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Abstract
This research deals with the numerical solution of fractional differential equations with delay using the method of steps and

shifted Legendre (Chebyshev) collocation method. This article presents a new formula for the fractional derivatives (in the

Caputo sense) of shifted Legendre polynomials. With the help of this tool and previous work of the authors, efficient

numerical schemes for solving nonlinear continuous fractional delay differential equations are proposed. The proposed

schemes transform the nonlinear fractional delay differential equations to a non-delay one by employing the method of

steps. Then, the approximate solution is expanded in terms of Legendre (Chebyshev) basis functions. Furthermore, the

convergence analysis of the proposed schemes is provided. Several practical model examples are considered to illustrate

the efficiency and accuracy of the proposed schemes.

Keywords Nonlinear fractional differential equations � Delay differential equations � Method of steps � Shifted Legendre

(Chebyshev) basis functions

1 Introduction

Delay differential equations (DDEs) belong to a broader

class of functional differential equations. The rate of

change of the unknown function at a specific time is rep-

resented due to the values of the function at previous times.

DDEs are also known as differential-difference equations.

Laplace and Condorcet (Chen and Moore 2002) first

studied these equations, and naturally, they appear in var-

ious fields of science and engineering (Erneux 2009).

Fractional delay differential equations (FDDEs) are con-

sidered a generalization of DDEs, which contain deriva-

tives of arbitrary fractional order. The integer order

differential operator is a local operator, while the frac-

tional-order differential operator is a non-local operator.

More precisely, the next state of a system, which is mod-

eled by fractional differential equations (FDEs) depends

not only upon its present situation but also upon all of its

past positions. The fractional order differential operator

enables us to describe a real event more accurately than the

classical integer order differential operator. Recently,

FDEs and FDDEs are frequently used to model many

natural phenomena in the fields of control theory (Si-

Ammour et al. 2009), biology (Magin 2010; Dehghan and

Salehi 2010), economy Škovránek et al. (2012), and so on.

Because of the computational complexities of fractional

delay derivatives, for most of the FDEs and FDDEs, the

exact solution is available. Therefore, it is necessary to

employ numerical methods for solving such equations.

Shakeri and Dehghan (2008) used the homotopy pertur-

bation method for delay differential equations with integer

order derivatives. The variational iteration method is con-

sidered by Saadatmandi and Dehghan (2009) to obtain the

numerical solution of the generalized pantograph equation.

Moghaddam and Mostaghim (2013), Parsa Moghaddam

and Salamat Mostaghim (2017) introduced numerical

methods in the framework of the finite difference method

for solving FDDEs. They also presented a matrix approach

using the fractional finite difference method for solving

nonlinear FDDEs (Moghaddam and Mostaghim 2014).

Prakash et al. (2016) proposed a numerical algorithm based
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on a modified He-Laplace method for solving nonlinear

FDDEs. Wang (2013) combined the Adams-Bashforth-

Moulton method with the linear interpolation method to

find an approximate solution for FDDEs. Mohammed and

Khlaif (2014) applied the Adomian decomposition method

to get the numerical solution of FDDEs. Mousa-Abadian

and Momeni-Masuleh proposed a numerical scheme for

solving linear fractional delay differential systems (Mousa-

Abadian and Momeni-Masuleh 2021). Their scheme em-

ploys the method of steps to handle the delay term and the

Chebyshev-Tau method to construct the approximate

solution. Sedaghat et al. (2012) introduced a numerical

scheme using Chebyshev polynomials for solving FDDEs

of pantograph type. Saeed et al. (2015) developed Cheby-

shev wavelet methods for solving FDDEs. Khader (2013)

derived an approximate formula of the Laguerre polyno-

mials for the numerical treatment of FDDEs. Daftardar-

Gejji et al. (2015) extended a new predictor-corrector

method to solve FDDEs. Parsa Moghaddam et al. (2016)

developed a numerical method based on the Adams-

Bashforth-Moulton method for solving variable-order

FDDEs. Yaghoobi et al. (2017) devised a numerical

scheme based on a cubic spline interpolation for solving

variable-order FDDEs. Khosravian-Arab et al. (2017)

developed new Lagrange basis functions to approximate

fractional derivatives in unbounded domains. Their

approach is based on the pseudo-spectral, Galerkin, and

Petrov-Galerkin methods.

A numerical approach to solve nonlinear FDDEs can be a

generalization of the method introduced in Ref Mousa-

Abadian and Momeni-Masuleh (2021). The Chebyshev

collocation method can be considered to solve nonlinear

FDDEs. Of course, employing collocation methods are not

restricted to use the Chebyshev basis functions, but also the

Legendre basis functions can be applied. Therefore, a sig-

nificant part of this article dealswith the solution of nonlinear

FDDEs by using aLegendre basis functions. In this paper, we

derive a new formula for the fractional derivatives of shifted

Legendre polynomials and then present the efficient

numerical schemes for solving nonlinear FDDEs.

The remainder of this article proceeds as follows. In the

next section, the properties of shifted collocation-type

bases are discussed. In Sect. 3, a formula for the fractional

derivatives of shifted Legendre basis functions are derived.

Section 4 describes mixed steps-collocation schemes for

solving nonlinear FDDEs. The convergence analysis of the

proposed schemes has been done in Sect. 5. Section 6

concerns applying the proposed schemes to several non-

linear FDDEs. The conclusion is given in Sect. 7.

2 Shifted Collocation-Type Bases

The most common collocation methods are those based on

Chebyshev and Legendre basis functions. Properties of

shifted Chebyshev basis functions have been investigated

in Ref Mousa-Abadian and Momeni-Masuleh (2021).

Here, we deduce the properties of shifted Legendre basis

functions. The Legendre basis LkðtÞ for k ¼ 0; 1; . . .; and

�1� t� 1, can be defined as the solution of the following

ordinary differential equation (Canuto et al. 2006):

d

dt

�
ð1� t2Þ dLk

dt
ðtÞ
�
þ kðk þ 1ÞLkðtÞ ¼ 0;

which satisfy Lkð�1Þ ¼ ð�1Þk. For k� 1, we have the

following recurrence formula:

Lkþ1ðtÞ ¼
2k þ 1

k þ 1
tLkðtÞ �

k

k þ 1
Lk�1ðtÞ; ð1Þ

where L0ðtÞ ¼ 1 and L1ðtÞ ¼ t. The shifted Legendre basis

functions are defined on the interval ½a; b� using the change

of variable t ¼ 2
b�a ðx� bÞ þ 1. For simplicity, let us

denote Lkð 2
b�a ðx� bÞ þ 1Þ by La;b;kðxÞ. Therefore, similar

to (1), the following recurrence relation can be obtained

La;b;kþ1ðxÞ ¼
2k þ 1

k þ 1

2

b� a
ðx� bÞ þ 1

� �

La;b;kðxÞ �
k

k þ 1
La;b;k�1ðxÞ:

The shifted Legendre basis La;b;kðxÞ can be presented in the

following form:

La;b;nðxÞ ¼
1

2n

X½n2�

k¼0

ð�1Þk
n

k

� �

2n� 2k

n

� �
2

b� a
ðx� bÞ þ 1

� �n�2k

:

ð2Þ

By using the identity

2

b� a
ðx� bÞ þ 1

� �n�2k

¼
Xn�2k

l¼0

Xl
j¼0

ð�1Þl�j l

j

� �
n� 2k

l

� �
2lbl�j

ðb� aÞl
xj;

ð3Þ

the shifted Legendre basis La;b;kðxÞ can be written in terms

of a power series in x as
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La;b;nðxÞ ¼
X½n2�

k¼0

Xn�2k

l¼0

Xl
j¼0

ð�1Þk�jþl
2l�nbl�jð2n� 2kÞ!

ðb� aÞlðn� kÞ!k!ðn� 2k � lÞ!j!ðl� jÞ!
xj;

ð4Þ

which satisfy La;b;kðbÞ ¼ 1 and La;b;kðaÞ ¼ ð�1Þk. The next
lemma describes integer order derivatives of the shifted

Legendre basis functions.

Lemma 1 For m� j� n, we have

DmLa;b;nðxÞ

¼
X½n2�

k¼0

Xn�2k

l¼m

Xl
j¼m

ð�1Þk�jþl
2l�nðb� aÞ�lbl�jð2n� 2kÞ!

ðn� kÞ!k!ðn� 2k � lÞ!ðl� jÞ!ðj� mÞ! x
j�m:

ð5Þ

Proof The proof is easily obtained from Eq. (4).

The shifted Legendre polynomials satisfy the following

relation:
Z b

a
La;b;iðxÞLa;b;kðxÞdx ¼ dik k þ 1

2

� ��1

; ð6Þ

i.e., they are orthogonal with each other concerning the unit

weight function. The shifted Legendre basis functions form

an orthogonal system of polynomials, which is complete in

the space of square-integrable functions, i.e., L2ða; bÞ.
Therefore, any u 2 L2ða; bÞ can be written as

uðxÞ ¼
X1
k¼0

ûkLa;b;kðxÞ;

where

ûk ¼ k þ 1

2

� �Z b

a
uðxÞLa;b;kðxÞdx; k� 0:

The associated inner product and norm are given by

ðf ; gÞ ¼
Z b

a
f ðxÞgðxÞdx

and

jjf jj2L2ða;bÞ ¼ ðf ; f Þ ¼
Z b

a
jf ðtÞj2dt:

We define Hmða; bÞ to be the vector space of the functions

g 2 L2ða; bÞ such that all distributional derivatives of f of

the order up to m can be represented by functions in

L2ða; bÞ. Hmða; bÞ is endowed with the norm

jjf jj2Hmða;bÞ ¼
Xm
k¼0

���
��� o

k

oxk
f ðxÞ

���
���
2

L2ða;bÞ
:

Furthermore, the associated semi-norm is defined as

follows

jf j2Hm:Nða;bÞ ¼
Xm

j¼minðm;NÞ
jjf ðjÞjj2L2ða;bÞ;

where N is the number of nodal bases.

Hereafter, we will use the Gaussian integration formula

to approximate integrals such as
Z b

a
f ðxÞdx: ð7Þ

Explicit formulas for the quadrature nodes and weights for

discrete shifted Chebyshev and Legendre basis functions

are Daftardar-Gejji et al. (2015)

– Chebyshev Gauss-Lobatto

For j ¼ 0; 1; � � � ;N,

xa;b;N;j ¼
b� a
2

ðxN;j � 1Þ þ b;wa;b;N;j

¼

p
2N

; j ¼ 0;N;

p
N
; j ¼ 1; � � � ;N � 1;

8><
>:

ð8Þ

where

xN;j ¼ cos
jp
N
:

– Legendre Gauss-Lobatto

xa;b;0 ¼ a; xa;b;N ¼ b; xa;b;j

ðj ¼ 1; 2; � � � ;N � 1Þ roots of L
0

a;b;NðxÞ;
ð9Þ

and

wa;b;N;j ¼
2

NðN þ 1Þ½La;b;NðxjÞ�2
; j ¼ 0; 1; � � � ;N:

For any pðxÞ 2 P2Nþ1, where P2Nþ1 is the space of poly-

nomials of degree at most 2N þ 1, we have

Z b

a

pðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx ¼
XN
j¼0

pðxjÞwa;b;N;j; ðChebyshev Gauss-LobattoÞ;

and

Z b

a
pðxÞdx ¼

XN
j¼0

pðxjÞwa;b;N;j; ðLegendre Gauss-LobattoÞ:
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3 Fractional Derivatives of Collocation Bases

The shifted Chebyshev basis functions’ fractional deriva-

tives have been discussed in Bhrawy et al. (2017). This

section continues to obtain a novel formula for fractional

derivatives of shifted Legendre basis La;b;nðxÞ in the Caputo
sense (Podlubny 1999). Similar to the shifted Chebyshev

basis functions (Mousa-Abadian and Momeni-Masuleh

2021), one can find the following lemma and theorem.

Lemma 2 Let m be a positive real number. Then, the

fractional derivative of order m of shifted Legendre poly-

nomials La;b;nðxÞ can be given by

DmLa;b;nðxÞ ¼ 0; n ¼ 0; 1; � � � ; dme � 1: ð10Þ

Theorem 1 The fractional derivative of order m of the

shifted Legendre basis functions are

DmLa;b;nðxÞ ¼
X1
i¼0

Smðn; iÞLa;b;iðxÞ; n ¼ dme; dme þ 1; � � � ;

ð11Þ

where the ceiling function dme stands for the smallest

integer greater than or equal to m and

Smðn; iÞ ¼
X½n2�

k¼0

Xn�2k

l¼dme

Xl

j¼dme

ð�1Þk�jþl
2l�nbl�jðb� aÞ�lð2n� 2kÞ!j!

ðn� kÞ!k!ðn� 2k � lÞ!j!ðl� jÞ!Cðjþ 1� mÞ cij;

ð12Þ

in which

cij ¼ iþ 1

2

� �Z b

a
xj�mLa;b;iðxÞdx: ð13Þ

Proof As we know, the Caputo fractional derivative of xk

of order m is

Dmxk ¼
0; k ¼ 0; 1; � � � and k\dme;

Cðk þ 1Þ
Cðk þ 1� mÞ x

k�m; k ¼ 0; 1; � � � and k�dme:

8<
:

Considering (4), for n ¼ dme; dme þ 1; � � � ; we obtain

DmLa;b;nðxÞ ¼
X½n2�

k¼0

Xn�2k

l¼0

Xl
j¼0

ð�1Þk�jþl
2l�nbl�jðb� aÞ�lð2n� 2kÞ!

ðn� kÞ!k!ðn� 2k � lÞ!j!ðl� jÞ! Dmxj

¼
X½n2�

k¼0

Xn�2k

l¼dme

Xl

j¼dme

ð�1Þk�jþl
2l�nbl�jðb� aÞ�lð2n� 2kÞ!

ðn� kÞ!k!ðn� 2k � lÞ!ðl� jÞ!Cðjþ 1� mÞ x
j�m:

By expanding xj�m in terms of the shifted Legendre basis

functions, we arrive at the following form:

xj�m ¼
X1
i¼0

cijLa;b;jðxÞ;

where cij is given in (13), which completes the proof. h

4 Mixed Steps-Collocation Schemes

In this section, we propose new numerical schemes based

on the method of steps and Legendre (Chebyshev) collo-

cation method to solve the following nonlinear FDDE

Pn
j¼0

Aju
ðjÞðtÞ þ DmuðtÞ þ

Pl
i¼1

kiDmiuðtÞ ¼ f ðt; uðtÞ; uðt � sÞÞ; t� 0;

uðtÞ ¼ /ðtÞ; � s� t� 0;

u0ð0Þ ¼ /0ð0Þ ¼ /1;

..

.

uðl�1Þð0Þ ¼ /ðl�1Þð0Þ ¼ /l�1;

8>>>>>>>>>><
>>>>>>>>>>:

ð14Þ

where ki, Aj 2 R are constants and An 6¼ 0,

0\m1\m2\ � � �\ml\m, m� 1\m�m are real constants,

DmuðtÞ � umðtÞ represents the Caputo fractional derivative

of order m of function u(t), l ¼ maxfm; ng and the function

f is given nonlinear continuous function in u that satisfies

the following Lipschitz conditions

jf ðt; y1; uÞ � f ðt; y2; uÞj � L1jy1 � y2j; ð15Þ

jf ðt; y; u1Þ � f ðt; y; u2Þj � L2ju1 � u2j: ð16Þ

Also, throughout this paper, we shall assume the initial

function /ðtÞ to be continuous on ½�s; 0�. These conditions
guarantee the existence and uniqueness of the solution of

the problem (14) (see, e.g., Choudhary and Daftardar-Gejji

2015; Yang and Cao 2013).

Clearly, for t 2 ½0; s�, the nonlinear FDDE (14) equals

the following nonlinear non-delay FDEs:

902 Iranian Journal of Science (2023) 47:899–914

123



Pn
j¼0

Aju
ðjÞðtÞ þ DmuðtÞ þ

Pl
i¼1kiD

mi uðtÞ

¼ f ðt; uðtÞ;/ðt � sÞÞ; t 2 ð0; s�;
uð0Þ ¼ /ð0Þ ¼ /0;

u0ð0Þ ¼ /0ð0Þ ¼ /1;

..

.

uðl�1Þð0Þ ¼ /ðl�1Þð0Þ ¼ /l�1:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð17Þ

One way of solving the nonlinear FDE (17) is to use

shifted Chebyshev basis functions, which is an extension of

the scheme presented in Ref Mousa-Abadian and Momeni-

Masuleh (2021). Another way is to expand the approximate

solution uNðtÞ in terms of truncated shifted Legendre basis

functions. The latter idea leads to

uNðtÞ ¼
XN
k¼0

akL0;s;kðtÞ; t 2 ½0; s�; ð18Þ

where ak 2 R are the unknown coefficients that find them.

Thanks to Theorem 1, we can express the derivative

uð1ÞðtÞ, uð2ÞðtÞ, � � � ; uðnÞðtÞ, DmuðtÞ, Dm1uðtÞ,
Dm2uðtÞ; � � � ;Dml uðtÞ in terms of unknown coefficients ak.

Now, we employ the Legendre (Chebyshev) collocation

method to solve (17) numerically. To do this, the following

equation:

Xn
j¼0

AjuN
ðjÞðtÞ þ DmuNðtÞ þ

Xl
i¼1

kiD
mi uNðtÞ

¼ f ðt; uNðtÞ;/ðt � sÞÞ;
ð19Þ

must be satisfied with the shifted Legendre collocation

nodes (9) (shifted Chebyshev collocation nodes (8))

exactly. In fact, by using (11) and (18), for

j ¼ 0; 1; � � � ;N � l, we get the following equations:

Xn
j¼0

XN
k¼0

AjakL
ðjÞ
0;s;kðta;b;jÞ þ

XN
k¼0

akD
mL0;s;kðta;b;jÞ

þ
Xl
i¼1

XN
k¼0

kiakD
miL0;s;kðta;b;jÞ

¼ f ðta;b;j;
XN
k¼0

akL0;s;k ta;b;jÞ;/ðta;b;j � sÞ
� 	

; ta;b;j � 0;

ð20Þ

where ta;b;j are the same as xa;b;j, which are defined by (9).

After imposing the initial conditions

u
ðiÞ
N ð0Þ ¼ /i; i ¼ 0; 1; � � � ; l� 1; ð21Þ

we arrive at a nonlinear system of algebraic equations.

Similarly, using Theorem 1 in Ref Mousa-Abadian and

Momeni-Masuleh (2021) and related shifted Chebyshev

expansion; we obtain an algebraic system of nonlinear

equations. The nonlinear resulting systems can be solved,

for example, by Newton’s method. Therefore, the approx-

imate solution uN in the interval ½0; s� is now available. To

obtain the approximate solution of Eq. (14) in ½s; 2s�, the
presented procedure is used. Generally, if we want to solve

Eq. (14) in the interval ½ði� 1Þs; is�, i� 1, we should solve

the following equation:

Xn
j¼0

AjðiÞu
ðjÞðtÞ þ Dm

ðiÞuðtÞ þ
Xl
p¼1

kpD
mp ðiÞuðtÞ

¼ f ðt; ðiÞuðtÞ; ði�1Þuðt � sÞÞ;
ð22Þ

where Aj 2 R are constants and An 6¼ 0; for k� 1 we have

t 2 Xk ¼ ½ðk � 1Þs; ks�, u 2 ClðXkÞ, m� 1\m\m,

mp � 1\mp\mp\m, l ¼ maxfm; ng, uðjÞðtÞ ¼ dj

dtj uðtÞ,
with the initial conditions

ðiÞu
ðjÞð0Þ ¼ ði�1Þu

ðjÞðsÞ; j ¼ 0; 1; � � � ; l;

and

ðiÞuðtÞ ¼ uðði� 1Þsþ tÞ; i� 1:

Using the proposed procedure, we get the approximate

solution ðiÞuN of Eq. (22).

5 Convergence Analysis

In this section, similarly presented in Ref Ghoreishi and

Yazdani (2011), we show that the obtained approximate

solutions in the previous section are convergent to the exact

solutions. To investigate the exponential rate of conver-

gence of the proposed schemes, we consider the nonlinear

FDDE (22) on the interval Xi ¼ ½ði� 1Þs; is�.
Let us define ðiÞeNðtÞ ¼ ðiÞuNðtÞ � ðiÞuðtÞ to be the error

function of the proposed scheme, where ðiÞuðtÞ and ðiÞuNðtÞ
are the exact and Legendre (Chebyshev) collocation solu-

tion of (22) at the i� th step, respectively.

Hereafter, we use the subscript w for the Legendre and

Chebyshev weight functions. The orthogonal projection

operator PN from L2
wðXÞ onto PN , where X ¼ ½a; b�,

satisfies

8wN 2 PN ;

Z s

0

ðf � PNf ÞðrÞdr ¼ 0;

for any function f in L2
wðXÞ. PN belongs to PN .

The following inequalities for the shifted Legendre

(Chebyshev) polynomials and shifted Legendre (Cheby-

shev)-Gauss-Lobatto nodes for k� 1 can be obtained by a

similar argument provided in Ref Canuto et al. (2006)

Iranian Journal of Science (2023) 47:899–914 903

123



jjy� PNðyÞjjHl
wðXÞ �CN2l�1=2�kjyjHk:N

w ðXÞ; ð23Þ

where y 2 Hk
wðXÞ. Now, we present the convergence the-

orem of the proposed schemes.

Theorem 2 Suppose that the exact solution ðiÞuðtÞ at the

i� th step of Eq. (22) is smooth enough, i.e. ðiÞuðtÞ 2
Hk

wðXÞ for i; k� 1, and the corresponding mixed steps-

collocation solution ðiÞuNðtÞ is given by shifted Legendre or

Chebyshev basis functions. Then for sufficiently large N, we

have

jjðiÞeNðtÞjjL2
wðXÞ �C1N

�kjðiÞujHk:N
w ðXÞ þ C2N

�3=2jðiÞujH1:N
w ðXÞ

þ C3N
2ðg1�1Þ�1=2�kjðiÞujHk:N

w

þ C4N
2ðg2�1Þ�1=2�kjðiÞujHk:N

w
þ C5N

�3=2;

ð24Þ

where

g1 ¼
m; m� 3;

3; m[ 3;



g2 ¼

mp; mp � 3;

3; mp [ 3;




and the constants Ci are independent of N and depend only

on n, m, and m.

Proof As ðiÞuNðtÞ is the mixed steps-collocation solution

of Eq. (22) on the interval Xi, it satisfies the following

equation

Xn
j¼0

AjðiÞu
ðjÞ
N ðtÞþPN

1

Cðm�mÞ

Z t

ði�1Þs
ðt�sÞm�m�1

ðiÞu
ðmÞ
N ðsÞds

 !

þPN

Xl
p¼1

kp
Cðmp�mpÞ

Z t

ði�1Þs
ðt�sÞmp�mp�1

ðiÞu
ðmpÞ
N ðsÞds

 !

¼PN f ðt;ðiÞuNðtÞ;ði�1ÞuNðtÞÞ
� 	

:

By n-times integration of the above expression, we have
Z t

ði�1Þs

Z tn

ði�1Þs
� � �
Z t2

ði�1Þs
AnðiÞu

ðnÞ
N ðt1ÞdT

þ
Xn�1

j¼0

Z t

ði�1Þs

Z tn

ði�1Þs
� � �
Z t2

ði�1Þs
AjðiÞu

ðjÞ
N ðt1ÞdT

þ 1

Cðm� mÞ

Z t

ði�1Þs

Z tn

ði�1Þs
� � �

Z t2

ði�1Þs
PN

Z t1

ði�1Þs
ðt1 � sÞm�m�1

ðiÞu
ðmÞ
N ðsÞds

 !
dT

þ
Xl
p¼1

kp
Cðmp � mpÞ

Z t

ði�1Þs

Z tn

ði�1Þs
� � �

Z t2

ði�1Þs
PN

Z t1

ði�1Þs
ðt1 � sÞmp�mp�1

ðiÞu
ðmpÞ
N ðsÞds

 !
dT

¼
Z t

ði�1Þs

Z tn

ði�1Þs
� � �

Z t2

ði�1Þs
PN f ðt1; ðiÞuNðt1Þ; ði�1ÞuNðt1ÞÞ
� 	

dT :

ð25Þ

We can rewrite each multiple integral in (25) as a single

integral

AnðiÞuNðtÞ þ Q0ðtÞ

þ
Xn�1

j¼0

Z t

ði�1Þs

Aj

ðn� 1� jÞ! ðt � sÞn�1�j
ðiÞuNðsÞds

þ 1

Cðm� mÞ

Z t

ði�1Þs

ðt � sÞn�1

ðn� 1Þ! PN

Z s

ði�1Þs
ðs� s1Þm�m�1

ðiÞu
ðmÞ
N ðs1Þds1

 !
ds

þ
Xl
p¼1

kp
Cðmp � mpÞ

Z t

ði�1Þs

ðt � sÞn�1

ðn� 1Þ! PN

Z s

ði�1Þs
ðs� s1Þmp�mp�1

ðiÞu
ðmpÞ
N ðs1Þds1

 !
ds

¼
Z t

ði�1Þs

ðt � sÞn�1

ðn� 1Þ!
PN f ðs; ðiÞuNðsÞ; ði�1ÞuNðsÞÞ
� 	

ds;

ð26Þ

where Q0ðtÞ contains initial conditions. Similarly, the exact

solution ðiÞuðtÞ satisfies the following relation:

AnðiÞuðtÞ þ Q0ðtÞ þ
Xn�1

j¼0

Z t

ði�1Þs

Aj

þ 1

Cðm� mÞ

Z t

ði�1Þs

ðt � sÞn�1

ðn� 1Þ!Z s

ði�1Þs
ðs� s1Þm�m�1

ðiÞu
ðmÞðs1Þds1ds

þ
Xl
p¼0

kp
Cðmp � mpÞ

Z t

ði�1Þs

ðt � sÞn�1

ðn� 1Þ!
Z s

ði�1Þs
ðs� s1Þmp�mp�1

ðiÞu
ðmpÞðs1Þds1ds

¼
Z t

ði�1Þs

ðt � sÞn�1

ðn� 1Þ! f ðs; ðiÞuðsÞ; ði�1ÞuðsÞÞds:

ð27Þ

Subtracting (27) from (26) leads to

AnðiÞeNðtÞ þ
Xn�1

j¼0

Aj

ðn� 1� jÞ!

Z t

ði�1Þs
ðt � sÞn�1�j

ðiÞeNðsÞds

þ 1

Cðm� mÞ

Z t

ði�1Þs

ðt � sÞn�1

ðn� 1Þ! ðiÞePN
ds

þ 1

Cðm� mÞ

Z t

ði�1Þs

ðt � sÞn�1

ðn� 1Þ!Z s

ði�1Þs
ðs� s1Þm�m�1

ðiÞe
ðmÞ
N ðs1Þds1ds

þ
Xl
p¼1

kp
Cðmp � mpÞ

Z t

ði�1Þs

ðt � sÞn�1

ðn� 1Þ! ðiÞePp
N
ds

þ
Xl
p¼1

kp
Cðmp � mpÞ

Z t

ði�1Þs

ðt � sÞn�1

ðn� 1Þ!
Z s

ði�1Þs
ðs� s1Þmp�mp�1

ðiÞe
ðmpÞ
N ðs1Þds1ds

¼
Z t

ði�1Þs

ðt � sÞn�1

ðn� 1Þ! ðiÞef ðsÞds;

ð28Þ

where
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ðiÞef ðsÞ ¼ PNðf ðs; ðiÞuNðsÞ; ði�1ÞuNðsÞÞÞ � f ðs; ðiÞuðsÞ; ði�1ÞuðsÞÞ;

ðiÞePN
ðsÞ ¼ PN

Z s

ði�1Þs
ðs� s1Þm�m�1

ðiÞu
ðmÞ
N ðs1Þds1

 !

�
Z s

ði�1Þs
ðs� s1Þm�m�1

ðiÞu
ðmÞ
N ðs1Þds1;

and

ðiÞePp
N
ðsÞ ¼ PN

Z s

ði�1Þs
ðs� s1Þmp�mp�1

ðiÞu
ðmpÞ
N ðs1Þds1

 !

�
Z s

ði�1Þs
ðs� s1Þmp�mp�1

ðiÞu
ðmpÞ
N ðs1Þds1:

After ðn� 1Þ-times integrating by parts of the fourth and

sixth term on the left-hand side of (28), we get

1

Cðm� mÞ

Z t

ði�1Þs

ðt � sÞn�1

ðn� 1Þ!Z s

ði�1Þs
ðs� s1Þm�m�1

ðiÞe
ðmÞ
N ðs1Þds1ds

¼ 1

Cðm� mÞ
Qn�1

j¼1 ðm� mþ j� 1Þ
Z t

ði�1Þs

Z s

ði�1Þs
ðs� s1Þmþn�m�2

ðiÞe
ðmÞ
N ðs1Þds1ds;

ð29Þ

and

1

Cðmp � mpÞ

Z t

ði�1Þs

ðt � sÞn�1

ðn� 1Þ!Z s

ði�1Þs
ðs� s1Þmp�mp�1

ðiÞe
ðmpÞ
N ðs1Þds1ds

¼ 1

Cðmp � mpÞ
Qn�1

j¼1 ðmp � mp þ j� 1Þ
Z t

ði�1Þs

Z s

ði�1Þs
ðs� s1Þmpþn�mp�2

ðiÞe
ðmpÞ
N ðs1Þds1ds:

ð30Þ

Now we consider the three cases:

(i) m� 4 and mp � 4,

(ii) m� 4 and mp � 4,

(iii) m� 4.

Case (i): ðm� 3Þ-times integrating by parts of the right-

hand side of equations (29) and (30), for nþ 1[ m, gives

1

Cðm� mÞ
Qn�1

j¼1 ðm� mþ j� 1Þ
Z t

ði�1Þs

Z s

ði�1Þs
ðs� s1Þmþn�m�2

ðiÞe
ðmÞ
N ðs1Þds1ds

¼
Qm�3

j¼1 ðmþ n� m� 1� jÞ
Cðm� mÞ

Qn�1
j¼1 ðm� mþ j� 1Þ

Z t

ði�1Þs

Z s

ði�1Þs
ðs� s1Þn�mþ1

ðiÞe
ð3Þ
N ðs1Þds1ds;

ð31Þ

and

1

Cðmp � mpÞ
Qn�1

j¼1 ðmp � mp þ j� 1Þ

Z t

ði�1ÞsZ s

ði�1Þs
ðs� s1Þmpþn�mp�2

ðiÞe
ðmpÞ
N ðs1Þds1ds

¼
Qmp�3

j¼1 ðmp þ n� mp � 1� jÞ
Cðmp � mpÞ

Qn�1
j¼1 ðmp � mp þ j� 1Þ

Z t

ði�1Þs

Z s

ði�1Þs
ðs� s1Þn�mpþ1

ðiÞe
ð3Þ
N ðs1Þds1ds:

ð32Þ

Substituting the right-hand side of (31) into the right-hand

side of (29), we obtain

1

Cðm� mÞ

Z t

ði�1Þs

ðt � sÞn�1

ðn� 1Þ!Z s

ði�1Þs
ðs� s1Þm�m�1

ðiÞe
ðmÞ
N ðs1Þds1ds

¼
Qm�3

j¼1 ðmþ n� m� 1� jÞ
Cðm� mÞ

Qn�1
j¼1 ðm� mþ j� 1Þ

Z t

ði�1Þs

Z s

ði�1Þs
ðs� s1Þn�mþ1

ðiÞe
ð3Þ
N ðs1Þds1ds;

ð33Þ

and similarly, from equations (30) and (32), we have

1

Cðmp � mpÞ

Z t

ði�1Þs

ðt � sÞn�1

ðn� 1Þ!Z s

ði�1Þs
ðs� s1Þmp�mp�1

ðiÞe
ðmpÞ
N ðs1Þds1ds

¼
Qmp�3

j¼1 ðmp þ n� mp � 1� jÞ
Cðmp � mpÞ

Qn�1
j¼1 ðmp � mp þ j� 1Þ

Z t

ði�1Þs

Z s

ði�1Þs
ðs� s1Þn�mpþ1

ðiÞe
ð3Þ
N ðs1Þds1ds:

ð34Þ

Substituting (33) and (34) into (28), we arrive at
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jðiÞeNðtÞj� c1

Z t

ði�1Þs
jðiÞeNðsÞjdsþ c2

Z t

ði�1Þs
jðiÞePN

ðsÞjdsþ c3

Z t

ði�1Þs

���sn�mþ1
ðiÞe

00

NðsÞ
���ds

þ c4
Xl
p¼1

Z t

ði�1Þs
jðiÞePp

N
ðsÞjds

þ c5
Xl
p¼1

Z t

ði�1Þs

���sn�mpþ1
ðiÞe

00

NðsÞ
���ds

þ c6

Z t

ði�1Þs
jðiÞef ðsÞjds;

ð35Þ

where ci are independent of N and depend on n, m, mp, and

m. By the Gronwall lemma (Wang 2013), we get

jðiÞeNðtÞj� c7

Z t

ði�1Þs
jðiÞePN

ðsÞjds

þ c8

Z t

ði�1Þs

���sn�mþ1
ðiÞe

00

NðsÞ
���ds

þ c9
Xl
p¼1

Z t

ði�1Þs
jðiÞePp

N
ðsÞjds

þ c10
Xl
p¼1

Z t

ði�1Þs

���sn�mpþ1
ðiÞe

00

NðsÞ
���ds

þ c11

Z t

ði�1Þs
jðiÞef ðsÞjds;

where c7; � � � ; c11 are some constants related to c1; � � � ; c6.
From Lipschitz conditions (15) and (16), inequal-

ity (23) and generalized Hardy’s inequality (Gogatishvill

and Lang 1999), we obtain

jjðiÞeNðtÞjjL2
wðXÞ � c12jjðiÞePN

ðsÞjjL2
wðXÞ þ c13jjsn�mþ1

ðiÞe
00

NðsÞjjL2
wðXÞ

þ c14
Xl
p¼1

jjðiÞePp
N
ðsÞjjL2

wðXÞ

þ c15
Xl
p¼1

jjsn�mpþ1
ðiÞe

00

NðsÞjjL2
wðXÞ þ C5N

�3=2;

ð36Þ

where c12; � � � ; c15 are some constants related to c7; � � � ; c11
and are independent of N. From (23) we get

jjsn�m
ðiÞe

00

NðsÞjjL2
wðXÞ � jjsn�mjjL2

wðXÞjjðiÞe
00

NðsÞjjL2
wðXÞ

� c16jjðiÞeNðsÞjjH2
wðXÞ

� c17N
7=2�kjðiÞujHk:N

w ðXÞ;

ð37Þ

and

jjsn�mp ðiÞe
00

NðsÞjjL2
wðXÞ � jjsn�mp jjL2

wðXÞjjðiÞe
00

NðsÞjjL2
wðXÞ

� c18jjðiÞeNðsÞjjH2
wðXÞ

� c19N
7=2�kjðiÞujHk:N

w ðXÞ;

ð38Þ

where c16; � � � ; c19 did not depend on N. From (23) we have

jjðiÞePN
ðtÞjjL2

wðXÞ �C6N
�3=2

���
Z t

ði�1Þs
ðt � sÞm�m�1

ðiÞu
ðmÞ
N ðsÞds

���
H1:N
w ðXÞ

¼ C7N
�3=2jDm

ðiÞuN jH1:N
w ðXÞ;

ð39Þ

jjðiÞePp
N
ðtÞjjL2

wðXÞ �C8N
�3=2

���
Z t

ði�1Þs
ðt � sÞmp�mp�1

ðiÞu
ðmpÞ
N ðsÞds

���
H1:N

w ðXÞ

¼ C9N
�3=2jDmp ðiÞuN jH1:N

w ðXÞ:

ð40Þ

Linear operators Dm : PN ! Pm
N and Dmp : PN ! P

mp
N are

bounded (see Ref Mousa-Abadian and Momeni-Masuleh

(2021)) so that the constants C10 and C
p
11 can be found such

that

jDm
ðiÞuN jHk:N

w ðXÞ �C10jðiÞuN jHk:N
w ðXÞ; ð41Þ

and

jDmp ðiÞuN jHk:N
w ðXÞ �Cp

11jðiÞuN jHk:N
w ðXÞ: ð42Þ

Therefore, from (39) and (41), we have

jjðiÞePN
ðtÞjjL2

wðXÞ

�C12N
�3=2jðiÞuNðsÞjH1:N

w ðXÞ �C12N
�3=2

jðiÞeNðsÞjH1:N
w ðXÞ þ jðiÞuðsÞjH1:N

w ðXÞ

� �
:

ð43Þ

Since uN ¼ PNu, we can write

jðiÞeNðsÞjH1:N
w ðXÞ ¼jðiÞuNðsÞ � ðiÞuðsÞ þ PN ðiÞuðsÞ

� PN ðiÞuðsÞjH1:N
w ðXÞ

¼jðiÞuðsÞ � PN ðiÞuðsÞjH1:N
w ðXÞ:

So that

jjðiÞePN
ðtÞjjL2

wðXÞ �
ð23Þ

C13N
�kjðiÞujHk:N

w ðXÞ þ C12N
�3=2jðiÞujH1:N

w ðXÞ:
ð44Þ

From (40) and (42), we have
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jjðiÞePp
N
ðtÞjjL2

wðXÞ

�Cp
14N

�3=2jðiÞuNðsÞjH1:N
w ðXÞ �Cp

11N
�1

C14N
3=2�kjðiÞujHk:N

w ðXÞ þ jðiÞujH1:N
w ðXÞ

� �

�
ð23Þ

Cp
15N

�kjðiÞujHk:N
w ðXÞ þ Cp

14N
�3=2jðiÞujH1:N

w ðXÞ:

ð45Þ

From Eqs. (36)–(45), for m� 4 and mp � 4, we have

jjðiÞeNðtÞjjL2
wðXÞ �C1N

�kjðiÞujHk:N
w ðXÞ þ C2N

�3=2jðiÞujH1:N
w ðXÞ

þ C3N
2ðg1�1Þ�1=2�kjðiÞujHk:N

w

þ C4N
2ðg2�1Þ�1=2�kjðiÞujHk:N

w
þ C5N

�3=2;

where C1; � � � ;C5 are constants related to earlier ci’s and

Ci’s.

The same argument can be applied to cases (ii) and (iii)

by assuming that nþ 1[ m, mp � mp þ n[ 2, and m� mþ
n[ 2 respectively. h

6 Numerical Results

In this section, we consider several practical examples that,

in general, do not have an exact solution. The computa-

tional codes were conducted on an Intel (R) Core (TM) i7-

6700 K processor, equipped with 8 GB of RAM. Also, We

use the fix-point iteration method for solving nonlinear

systems, and the stopping criterion is set to be 10�15. In all

tables SLBF stands for Shifted Legendre basis functions,

while SCBF represents Shifted Chebyshev basis functions.

Example 1 Consider the following FDDE

DmuðtÞ ¼ hðtÞ � uðtÞ � uðt � sÞ; t 2 ð0;T �; ð46Þ

with the boundary condition

uðtÞ ¼ 0; t 2 ½�s; 0�;

where s is taken as a fraction of the length of time interval

[0, 1]. Now, two cases for the forcing term h(t) can be

considered:

Case (i):

hðtÞ ¼

Cð11Þ
Cð11� mÞ t

10�m þ t10; t 2 ½0; s�;

Cð11Þ
Cð11� mÞ t

10�m þ t10 þ ðt � sÞ10; t 2 ðs; 1�;

8>><
>>:

ð47Þ

which corresponding exact solution is

uðtÞ ¼
0; t 2 ½�s; 0�;
t10; t 2 ð0; 1�:



ð48Þ

Case (ii):

hðtÞ¼

P1
j¼0

cj
CðbjÞ

Cðbj�mÞt
nj�mþ t

13
2 sinðpt43Þ; t2½0;s�;

P1
j¼0

cj
CðbjÞ

Cðbj�mÞt
nj�mþ t

13
2 sinðpt43Þþðt�sÞ

13
2 sinðpðt�sÞ

4
3Þ; t2ðs;1�;

8>>><
>>>:

ð49Þ

where

cj ¼
ð�1Þj

ð2jþ 1Þ! p
2jþ1; bj ¼

53þ 16j

6
; nj ¼

47þ 16j

6
:

The related exact solution is

uðtÞ ¼
0; t 2 ½�s; 0�;

t
13
2 sinðpt43Þ; t 2 ð0; 1�:

(
ð50Þ

Zayernouri et al. (2014) used a Petrov-Galerkin spectral

method to solve (46). They employed Reimann-Liouville

fractional derivatives while we use Caputo’s fractional

derivatives. As we know, these are related together to the

following relation (Monje et al. 2010)

RD
muðtÞ ¼ DmuðtÞ þ

Xm�1

k¼0

tk�m

Cðk þ 1� mÞ u
ðkÞð0þÞ;

where RD
m stands for Reimann-Liouville fractional

derivative. Since uð0Þ ¼ 0, both fractional derivatives are

the same, and consequently, both approximate solutions are

comparable. The L2-Error of Case (i) and Case (ii) for

s ¼ 0:5 and different N and m ¼ 0:1 are reported in

Table 1. Compared to the PG spectral presented in

Ref Zayernouri et al. (2014), SLBF has the same L2-Error

as Petrov-Galerkin spectral method, while SCBF produces

much less L2-Error in cases (i) and (ii). As one can

observe, results obtained by employing SCBF, are more

accurate than the others.

Example 2 Consider the following FDDE (Zayernouri

et al. 2014)

DmuðtÞ ¼ hðtÞ � AðtÞuðtÞ � BðtÞuðt � sÞ; t 2 ð0; 1�;
ð51Þ

with the initial condition

uðtÞ ¼ 0; t 2 ½�s; 0�:

Now, two cases are taken into consideration. Case (i): Take

AðtÞ ¼ BðtÞ ¼ t2 � t3. The corresponding exact solution is

given in (48). Case (ii): Put AðtÞ ¼ BðtÞ ¼ sinðptÞ, where
the analytical solution is given in (50). The L2-Error of

Case (i) and Case (ii) for different values of N, s ¼ 0:5 and

m ¼ 0:1 are provided in Table 2. The L2-Error of Case (i)

in both SLBF and SCFB of the current work is at least of

the order 10�13 for N� 11, while it happened only when
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N� 17 in Ref Zayernouri et al. (2014). In Case (ii), the

results are the same as the results of Zayernouri et al.

(2014) when employing SLBF, while SCBF produces less

L2-Error. Again, those results are obtained by employing

SCBF are more accurate than the others.

Example 3 Consider Houseflies model as follow-

ing Moghaddam and Mostaghim (2013)

DmuðtÞ ¼ �duðtÞ þ cuðt � sÞðk � czuðt � sÞÞ; t[ 0;

ð52Þ

with the initial condition

uðtÞ ¼ 160; �s� t� 0:

By taking c ¼ 1:81, k ¼ 0:5107, d ¼ 0:147 and

z ¼ 0:000226, numerical results of the shifted Chebyshev

basis functions for different values of m, s ¼ 3 and s ¼ 5

are presented in Tables 3 and 4, respectively. Tables 5 and

6 describe the numerical results of the shifted Legendre

basis functions with the same parameters. The approximate

solutions are sketched in Fig. 1. Comparison between the

second and third columns of Tables 3 and 4 (Tables 5 and

6) reveals that the maximum absolute error (MAE) is 2	
10�6 for N ¼ 15, while the MAE reported in

Ref Moghaddam and Mostaghim (2013), which employed

the finite difference method was of the order 10�5 using

N ¼ 100. Moreover, the log plots of MAE for different

values of N, s ¼ 3, and s ¼ 5 are plotted in Fig. 2.

Example 4 The following model example concerns the

effect of noise on a light, which is introduced by

Moghaddam and Mostaghim (2013)

DmuðtÞ ¼ � 1

�
uðtÞ þ 1

�
uðtÞuðt � sÞ; t[ 0; ð53Þ

with the initial condition

uðtÞ ¼ 0:9; �s� t� 0:

Table 1 L2-Error of

Example 1 for different values

of N with s ¼ 0:5 and m ¼ 0:1

N Case (i) Case (ii)

SLBF SCBF SLBF SCBF

3 0.871781 0.022220 0.343192 0.016382

5 0.268627 0.002870 0.299374 0.002711

7 0.020670 1:262008e�4 0.006547 1:763871e�4

9 1:863461e�4 7:422971e�7 0.003438 1:300984e�5

11 2:232967e�8 9:407349e�9 1:724315e�4 7:690661e�7

13 1:954103e�8 1:039491e�12 1:106626e�6 8:797766e�9

15 1:020807e�8 9:904553e�14 4:971592e�7 2:055257e�10

17 6:124110e�10 9:425039e�15 1:892239e�8 5:953249e�12

19 2:681213e�12 1:025904e�15 9:786602e� 11 1:270578e�13

Table 2 L2-Error of

Example 2 for different values

of N with s ¼ 0:5 and m ¼ 0:1

N Case (i) Case (ii)

SLBF SCBF SLBF SCBF

3 0.708611 0.655433 0.447450 0.025522

5 0.113928 0.082273 0.114932 0.003248

7 0.005367 0.003304 0.005888 2:277593e� 4

9 3:324243e�5 1:697280e�5 6:020148e� 4 1:489728e�5

11 6:758311e�13 3:050396e�14 3:318842e�5 9:040363e�7

13 5:424470e�13 3:024794e�14 3:284365e�7 1:067213e�8

15 3:985062e�13 3:019384e�14 9:812455e�9 2:358068e�10

17 2:606128e�13 3:009684e�14 3:035429e�10 6:944012e�12

19 1:112418e�13 2:018803e�14 2:880012e�11 1:692653e�13
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The obtained results of the shifted Chebyshev basis func-

tions for various values of m and s with � ¼ 0:1 are reported

in Tables 7 and 8. Also, the numerical results of the shifted

Legendre basis functions are given in Tables 9 and 10. In

this model example, the MAEs related to the current works

are an order of 10�6 using N ¼ 15, while the MAE

reported in Ref Moghaddam and Mostaghim (2013), which

employed the finite difference method achieved this order

of accuracy using N ¼ 100 nodes. Figure 3 shows the

approximate solutions. Also, the log plots of MAE for s ¼
1 and s ¼ 3 are plotted in Fig. 4.

Applying relation (24) of Theorem 2 and using the fact

that all the displayed norms are fixed numbers, N�3
2 will be

the predominant term. Therefore, we have

jjðiÞeNðtÞjjL2
wðXÞ �CN�3

2: ð54Þ

Table 3 Numerical results of

Example 3 using the shifted

Chebyshev basis functions with

N ¼ 15 and s ¼ 3

t Exact m ¼ 1 m ¼ 1 m ¼ 0:9 m ¼ 0:75 m ¼ 0:5

0.0 160.000000 160.000000 160.000000 160.000000 160.000000

0.75 234.865602 234.865602 239.333361 245.219089 252.133912

2.25 361.967021 361.967021 352.369942 336.687494 308.795525

3.75 481.825305 481.825304 472.760850 459.813354 439.073221

5.25 670.725206 670.725204 650.373599 614.508045 543.799282

6.0 776.578086 776.578085 742.142667 685.419046 583.383909

Table 4 Numerical results of

Example 3 using the shifted

Chebyshev basis functions with

N ¼ 15 and s ¼ 5

t Exact m ¼ 1 m ¼ 1 m ¼ 0:9 m ¼ 0:75 m ¼ 0:5

0.0 160.000000 160.000000 160.000000 160.000000 160.000000

1.25 280.382021 280.382021 281.116516 280.559015 275.428893

3.75 463.917311 463.917311 437.587058 399.856049 342.930615

6.25 636.682069 636.682068 609.967593 571.739341 510.393022

8.75 950.311527 950.311525 890.874639 798.685328 645.755656

10.0 1107.006007 1107.006006 1022.495184 895.594663 695.358908

Table 5 Numerical results of

Example 3 using the shifted

Legendre basis functions with

N ¼ 15 and s ¼ 3

t Exact m ¼ 1 m ¼ 1 m ¼ 0:9 m ¼ 0:75 m ¼ 0:5

0.0 160.000000 160.000000 160.000000 160.000000 160.000000

0.75 234.865602 234.865601 239.333372 245.219085 252.133922

2.25 361.967021 361.967023 352.369941 336.687497 308.795514

3.75 481.825305 481.825304 472.760849 459.813353 439.073219

5.25 670.725206 670.725202 650.373596 614.508046 543.799279

6.0 776.578086 776.578087 742.142661 685.419042 583.383904

Table 6 Numerical results of

Example 3 using the shifted

Legendre basis functions with

N ¼ 15 and s ¼ 5

t Exact m ¼ 1 m ¼ 1 m ¼ 0:9 m ¼ 0:75 m ¼ 0:5

0.0 160.000000 160.000000 160.000000 160.000000 160.000000

1.25 280.382021 280.382023 281.116518 280.559021 275.428895

3.75 463.917311 463.917314 437.587055 399.856060 342.930617

6.25 636.682069 636.682069 609.967581 571.739351 510.393025

8.75 950.311527 950.311526 890.874641 798.685332 645.755659

10.0 1107.006007 1107.006008 1022.495191 895.594671 695.358910
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Now if we calculate this expression for different values of

N, we find that in (54) the value of C for model exam-

ples 1–4 is given in Table 11.

Example 5 As a final model example, consider the fol-

lowing FDDE, which is introduced by Parsa Moghaddam

and Salamat Mostaghim (2017)

DmuðtÞ þ dDm1uðtÞ ¼ �uðtÞ

þ lq2

u3ðtÞ ðuðtÞ � cuðt � sÞÞ; t 2 ð0; 1Þ;
ð55Þ

equipped with the conditions

uðtÞ ¼ 1; t 2 ½�s; 0�; uð1Þ ¼ 3;

Fig. 1 Approximate solution of Example 3 using the shifted Chebyshev basis functions for s ¼ 3 (left), ands ¼ 0:5 (right) with N ¼ 15

Fig. 2 Log plot of MAE of Example 3 for s ¼ 3 (left), and s ¼ 5 (right) with m ¼ 1

Table 7 Numerical results of Example 4 using the shifted Chebyshev

basis functions with N ¼ 15 and s ¼ 1

t Exact m ¼ 1 m ¼ 1 m ¼ 0:9 m ¼ 0:75 m ¼ 0:5

0.0 0.900000 0.900000 0.900000 0.900000 0.900000

0.25 0.700921 0.700921 0.670849 0.625076 0.555064

0.75 0.425130 0.425130 0.417343 0.413280 0.419605

1.25 0.198977 0.198979 0.172599 0.135910 0.097493

1.75 0.021138 0.021138 0.024889 0.032106 0.044666

2.0 0.004444 0.004444 0.011581 0.021070 0.036340

Table 8 Numerical results of Example 4 using the shifted Chebyshev

basis functions with N ¼ 15 and s ¼ 3

t Exact m ¼ 1 m ¼ 1 m ¼ 0:9 m ¼ 0:75 m ¼ 0:5

0.0 0.900000 0.900000 0.900000 0.900000 0.900000

0.75 0.425130 0.425130 0.417917 0.414396 0.421697

2.25 0.094859 0.094859 0.137716 0.197791 0.288194

3.75 0.002861 0.002859 0.006645 0.014154 0.030316

5.25 0.000000 0.000000 0.000637 0.003305 0.013782

6.0 0.000000 0.000000 0.000429 0.002413 0.011416
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where d ¼ 0:3, l ¼ 1, q ¼ 0:4 and c ¼ 0:2. Computational

results of the shifted Legendre basis functions with N ¼ 15

and s ¼ 5 are reported in Tables 13 and 12 demonstrates

the results using the shifted Chebyshev basis functions. A

comparison between the second and third columns of

Tables 12 and 13 show that the present work and the

function bvp4c of the Matlab software have the same

results for at least 4 decimal places. However, the MAE of

the finite difference method at t ¼ 1 is of the order

10�2 (Parsa Moghaddam and Salamat Mostaghim 2017),

but in both presented schemes we get the exact results. The

graph of the numerical solutions of (55) for different values

of m and m1 is sketched in Fig. 5. Assuming that the ana-

lytical solution of (55) has two degrees of smoothness,

again the predominant term in relation (24) is N�3
2. If we

consider bvp4c of the Matlab software as a reference

solution, then the corresponding L2-Error constant of (54)

for SLBF and SCBF is 0.39 and 1.25, respectively.

Table 9 Numerical results of Example 4 using the shifted Legendre basis functions with N ¼ 15 and s ¼ 1

t Exact m ¼ 1 m ¼ 1 m ¼ 0:9 m ¼ 0:75 m ¼ 0:5

0.0 0.900000 0.900000 0.900000 0.900000 0.900000

0.25 0.700921 0.700923 0.670842 0.625061 0.555051

0.75 0.425130 0.425132 0.417353 0.413275 0.419613

1.25 0.198977 0.198976 0.172538 0.135923 0.097481

1.75 0.021138 0.021134 0.024892 0.032112 0.044652

2.0 0.004444 0.004446 0.011572 0.021083 0.036361

Table 10 Numerical results of Example 4 using the shifted Legendre basis functions with N ¼ 15 and s ¼ 3

t Exact m ¼ 1 m ¼ 1 m ¼ 0:9 m ¼ 0:75 m ¼ 0:5

0.0 0.900000 0.900000 0.900000 0.900000 0.900000

0.75 0.425130 0.425130 0.417921 0.414410 0.421730

2.25 0.094859 0.094855 0.137725 0.197820 0.288230

3.75 0.002861 0.002854 0.006653 0.014168 0.030334

5.25 0.000000 0.000001 0.000648 0.003319 0.013797

6.0 0.000000 0.000003 0.000437 0.002443 0.011443

Fig. 3 Approximate solution of Example 4 using the shifted Legendre basis functions for s ¼ 1 (left), and s ¼ 3 (right) with N ¼ 15
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Fig. 4 Log plot of MAE of Example 4 for s ¼ 1 (left), and s ¼ 3 (right) with m ¼ 1

Table 11 Computed constant

C in (54) for Example 1

through Example 4 for different

values of N

Example SLBF SCBF Smoothness degree

of exact solution(at least)

m s

1 (Case (i)) 4.5 1 9 0.1 0.5

1 (Case (ii)) 2 1 6 0.1 0.5

2 (Case (i)) 4 3.5 9 0.1 0.5

2 (Case (ii)) 2.5 1 6 0.1 0.5

3 (N ¼ 15) 0.28 0.15 1 1 3 and 5

4 (N ¼ 15) 4.1e�4 2e-4 1 1 3

4 (N ¼ 15) 0.32 0.51 1 1 1

Table 12 Numerical results of

Example 5 using the shifted

Chebyshev basis functions with

N ¼ 15 and s ¼ 5

t m ¼ 2& m1 ¼ 1 m ¼ 1:5& m1 ¼ 0:5 m ¼ 1:75& m1 ¼ 0:75 m ¼ 1:95& m1 ¼ 0:95

Current work bvp4c Current work

0 1.000000 1.000000 1.000000 1.000000 1.000000

0.25 1.758262 1.758281 1.830901 1.800878 1.767155

0.75 2.777401 2.777411 2.802636 2.800559 2.783206

1 3.000000 3.000000 3.000000 3.000000 3.000000

Table 13 Numerical results of

Example 5 using the shifted

Legendre basis functions with

N ¼ 15 and s ¼ 5

t m ¼ 2& m1 ¼ 1 m ¼ 1:5& m1 ¼ 0:5 m ¼ 1:75& m1 ¼ 0:75 m ¼ 1:95& m1 ¼ 0:95

Current work bvp4c Current work

0 1.000000 1.000000 1.000000 1.000000 1.000000

0.25 1.758275 1.758281 1.830918 1.800884 1.767174

0.75 2.777414 2.777411 2.802647 2.800557 2.783224

1 3.000000 3.000000 3.000000 3.000000 3.000000
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The CPU time of the above examples is reported in

Table 14. As we see from the table, the CPU time of the

shifted Chebyshev basis functions is less than Legendre

one.

7 Conclusion

In this article, a new formula for fractional derivatives of

shifted Legendre polynomials is derived. All the fractional

derivatives are considered in the Caputo sense. By using

the formula and formula based on shifted Chebyshev

polynomials for fractional derivatives (Mousa-Abadian

and Momeni-Masuleh 2021), the numerical schemes for

solving nonlinear FDDEs are proposed. The proposed

schemes exploit the method of steps and shifted Legen-

dre (Chebyshev) basis functions to generate an approxi-

mate solution. A mathematical analysis shows that the

proposed schemes have an exponential rate of conver-

gence. Moreover, practical examples are taken to demon-

strate the effectiveness of the obtained results. MAE

reveals that the approximate solution has

acceptable conformity with the available literature. Further

development of the proposed schemes should be concen-

trated on solving nonlinear fractional delay differential

problems with more than one delay. It would also be

interesting to extend an approximate solution in which a

discontinuous nonlinear f is considered.
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