼ ðu; uÞ

1
2: ð3Þ

The Caputo time-fractional derivative of order a 2 ð0; 1Þ of
u is defined by

oat uðx; tÞ ¼
1

Cð1� aÞ

Z t

0

ðt � nÞ�a ou

ot
ðx; nÞ dn; ð4Þ

where Cð�Þ is the gamma function. The books (Kilbas et al.

2006; Podlubny 1991) provide excellent accounts regard-

ing the history, theory, and applications of fractional

calculus.

The Mittag-Leffler function of index ða;bÞ is defined by

Ea;bðzÞ ¼
X1

k¼0

zk

Cðkaþ bÞ ; z 2 C; ð5Þ

where a[ 0 and b[ 0. The notation EaðzÞ will be used to

denote Ea;1ðzÞ. The following relevant results can be found

in Podlubny (1991) and Liu and Yamamoto (2010),

respectively.

Lemma 2.1 Let k[ 0. We have

1. d
dt Eað�ktaÞ½ � ¼ �kta�1Ea;að�ktaÞ, for a[ 0, t[ 0.

2. 0\Eað�ktÞ� 1, for 0\a\1, t� 0.

3. oat Eað�ktaÞ ¼ �kEað�ktaÞ, for 0\a\1, t[ 0.

4. E1=2ðzÞ ¼ ez
2

ErfcðzÞ.

Lemma 2.2 Assume that 0\a\1. Then there exist con-

stants C�;Cþ [ 0 depending only on a such that

C�
1þ t

�Eað�tÞ� Cþ
1þ t

; for all t� 0: ð6Þ

We shall also need the following lemma.

Lemma 2.3 Let b[ 0. Then

sup
z[ 0

bEað�zÞp

Eað�zÞ2 þ b

( )

� b
p
2; p\2;

b; p� 2:

(

ð7Þ

Proof For x[ 0 and p\2, the function lðxÞ ¼ bxp=ðx2 þ
bÞ attains its maximum value at x0 ¼

ffiffiffiffiffiffi
pb
2�p

q
. Thus, for

p\2, we have

sup
z[ 0

bEað�zÞp

Eað�zÞ2 þ b

( )

� lðx0Þ ¼
1

2
ð2� pÞ1�

p
2p

p
2b

p
2

� b
p
2:

ð8Þ

For p� 2, the second part of Lemma 2.1 yields

sup
z[ 0

bEað�zÞp

Eað�zÞ2 þ b

( )

� sup
z[ 0

Eað�zÞp�2b
n o

� b; ð9Þ

which concludes the proof. h

Consider the following Sturm–Liouville eigenvalue

problem:

�DXðxÞ ¼ kXðxÞ; x 2 X; XðxÞ ¼ 0; x 2 oX: ð10Þ

From McOwen (1996), the eigenvalues can be enumerated

to form a nondecreasing sequence of positive real numbers

fkng with kn ! 1, and the corresponding eigenfunctions

fXng form an orthonormal basis for L2ðXÞ. We define the

Hilbert space HpðXÞ by

HpðXÞ ¼ v 2 L2ðXÞ : vk kp\1
n o

; ð11Þ

where

vk kp¼
X1

n¼1

v;Xnð Þj j2k2pn

 !1
2

: ð12Þ

Using the separation of variables method, the formal

solution to (1) can be expressed as

uðx; tÞ ¼
X1

n¼1

TnðtÞXnðxÞ: ð13Þ

where TnðtÞ solves the fractional order initial-value

problem

DaTnðtÞ þ knTnðtÞ ¼ fnðtÞ; Tnð0Þ ¼ gn; ð14Þ

with fnðtÞ ¼ ðf ð�; tÞ;XnÞ and gn ¼ ðg;XnÞ. From Diethelm

(2010), the solution to the above problem is

TnðtÞ ¼ gnEað�knt
aÞ þ FnðtÞ; ð15Þ

with

FnðtÞ ¼
Z t

0

fnðt � sÞsa�1Ea;að�kns
aÞds; ð16Þ

and therefore, the formal solution to (1) is given by

uðx; tÞ ¼
X1

n¼1

gnEað�knt
aÞ þ FnðtÞf gXnðxÞ: ð17Þ

From the final data uðx; TÞ ¼ qðxÞ, we observe that
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qn ¼ gnEað�knT
aÞ þ FnðTÞ; ð18Þ

where qn ¼ q;Xnð Þ. Thus, the initial condition can be

expressed as

gðxÞ ¼
X1

n¼1

qn
Eað�knTaÞXnðxÞ; ð19Þ

where qn ¼ qn � FnðTÞ.
Define the linear operator K : L2ðXÞ ! L2ðXÞ by

Ku ¼
X1

n¼1

Eað�knT
aÞ u;Xnð ÞXn: ð20Þ

Then, in view of (17), the backward problem can be

phrased more concisely as

Kg ¼ q; q :¼ q�
X1

n¼1

FnðTÞXn: ð21Þ

We demonstrate the instability of the backward problem by

the following example.

Example 1 Assume that Kg ¼ q, and consider the

sequence of observations of q given by

qn ¼ qþ Eað�knT
aÞ

1
2Xn: ð22Þ

If we set

gn ¼ gþ Eað�knT
aÞ

�1
2 Xn; ð23Þ

then Kgn ¼ qn with

kqn � qk ¼ Eað�knT
aÞ

1
2 ! 0; ð24Þ

while

kgn � gk ¼ Eað�knT
aÞ

�1
2 ! 1; ð25Þ

as n ! 1.

The previous example highlights the instability of the

backward problem, where even small errors in the final

data q can lead to large errors in the computed initial

condition g. To overcome this instability, we use regular-

ization, which involves solving a sequence of nearby

problems that are parameterized by a regularization

parameter. One widely used regularization method is

Tikhonov regularization, which we will discuss in the next

subsection. Specifically, we will present the method’s

application to our backward problem Kg ¼ q, as given by

equations (20)–(21).

3 Tikhonov Regularization of the Backward
Problem

As indicated by Example 1, the backward problem lacks

continuous dependence on data qd, and thus regularization

is required. In this paper, we consider Tikhonov regular-

ization (Engl et al. 2000).

Following Tikhonov regularization method, the regu-

larized solution, denoted by gb;d, is defined to be the

solution of the optimization problem

min
u2L2ðXÞ

kKu� qdk2 þ bkuk2; ð26Þ

where b[ 0 is the regularization parameter, and

qd ¼ qd �
P1

n¼1 FnðTÞXn. The first term in (26) represents

the data fitting term, while the second term represents the

regularization term. The rule of the parameter b is to

control the trade-off between fitting the data and satisfying

the regularization constraint (i.e., the smoothness of the

solution).

To obtain an explicit formula for the solution to (26), we

observe that the triplet

Eað�knT
aÞ;Xn;Xnð Þ ð27Þ

form a singular system for K, and consequently, from Engl

et al. (2000), the minimizer is given explicitly by

gb;d ¼
X1

n¼1

Eað�knTaÞ
Eað�knTaÞ2 þ b

qdnXn; ð28Þ

where qdn ¼ ðqd;XnÞ.
Next, we analyze the convergence behavior of the pro-

posed method using both a priori and a posteriori

parameter choice rules of the regularization parameter b.
We shall use the notation gb;0 to denote the solution of (26)

corresponding to the noise-free data, that is,

gb;0 ¼
X1

n¼1

Eað�knTaÞ
Eað�knTaÞ2 þ b

qnXn; ð29Þ

where qn ¼ ðq;XnÞ.

3.1 A Priori Analysis

In this subsection, we investigate the convergence of the

regularization method under a priori choice rule, that is,

the choice of the regularization parameter b depends on the

noise level d. We begin with the following stability result.

Lemma 3.1 It holds that

kgb;d � gb;0k� d

2
ffiffiffi
b

p : ð30Þ
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Proof From Lemma 2.3 and its proof, we have

kgb;d � gb;0k2 ¼
X1

n¼1

Eað�knTaÞðqdn � qnÞXn

Eað�knTaÞ2 þ b

�
�
�
�
�

�
�
�
�
�

2

¼
X1

n¼1

Eað�knTaÞðqdn � qnÞ
Eað�knTaÞ2 þ b

 !2

� 1

4b

X1

n¼1

jqdn � qnj2 ¼
1

4b
kqd � qk2

� d2

4b
:

ð31Þ

This ends the proof. h

Next, we consider the consistency result:

Lemma 3.2 Assume that g 2 HpðXÞ for some p[ 0. Then,

the following bound holds

kgb;0 � gk�M1
b

p
2; p\2;

b; p� 2;

(

ð32Þ

for some constant M1 independent of b.

Proof From the expansions (19) and (29) it follows that

g� gb;0 ¼
X1

n¼1

bgn
Eað�knTaÞ2 þ b

Xn

¼
X1

n¼1

bEað�knTaÞp

Eað�knTaÞ2 þ b

 !
gnXn

Eað�knTaÞp :
ð33Þ

Thus, in view of the equation (33) and Lemma 2.3, we

have

kg� gb;0k2 �
X1

n¼1

jgnj2

Eað�knTaÞ2p

 !
bp; p\2;

b2; p� 2:

�

ð34Þ

From Lemma 2.2, we conclude that

X1

n¼1

jgnj2

Eað�knTaÞ2p
�
X1

n¼1

1þ Takn
C�

� �2p

jgnj2

¼
X1

n¼1

1þ Takn
C�kn

� �2p

k2pn jgnj2

�C2
1

X1

n¼1

k2pn jgnj2 ¼ C2
1kgk

2
p;

ð35Þ

where the constant C1 is given by

C1 ¼ sup
n� 1

1þ Takn
C�kn

� �p

¼ 1þ Tak1
C�k1

� �p

: ð36Þ

The result now follows from the inequalities (34) and (35)

with M1 ¼ C1kgkp. h

Using the triangle inequality together with the last two

lemmas, we conclude the convergence result:

Theorem 1 Assume that g 2 HpðXÞ for some p[ 0. Then,

the following error bound holds

kgb;d � gk� d

2
ffiffiffi
b

p þM1
b

p
2; p\2;

b; p� 2;

(

ð37Þ

for some constant M1 independent of b and d.

Regarding the convergence rate under a priori param-

eter choice rule, we cite the following remark.

Remark 1 Under the hypotheses of Theorem 1, if we

choose b ¼ C0d
c for some c 2 ð0; 2Þ and constant C0 [ 0,

then

kgb;d � gk ! 0; ð38Þ

as d ! 0. For a given value of p[ 0, the convergence rate

is optimal when

c ¼

2

pþ 1
; p\2;

2

3
; p� 2;

8
>><

>>:

ð39Þ

in which case we have

kgb;d � gk ¼ Oðd
p

pþ1Þ; p\2;

Oðd2
3Þ; p� 2:

(

ð40Þ

Thus, we obtain the fastest convergence when p� 2. In this

case, we have

kgb;d � gk ¼ Oðd2
3Þ; ð41Þ

provided b ¼ C0d
2
3.

3.2 Convergence Analysis Under a Posteriori
Rules

The optimal rate of convergence mentioned in Remark 1

above depends on knowing the value of p. However, in

practice, we may not know the exact value of p, and even if

we do, any positive C0 will give an optimal asymptotic rate

of convergence as given by (40). But the choice of C0 can

have a significant impact for a given value of d[ 0. Hence,

it may be reasonable (and necessary) to take the actual data

qd into account when choosing the regularization parameter

b. A parameter choice method that incorporates both d and

qd is known as an a posteriori parameter choice rule. In the

this subsection, we will describe one such rule, namely,

Morozov’s Discrepancy Principle (MDP) (Engl et al.

2000).

According to this principle, the regularization parameter

b is to be chosen so that

kKgb;d � qdk ¼ sd; ð42Þ
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for some given constant s[ 1. The main result is stated in

the following theorem.

Theorem 2 Assume that g 2 HpðXÞ for some p[ 0, and

that b is chosen according to (42). Then

kgb;d � gk�M2

d
p

pþ1; p\1;

d
p

pþ1 þ d
1
2; p� 1;

(

ð43Þ

for some constant M2 independent of d.

Proof From equation (33) and Holder’s inequality, we get

kgb;0 � gk2 ¼
X1

n¼1

bgn
Eað�knTaÞ2 þ b

 !2

¼
X1

n¼1

bEað�knTaÞgn
Eað�knTaÞ2 þ b

 ! 2p
pþ1

� bEað�knTaÞ�pgn

Eað�knTaÞ2 þ b

 ! 2
pþ1

¼
X1

n¼1

bqn
Eað�knTaÞ2 þ b

 ! 2p
pþ1

� bEað�knTaÞ�pgn

Eað�knTaÞ2 þ b

 ! 2
pþ1

�
X1

n¼1

bqn
Eað�knTaÞ2 þ b

 !2
8
<

:

9
=

;

p
pþ1

�
X1

n¼1

bEað�knTaÞ�pgn

Eað�knTaÞ2 þ b

 !2
8
<

:

9
=

;

1
pþ1

¼
X1

n¼1

bqnXn

Eað�knTaÞ2 þ b

�
�
�
�
�

�
�
�
�
�

2p
pþ1

�
X1

n¼1

bEað�knTaÞ�pgnXn

Eað�knTaÞ2 þ b

�
�
�
�
�

�
�
�
�
�

2
pþ1

:

ð44Þ

By the triangle inequality and equation (42), we get

X1

n¼1

bqnXn

Eað�knTaÞ2 þ b

�
�
�
�
�

�
�
�
�
�
�
X1

n¼1

bðqn � qdnÞXn

Eað�knTaÞ2 þ b

�
�
�
�
�

�
�
�
�
�

þ
X1

n¼1

bqdnXn

Eað�knTaÞ2 þ b

�
�
�
�
�

�
�
�
�
�

�kq� qdk þ kKgb;d � qdk
� ð1þ sÞd;

ð45Þ

and by the bound in (35), we have

X1

n¼1

bEað�knTaÞ�pgn

Eað�knTaÞ2 þ b
Xn

�
�
�
�
�

�
�
�
�
�

�
X1

n¼1

gn
Eað�knTaÞp
� �2

( )1
2

�C1kgkp;

ð46Þ

from which it follows that

kgb;0 � gk� C1kgkpð1þ sÞp
� � 1

pþ1

� 	

d
p

pþ1: ð47Þ

In virtue of the definition of K given by equation (20),

together with expansion (28), equation (42), and the tri-

angle inequality, we get

sd ¼ kKgb;d � qdk ¼
X1

n¼1

bqdn
Eað�knTaÞ2 þ b

Xn

�
�
�
�
�

�
�
�
�
�

�
X1

n¼1

bðqdn � qnÞ
Eað�knTaÞ2 þ b

Xn

�
�
�
�
�

�
�
�
�
�

þ
X1

n¼1

bqn
Eað�knTaÞ2 þ b

Xn

�
�
�
�
�

�
�
�
�
�

¼
X1

n¼1

bðqdn � qnÞ
Eað�knTaÞ2 þ b

Xn

�
�
�
�
�

�
�
�
�
�

þ
X1

n¼1

bEað�knTaÞgn
Eað�knTaÞ2 þ b

Xn

�
�
�
�
�

�
�
�
�
�
:

ð48Þ

Then, the first term on the right-hand side of (48) can be

bounded as

X1

n¼1

bðqdn � qnÞXn

Eað�knTaÞ2 þ b

�
�
�
�
�

�
�
�
�
�

2

�
X1

n¼1

ðqdn � qnÞ2

�kqd � qk2 � d2;

ð49Þ

and using Lemma 2.3 and inequality (35), the second term

on the right-hand side of (48) can be bounded as

X1

n¼1

bEað�knTaÞgnXn

Eað�knTaÞ2 þ b

�
�
�
�
�

�
�
�
�
�

2

¼
X1

n¼1

bEað�knTaÞpþ1

Eað�knTaÞ2 þ b

 !2
g2n

Eað�knTaÞ2p

�C2
1kgk

2
p

bpþ1; p\1;

b2; p� 1;

(

ð50Þ

where the constant C1 is given by (36). By combining the

inequalities (48), (49), and (50), it follows that
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sd� dþ C1kgkp
b

pþ1
2 ; p\1;

b; p� 1:

(

ð51Þ

Given the assumption that s[ 1, a straightforward

manipulation of inequality (51) yields that

1
ffiffiffi
b

p �

C1kgkp
s� 1

� � 1
pþ1

d
�1
pþ1; p\1;

C1kgkp
s� 1

� �1
2

d
�1
2 ; p� 1:

8
>>>><

>>>>:

ð52Þ

Consequently, by Lemma 3.1, inequality (30), and the

bound in (52), we get

kgb;d � gb;0k� d

2
ffiffiffi
b

p

� 1

2

C1kgkp
s� 1

� � 1
pþ1

d
p

pþ1; p\1;

C1kgkp
s� 1

� �1
2

d
1
2; p� 1:

8
>>>><

>>>>:

ð53Þ

Finally, from the bounds (47)-(53) and the triangle

inequality, we have

kgb;d � gk�kgb;0 � gk þ kgb;d � gb;0k

� C1kgkpð1þ sÞp
� � 1

pþ1

d
p

pþ1

þ 1

2

C1kgkp
s� 1

� � 1
pþ1

d
p

pþ1; p\1;

C1kgkp
s� 1

� �1
2

d
1
2; p� 1;

8
>>>><

>>>>:

ð54Þ

which concludes the proof of the theorem. h

We conclude with the following remark which discusses

the convergence rate of the proposed method under the a

posteriori parameter choice rule given by the MDP.

Remark 2 In view of Theorem 2, we see that under the

Morozov’s discrepancy principle (42), the proposed

method is of order Oðd
p

pþ1Þ if p\1, with optimal conver-

gence rate Oðd1
2Þ when p� 1.

4 Numerical Illustrations

Next, we will show how to implement the proposed

scheme for a practical problem. We treat the case when the

domain X is a cubical domain in Rd.

Since it is often the case that the final data is just a noisy

discrete reading of the exact final data qðxÞ ¼ uðx; TÞ, we
will assume that the noisy data qd is generated using the

formula

qdðxiÞ ¼ qðxiÞ þ gi; i ¼ 1; 2; . . .;m; ð55Þ

where xi are regular grid points of X, and gi are uniform

random real numbers in ½�1; 1�. In practical applications,

since we typically work with discrete data, it is often

preferable to use the root-mean-square (RMS) norm for

vectors. The RMS norm of a vector v 2 Rm is defined as:

kvkRMS ¼
1

m

Xm

i¼1

v2i

 !1
2

: ð56Þ

In this paper, we will designate the symbol d to denote the

noise level in the data measured in the root-mean-square

norm, that is,

d ¼ 1

m

Xm

i¼1

qdðxiÞ � qðxiÞ

 �2

 !1
2

: ð57Þ

Similarly, we assess the quality of the recovered initial

condition via the root-mean-square norm:

rms :¼ 1

m

Xm

i¼1

gb;dðxiÞ � gðxiÞ

 �2

 !1
2

; ð58Þ

which is the discrete version of the L2-error.

In the computations below, the sampling mesh size is

fixed to m ¼ 500d. We utilize the fast Fourier transform

Table 1 Root-mean-square errors in the recovered initial condition

for Example 2 for several values of noise level d along with the

estimated order of convergence

d 10�2 10�3 10�4 10�5 10�6 10�7

Error 0.03788 0.02858 0.01078 0.00413 0.00151 0.00052

Order 0.12235 0.42319 0.41682 0.43584 0.46186 –

Fig. 1 Noisy final data qd for Example 2 corresponding to noise level

d ¼ 10�2
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(FFT) for the computations of qdn and fn, and we use the

midpoint quadrature rule to estimate FnðTÞ. The regular-

ization parameter b is chosen using the discrepancy prin-

ciple with s ¼ 1:1. In the experiments below, we use the

built-in MATHEMATICA routines to compute the Mittag-

Leffler function and the FFT as well. The algorithm of the

proposed method goes along the following lines:

• fn ¼ 1=Sqrt½m� FourierDST½f; 1�;
(� the Fourier coefficients fn of the vector f �)

• qdn =1/Sqrt[m] FourierDST[ q d,1];

(� the Fourier coefficients of the noisy data vector qd

�)
• M=MittagLefflerE[ a;�kTa ];

(� the Mittag-Leffler at all the first m eigenvalues �)
• F n=(1/ k )(1-M) f n ;

(� estimate the all values of Fn at once �)
• g d

n =M/(M 2?b )(q d
n -F n );

(� the Fourier coefficients gdn of the approximate

solution �)
• g b;d =FourierDST[Sqrt[m]g d

n ,1];

(� the approximate solution �)
Finally, we note that the verification of the exact solutions

for the presented equations below can be directly carried

out by applying Lemma 2.1.

Example 2 We consider the 1-D fractional order diffusion

equation

o9=10t u� oxxu ¼ f ; 0\x\1; 0\t\0:1; ð59Þ

supplied with the initial condition

uðx; 0Þ ¼ gðxÞ ¼
x; if 0� x� 1=2;

1� x; if 1=2\x� 1:

�

ð60Þ

The source term f is chosen so that the solution is

uðx; tÞ ¼ E9=10ð�p2t9=10Þ � 1
� �

sinðpxÞ þ gðxÞ: ð61Þ

Error results for several noise levels d along with estimated

order of convergence are summarized in Table 1. The

exact final data q and the noisy final data qd when d ¼ 1%

are depicted in Fig. 1, while the corresponding exact and

recovered initial conditions are shown in Fig. 2.

Figure 2a shows that the naive reconstruction, without

regularization, bears no resemblance to the exact solution.

However, as illustrated in Fig. 2b, the regularized solution

is remarkably close to the exact initial condition. This

highlights the importance of regularization and underscores

the efficacy of the proposed approach.

For this particular example, the eigenpairs are given by

kn ¼ p2n2 and Xn ¼
ffiffiffi
2

p
sinðnpxÞ. Thus, we obtain that

kgk2p ¼
X1

n¼1

8 sin2ðnp=2Þ
p4�4p

� �
1

n4�4p
: ð62Þ

This shows that g 2 HpðXÞ for p\3=4. Consequently,

according to Remark 2, the theoretical rate of convergence

should be approximately Oðd3=7Þ. The numerical results

reported in Table 1 indicate that the regularized solution

converges to the exact solution at a rate very close to the

anticipated theoretical order.

Fig. 2 Recovered initial condition for Example 2 corresponding to noise level d ¼ 10�2

Table 2 Root-mean-square errors in the recovered initial condition

for Example 3 for several values of noise level d along with the

estimated order of convergence

d 10�2 10�3 10�4 10�5 10�6 10�7

Error 0.12781 0.01285 0.00154 0.00048 0.00023 0.00012

Order 0.99747 0.92046 0.49901 0.31512 0.28749 –
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Example 3 In this 2-D example, we consider the time-

fractional diffusion problem:

o1=2t u� Du ¼ 2xþ 2y� 2x2 � 2y2; ðx; yÞ 2 X;

uðx; y; 0Þ ¼ sinð2pxÞ sinðpyÞ þ yxð1� xÞð1� yÞ;

uðx; y; tÞ ¼ 0; ðx; yÞ 2 oX;

ð63Þ

where X is the unit square ½0; 1�2, and 0\t\0:1. The

forward solution is

u ¼ exp 25p4t

 �

Erfc 5p2
ffiffi
t

p
 �
sinð2pxÞ sinðpyÞ

þ yxð1� xÞð1� yÞ;
ð64Þ

where Erfcð�Þ is the complementary error function. Error

results for several noise levels d along with estimated order

of convergence are summarized in Table 2. The noisy final

data when d ¼ 1% along with the corresponding exact and

recovered initial conditions are shown in Fig. 3.

The ill-posedness of the backward problem is starkly

manifested in Fig. 3, where the naive reconstruction (i.e.,

without regularization) bears no resemblance to the exact

solution. But through the use of regularization, the

regularized solution achieves remarkable fidelity with the

exact initial condition, underscoring the efficacy and power

of our approach.

The eigenvalues and eigenfunctions in this example are

given by

Fig. 3 The noisy final data qd with d ¼ 10�2 and the recovered initial condition without and with regularization for Example 3
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km;n ¼ ðm2 þ n2Þp2; ð65Þ

Xm;n ¼ 2 sinðmpxÞ sinðnpyÞ; m; n ¼ 1; 2; . . . ð66Þ

Upon carrying out lengthy yet straightforward computa-

tions, it can be concluded that

kgk21 �
25p4

4

þ ð32Þ2

p8
2

p6

945

� �
p2

6

� �

þ 2
p4

90

� �
p4

90

� �� 	

\1;

ð67Þ

which establishes that g 2 H1ðXÞ. Therefore, we can

anticipate a theoretical rate of convergence of Oðd1=2Þ, as
suggested by Remark 2. However, the results in Table 2

demonstrate that the regularized solution exhibits a slower

rate of convergence than the anticipated theoretical order.

We attribute this to the effects of numerical discretization.

Nevertheless, our approach still yields an accurate recon-

struction of the exact solution, highlighting the practical

effectiveness of regularization.

The numerical results of the above experiments show

that regularization method is stable and robust with respect

to the noise level d. Notice that the naive reconstruction

(i.e., without regularization) is very poor which reflects the

instability of the backward problem. Moreover, the

observed convergence rate in these examples are very close

to the anticipated convergence rates predicted by our the-

oretical analysis. The algorithm has a reasonably fast

running time in a personal computer. Overall, the proposed

method offers several advantages over existing techniques.

It is not restricted to one-dimensional domains and can

handle equations with nonhomogeneous source terms.

Furthermore, it is capable of handling initial data that may

not be smooth, which is a desirable feature for practical

applications. Additionally, the method is easy to implement

and apply, and it is characterized by its robustness and

computational efficiency.

5 Conclusion

This paper presents a rigorous investigation of a Tikhonov

regularization-based method for reconstructing unknown

initial conditions in nonhomogeneous time-fractional dif-

fusion equations from noisy measurements of final data.

The proposed method is applicable to higher dimensional

domains and is not restricted to homogeneous problems,

making it a valuable tool in diverse scientific fields. The

method is supported by rigorous theoretical analyses,

which establish its consistency, stability, and convergence

rates for both a priori and a posteriori parameter choice

rules. Impressively, the method is highly robust to noise

levels, further underscoring its reliability and practicality.

Our numerical results demonstrate excellent agreement

with the proven theoretical results, highlighting the accu-

racy and effectiveness of the proposed approach. Overall,

this study makes a significant contribution to the field of

inverse problems, with potential applications in a wide

range of scientific disciplines.
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