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Abstract
The modified theories of gravity have received a lot of attention in the last decade. These theories aim to describe the

accelerated cosmic expansion by altering the theory of gravity, instead of introducing dark energy. The major goal of this

research is to examine the spacetime surrounding charged compact star configurations in the context of f ðR; T Þ gravity and
develop a workable model employing the Buchdahl metric potential (Phys. Rev. D 116, 1027 (1959)). We consider a

simplified separable linear form for arbitrary function f ðR; T Þ given by, f ðR; T Þ ¼ Rþ 2fT with the matter Lagrangian

LM ¼ q to depict the full solution of the modified field equations for the considered matter distribution. We assess various

key characteristics, including effective energy density, effective pressure, sound velocities, relativistic adiabatic index, all

energy conditions, and surface redshift, to determine the model’s physical viability and stability. For this investigation, we

consider a rotating neutron star with isotropic configurations, namely Hercules X-1, as testing candidate. We also examine

the effect of coupling constant f on the physical attributes of our model. The investigation illustrates that all our derived

results lie within the physically accepted regime, demonstrating the model’s feasibility in f ðR; T Þ gravity.
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1 Introduction

At the beginning of the twentieth century, the general

theory of relativity proposed by Albert Einstein changed

the perception of the universe. This theory played a sig-

nificant role in describing the geodesic nature of spacetime.

Later, the general theory of relativity was successfully

tested in the solar system tests, but it failed to describe all

the gravity phenomena, including accelerated expansion,

flatness issues, and fine-tuning problems. In the last few

decades, the modern cosmological observations of the high

redshift supernovae experiments confirmed that the

expansion of the Universe is accelerating (Riess and

Filippenko 1998; Perlmutter and Aldering 1999). Also,

studies of the cosmic microwave background radiation

(Spergel and Verde 2003; Bennett and Hill 2003; Spergel

and Bean 2007) and large-scale structure (Tegmark and

Strauss 2004; Tegmark and Blanton 2004) provide a shred

of circumstantial support for the late time accelerated

expansion of the universe. Modern research asserts that the

expansion is instancing and examines the effect of a

enigmatic Dark Energy, which has a critical pressure and

positive energy density (Wetterich 1988; Amendola 2000;

Caldwell 2002). However, no irrefutable evidence of the

existence of Dark Energy has yet materialized. As a sub-

sequence, many alternative theories have been proposed to

explain this issue. It is suggested that the theory of general

relativity can be modified to address the issue of cosmic

expansion, potentially leading to a better understanding of

the nature of gravity.

Mathematical modeling within the framework of the

general theory of relativity has been used to explain the

behavior and structure of massive objects such as neutron

stars, quark stars, black holes, pulsars, and white dwarfs

and requires finding the exact solutions of the Einstein-

Maxwell system of field equations. Early attempts to seek
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solutions to the field equations were crude and for the most

part unrealistic. A survey (Delgaty and Lake 1998) on

exact solutions describing stellar objects revealed that only

a limited subset of precise solutions pass the rigorous tests

for physical viability, regularity, and stability of fluid

spheres. Researchers had to link the observed macroscopic

characteristics of stars to microphysics to find more accu-

rate stellar models within general relativity. A new era of

stellar modeling was begun, when the well-motivated

techniques including assumptions on the metric potentials,

density, pressure, electric field intensity, and even the

matter content, were intrinsically connected to physics.

General Relativity has been used successfully to anticipate

various phenomena that Newtonian gravitation fails to

explain. However, it failed to explain the accelerated

expansion of the universe. Later, it is claimed that cosmic

acceleration can be achieved by replacing or adding cur-

vature invariants their corresponding generic functions in

the geometric part of the Einstein-Hilbert action. Modified

Gravity Theories have been suggested as a new paradigm

for addressing the shortcomings of General theory of

Relativity at the infrared and ultraviolet scales. By pre-

serving the positive results of the General Theory of Rel-

ativity, the modified theory aims to address experimental

and conceptual problems that have recently come to light

in Cosmology, Astrophysics, and High Energy Physics.

Several modifications to general relativity have been

made over the last decade to provide a natural gravitational

alternative. Because of the cosmological significance of

f ðRÞ models, among the various modifications of gravity

theory, f ðRÞ theory of gravity is treated most suitable.

Some viable f ðRÞ models, which illustrate the unification

of early time inflation and late time acceleration, can be

found in Multamäki and Vilja (2006, 2007); Henttunen

et al. (2008); Nojiri and Odintsov (2007); Shamir (2010).

However, flaws in the solar system scale have been

revealed, and it has been claimed that the f ðRÞ theory does

not appear to be adequate for the galactic scales (Rahaman

et al. 2010).

In 2011, another extension of the general theory of

relativity, the f ðR; T Þ modified theory of gravity, was

proposed by Harko and his accomplices (Harko et al.

2011). This was a generalization of f ðRÞ gravity theory,

where an arbitrary function of the trace of the stress-energy

tensor T and the Ricci scalar R determine the gravitational

Lagrangian. The authors claimed that these theories will

provide better clarification of cosmic development. Using a

Hilbert-Einstein-type variational principal, they have

derived the system of field equations in the context of

f ðR; T Þ gravity and obtained the covariant divergence of

the stress-energy tensor as well. The f ðR; T Þ gravity model

depends on a source term, which represents the variation of

the matter stress-energy tensor for the metric. Because of

the interaction between matter and geometry, the move-

ment of test particles is non-geodesic and constantly

accelerated. The f ðR; T Þ theory portrays the regime of the

solar system (Shabani and Farhoudi 2014) as well as the

galactic impacts of dark matter (Zaregonbadi et al. 2016).

Soon after the inception of f ðR; T Þ gravity, its cosmo-

logical and thermodynamic implications, such as the

dynamical analysis and energy conditions, were exten-

sively discussed. By taking several functional forms of f,

numerous authors have investigated cosmological solutions

in the framework of f ðR; T Þ gravity (Shabani and Farhoudi
2014; Alvarenga et al. 2013; Sharif and Zubair 2012a, b;

Jamil et al. 2012; Sharif and Zubair 2013; Xu et al. 2016).

The feasibility of some f ðR; T Þ models in the cosmolog-

ical scenario has also been discussed (Velten and Caramês

2017; Godani 2019; Gamonal 2021). However, apart from

the cosmological importance, f ðR; T Þ theory of gravity

can also be used as a test-bed for dealing with the strong-

gravity regime such as compact stars. Based on the findings

of cosmology and comparison with observational evidence,

one cannot agree or disagree with such hypotheses (Maurya

et al. 2020). To develop a satisfactory gravity theory, it is

necessary to study gravity at the astrophysical level. The

study of compact structures mainly concerns isotropic,

anisotropic, and charged fluids. In the context of f ðR; T Þ
gravity, numerous works on the evolution of compact stars

can be found in the literature. The matter inside compact

stars is compressed at sufficiently high densities and

the‘‘escape velocity’’ near the surface approaches the speed

of light. As a result, creating similar environments in a

terrestrial laboratory is difficult, and we construct theoret-

ical models to study the structural properties of these

compact stars. Several theoretical compact star models

have been developed by researchers, which provide

required information about the features and evolution of

these structures. Uncharged stellar models with isotropic

pressure in f ðR; T Þ gravity have been obtained in Hansraj

(2018); Maurya et al. (2020); Kumar et al. (2021); Bhar

et al. (2021, 2022). The stellar equilibrium configurations

of compact stars have been investigated in the context of

f ðR; T Þ gravity (Deb et al. 2018; Pretel et al. 2021; Biswas
et al. 2019; Lobato et al. 2020). For various charged and

uncharged anisotropic models in f ðR; T Þ gravity, one can

see (Maurya and Tello-Ortiz 2020; Rahaman et al. 2020;

Ilyas 2020; Bhar and Rej 2021; Rej and Bhar 2021; Bhar

2021).

Taking inspiration from the above literature survey, we

study a new class of physical solutions of modified Ein-

stein-Maxwell field equations for static and spherically

symmetric charged isotropic fluid distribution within the

framework of f ðR; T Þ gravity. We choose the algebraic

function f ðR; T Þ to be a separable function, i.e., sum of

two independent functions, of the form f ðR; T Þ ¼ Rþ

602 Iranian Journal of Science (2023) 47:601–615

123



2f ðT Þ (proposed by Harko et al. Bhar and Rej (2021)),

where f ðT Þ depend on the trace T . Due to the presence of

nonlinear terms in the field equations, it is difficult to

investigate exact the spherical solutions for relativistic

compact objects. To overcome this problem, we used

metric potentials as generating functions and went on to

calculate energy density, electric field intensity, and pres-

sure. We model an astrophysical compact configuration,

namely ‘Hercules X-1’, and show that the obtained new

exact solution is feasible.

This paper has the following flows:

Section 2: We introduce the Einstein-Maxwell system

of field equations for a charged isotropic fluid sphere in

f ðR; T Þ gravity.
Section 3: We propose a model for charged isotropic

compact stars by choosing Buchdahl ansatz (1959) and

obtained expressions for modified energy density, modified

pressure, etc.

Section 4: We discuss junction conditions for our model

and determine the constants which have been used.

Section 5: We elaborate the physical requirements for

acceptance of our model in f ðR; T Þ gravity.
Section 6: We study the conditions for equilibrium and

stability of our Model

Section 7: We analyze the physical features and stability

of the presented compact stars model in f ðR; T Þ gravity

using graphs.

Section 8: We summarize our study on structural

properties of compact star in f ðR; T Þ gravity.

2 Einstein-Maxwell Field
Equations in f(R; T Þ Gravity

The four-dimensional line element for static and spheri-

cally symmetric spacetime is given by,

ds2 ¼ �ekðrÞdr2 þ emðrÞdt2 � r2ðdh2 þ sin2hd/2Þ ð1Þ

where the metric potential functions ek and em are purely

radial functions, with radial coordinate range 0� r\1,

and they play a significant role in obtaining the mass

function and the redshift function, respectively.

The f ðR; T Þ action in a four-dimensional spacetime is

given by

S ¼ 1

2j

Z
f ðR; T Þ ffiffiffiffiffiffiffi�g

p
d4xþ

Z
LM

ffiffiffiffiffiffiffi�g
p

d4xþ
Z

Le
ffiffiffiffiffiffiffi�g

p
d4x

ð2Þ

where, j ¼ 8pG
c4
, with gravitational constant G and the speed

of light c (in vacuum); f ðR; T Þ is an arbitrary function of

R and T , R is the Ricci scalar, and T is the trace of the

stress-energy tensor T ng. Here, g is the determinant of the

metric tensor gng, LM is the Lagrangian density of matter,

and Le denote the Lagrangian for the electromagnetic field.

The stress-energy tensor of matter can be defined as Lan-

dau (2013)

T ng ¼ � 2ffiffiffiffiffiffiffi�g
p

dð ffiffiffiffiffiffiffi�g
p

LMÞ
d
ffiffiffiffiffiffi
gng

p ð3Þ

and its trace is T ¼ gngT ng. Now, we assume that the

Lagrangian density LM of matter is only dependent on the

metric tensor components gng and not on its derivatives. As

a result we obtain the following relation (Harko et al. 2011)

T ng ¼ gngLM � 2oðLMÞ
ogng

ð4Þ

Let Eng be the electromagnetic energy-momentum tensor,

defined as Eng ¼ 2
j Fa

nFga � 1
4
FabFabgng

� �
. Let Fng denote

the anti-symmetric electromagnetic field strength tensor,

defined by Fng ¼ oAg

oxn
� oAn

oxg
which satisfies Maxwells

equations,

Fnv;g þ Fvg;n þ Fgn;v ¼ 0andFng
;g ½

ffiffiffiffiffiffiffi�g
p

Fng� ¼ � j
2
Jn

Here Ag ¼ ð/ðrÞ; 0; 0; 0Þ is the four-potential and Jn is the

four electromagnetic current vector defined as Jn ¼ qeffiffiffiffiffi
g00

p dxn

dx0
,

where qe represents the proper charge density. For the

static system, J0 is the only non-vanishing component of

the four current. Thus, F01 and F10, the only two non-

vanishing components of the electromagnetic field tensor,

are related by F01 ¼ F10. The expression for the electric

field can be obtained as,

F01 ¼ �e
kþm
2
qðrÞ
r2

ð5Þ

where q(r), defined as

qðrÞ ¼ j
2

Z r

0

qee
k
2r2dr ð6Þ

represents the net charge inside a fluid sphere of radius r,

which actually determines the electric field by

EðrÞ ¼ qðrÞ
r2

ð7Þ

The field Eq. of f ðR; T Þ gravity are obtained by varying

the action S in Eq. 2 with respect to the metric tensor gng
and given by

fRGng ¼ jðT ng þ EngÞ þ OnOgfR � gnghfR

þ f

2
gng �

R

2
fRgng � fT ðT ng þWngÞ

ð8Þ
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where fR ¼ of
oR and fT ¼ of

oT . The 5n denotes covariant

derivative, the operator h is defined as

h ¼ 1ffiffiffiffiffi�g
p o

oxn
ð ffiffiffiffiffiffiffi�g
p

gng o
oxgÞ, and Wng ¼ gab

dT ab

dgng .

By performing the covariant derivative of Eq. (8), one

can obtain the following expression (Barrientos and

Rubilar 2014)

O
nT ng ¼

fT
j� fT

� ðT ngþngÞOn ln fT þ O
n
ng � 1

2
gngO

nT � j
fT

O
nEng

� �
:

ð9Þ

We can verify from above equation that for FT ðR; T Þ 6¼ 0,

5nT ng 6¼ 0. This implies that the stress-tensor Tng in

f ðR; T Þ gravity does not obey the law of conservation as in

Einstein general relativity. Using Eq. (4), we can obtain the

tensor Wng as

Wng ¼ �2T ng þ gngLM � 2gab
o2LM

ogngogab
ð10Þ

Following (Bhar and Rej 2021), we consider the matter

Lagrangian to be LM ¼ q, where qðrÞ denote the matter

density of the fluid configuration, and obtain Eq. (10) as

Wng ¼ �2T ng þ qgng ð11Þ

Further, to get the final form of the modified field equa-

tions, we need to know the functional f ðR; T Þ. Let us

consider a separable functional form for f ðR; T Þ given by,

f ðR; T Þ ¼ Rþ 2fT , where f is a coupling constant. The

assumed linear expression of f ðR; T Þ has accepted physi-

cal advantages while addressing cosmological and astro-

physical problems (Rahaman et al. 2020). The term 2fT
induces time-dependent interaction between matter and

curvature. It also corresponds to K CDM model with a

time-dependent cosmological constant (Bhar 2020). Using

this definition of f ðR; T Þ, the field Eq. (8) takes the fol-

lowing form (Harko et al. 2011)

Gng ¼ jT ng þ fT gng þ 2f T ng � qgng
� �

þ jEng ð12Þ

It is clearly a simple nontrivial extrapolation of the Ein-

stein to the f ðR; T Þ paradigm. Note that, when f ¼ 0, i.e.,

f ðR; T Þ � R, the Einstein field Eqs in f ðR; T Þ gravity get

reduces to Einstein field equations in general relativity. The

term fT induces a interaction (coupling) between curvature

and matter which is time-dependent.

By substituting f ðR; T Þ ¼ Rþ 2fT and utilizing

Eq. (11), Eq. (9) yields

5nT ng ¼ � f
jþ 2f

gng 5n T � 25n qgng
� �	 


ð13Þ

As we want investigate the solutions of field equations for

isotropic compact stars in f ðR; T Þ gravity, let’s consider

the stress-energy tensor in the form

Tng ¼ ðqþ pÞunug � pgng; ð14Þ

where un is the fluid four-velocity satisfying unu
n ¼ 1 and

ug 5n ug ¼ 0. Here p(r) denotes the pressure of the fluid

configuration. For the line element (1) and stress-energy

tensor (14), the Einstein-Maxwell field Eqs in f ðR; T Þ
gravity (12) provide the following relations (Bhar and Rej

2021)

q ¼ j
ðjþ 2fÞðjþ 4fÞ c2ðjþ 5fÞqE þ 3fpE

	 

ð15Þ

p ¼ j
ðjþ 2fÞðjþ 4fÞ �c2fqE þ ðjþ fÞpE

	 

ð16Þ

with, f 6¼ �j
4
; �j

2
. Here, qE and are, respectively, density,

pressure in general relativity and are defined by

c2jqE þ q2

r4
¼
�
k0 � 1� ek

r

� e�k

r
ð17Þ

2jpE ¼
�
m00 � k0m0

2
þ m02

2
þ 3m0 � k0

r
þ 2

r2

� e�k

2
� 1

r2
ð18Þ

with,
2q2

r4
¼
� m00
2
� k0m0

4
þ m02

4
� m0 þ k0

2r
� 1

r2

�
e�k þ 1

r2

ð19Þ

and the prime denotes the radial derivative. In the suc-

ceeding section, we will solve the system of modified field

Eqs. (15, 16) to obtain a model for compact stars.

3 The Proposed Model

As Eqs. (15), (16) involve more unknown functions than

the number of equations and that too with high nonlin-

earity, getting an exact solution is a difficult task. Several

authors have used a variety of techniques to obtain the

solution. In this paper, we will utilize the technique of

considering some of the unknown functions as given one

and generate the remainings from basic equations. We must

make a previous decision for any two of the four unknowns

because we have only two equations for them. We can

choose it in 4C2 ways. But, we have only control over the

function we chose and we completely lost over the func-

tions resulting from the solution. Although we choose

regular and positive prior functions, there may arise a sit-

uation where the resulting functions are not physically

realistic.

To construct a feasible charged isotropic model, we

chose the coefficients grr and gtt as,

ek ¼ Kð1þ xÞ
Kþ x

& em=2 ¼ Z ð20Þ
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where x ¼ Cr2, and Z is a function of r. We consider C (in

km�2) to be a positive constant and K to be a dimensionless

parameter having no values in [0, 1], so that, the metric

coefficients ek be regular and increase from core to the

surface, as suggested in Lake (2003). The fulfillment of the

same required criteria for m, on the other hand, is dependent

on our choice for Z. This form of k, which depends on two

parameters K and C, was proposed by Buchdahl (1959) for

finding a feasible spherically symmetric perfect fluid solution.

It is non-singular at the center of a fluid configuration and

possesses monotonically decreasing density toward the

boundary (which may depend on the choice of suitable pa-

rameters in some cases), i.e., it satisfies the primary physical

requirements of a relativistic compact star proposed by Lake

(2003). This metric potential has been successfully used to

construct many feasible models for charged and uncharged

isotropic compact stars (see Sharma et al. (2021); Kumar and

Bharti (2022b); Prasad and Kumar (2021); Kumar et al.

(2022); Kumar and Bharti (2022a) and references therein).

Furthermore, the contribution of this metric to the develop-

ment of the compact stars model in the background of

modified gravity theory can also be found in the literature

(Kumar et al. 2021; Maurya et al. 2020).

With the help of Eq. (20), the expression of electric field

given in Eq. (19) can be obtained as follows:

E2 ¼ Kþ x

2Kð1þ xÞ2
;

Z00

Z
�

ffiffiffi
C

x

r
Z0

Z
þ xðK� 1Þ
ðKþ xÞð1þ xÞ

ffiffiffiffiffi
Cx

p
� Z0

Z

� �" #
ð21Þ

Our initial aim is to find a function for electric field E,

which is zero at the center and monotonically increasing

toward the surface of compact objects. Let’s consider the

function Z as:

Z ¼ Aj 1� Y2 j1=4 aþ bY
Y

�
gðxÞ
b3

þ B

A

�
ð22Þ

where Y ¼
ffiffiffiffiffiffiffi
Kþx
K�1

q
and gðxÞ ¼ bY � a2

aþbY � a ln ðaþ bYÞ2.
Also, a, b are nonzero parameters; and A, B are constants

to be determined.

Plugging (20) and (22) into Eqs. (17 and 18), we obtain,

c2jqE ¼ CðK� 1Þð3þ xÞ
Kð1þ xÞ2

� CxGðxÞ
2Kð1þ xÞ2

& ð23Þ

jpE ¼
C 1� Y2F ðxÞ
� �
Kð1� Y2Þ

þ CxGðxÞ
2Kð1þ xÞ2

ð24Þ

where FðxÞ ¼ 2
ðK�1Þ

f1f2þf3
ðaþbYÞf2 with f1 ¼

�
aþbY

2ðY2�1Þ �
a
Y2

�
,

f2 ¼ gðxÞ
b3

þ B
A, f3 ¼ Y

aþbY; and, GðxÞ ¼ 5
4ð1�Y2Þ �

2að1�Y2Þ
Y2ðaþbYÞ þK� 7

4
.

Now, Eqs. (15) (16) provide the following relationship:

q ¼ 1

ðjþ 2fÞðjþ 4fÞ�
ðjþ 5fÞ CðK� 1Þð3þ xÞ

Kð1þ xÞ2

( )
þ 3f

C 1� Y2F ðxÞ
� �

Kð1� Y2Þ � ðjþ 2fÞ CxGðxÞ
2Kð1þ xÞ2

�
ð25Þ

p ¼ 1

ðjþ 2fÞðjþ 4fÞ�
� f

CðK� 1Þð3þ xÞ
Kð1þ xÞ2

þ ðjþ fÞ
C 1� Y2F ðxÞ
� �

Kð1� Y2Þ þ ðjþ 2fÞ CxGðxÞ
2Kð1þ xÞ2

�
ð26Þ

Thus, the model parameters, like density, and pressure in

the framework of f ðR; T Þ gravity have been successfully

obtained.

4 Junction Condition and Determination
of the Constants A and B

All astrophysical objects are immersed in vacuum space-

time and the interior solution is matched with the appro-

priate exterior vacuum solution at a junction interface. As

there is no matter in the vacuum spacetime, the exterior

spacetime is zero. Therefore, the solution for the exterior

spacetime metric in f ðR; T Þ gravity will be same of the

corresponding solution in the general relativity. As we are

working with uncharged matter distributions, for

Q ¼ qðRÞ, the exterior solution for spherically symmetric

spacetimes with junction radius R is described by the

Reissner-Nördstrom metric,

ds2 ¼ � dr2

1� 2M
r þ Q2

R2

þ ð1� 2M

r
þ Q2

R2
Þdt2

� r2ðdh2 þ sin2hd/2Þ
ð27Þ

Here, M is the total gravitational mass, which determines

the amount of force exerted on the object by a gravitational

field.

The first fundamental form dictates that a well-behaved

stellar interior has smooth geometry at its surface. The

continuity of the metric coefficients between the interior

and exterior regions of the star across the boundary surface

yields the following:

emðRÞ ¼ 1� 2M

R
þ Q2

R2
¼ e�kðRÞ ð28Þ

Also, the second fundamental form demands
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prðRÞ ¼ 0: ð29Þ

This condition conveys that an object cannot expand

indefinitely. Consequently, this constraint determines the

size (radius) of the compact object.

To find out the constants A and B, we use the junction

conditions (28) and (29), and calculated the values of these

constants as,

B

A
¼ f3R

aþ bYR

�
1

2Y2
R

2fðK� 1Þð3þ CR2Þ � jCR2GR

2ðjþ fÞð1þ CR2Þ þK� 1


 �

� f1R
aþ bYR

��1

� f2R

A ¼ YR j YR jffiffiffiffi
K

p
j 1� YR

2 j3=4 ðaþ bYRÞðf2R þ B
AÞ

where YR ¼ YðRÞ, fnR ¼ fnðRÞ for n ¼ 1; 3 & 4;

f2R ¼ f2ðRÞ � B
A; and GR ¼ 5

4
1

ð1�Y2
RÞ
� 2að1�Y2

RÞ
Y2
RðaþbYRÞ þK� 7

4
.

5 Physical Requirements for Acceptance
of the Model in f(R; T Þ gravity

5.1 Metric Potential

In this paper, we have chosen the metric potentials as

follows: ek ¼ Kð1þxÞ
Kþx and em=2 ¼ Aj 1� Y2 j1=4

aþbY
Y

�
gðxÞ
b3

þ B
A

�
. We have, emð0Þ ¼ a

ffiffiffiffiffiffiffiffiffi
jK�1j

p
þb

ffiffiffiffiffi
jKj

p� �2
jKj

ffiffiffiffiffiffiffiffiffi
jK�1j

p

A f ð0Þ
b3

þ B
� �2

, ekð0Þ ¼ 1, and k0ð0Þ ¼ 0 ¼ m0ð0Þ. Lake

(2003) has prescribed certain conditions on the metric

coefficients to create a viable model. These conditions are:

ek and em should increase in a regular and monotonic

manner as r increases. Both should be positive, free of

singularities at the center, with k0ð0Þ ¼ 0 and m0ð0Þ ¼ 0.

Thus, a positive value of emð0Þ is required for the metric

potential functions to behave well at the core of the

configuration.

5.2 Density and Pressure

The main thermodynamic variables must fulfill certain

specific requirements in this regard. From Eqs. (25), at the

core of the compact configuration we have

qc ¼
1

ðjþ 2fÞðjþ 4fÞ

�
ðjþ 2fÞ 3CðK� 1Þ

K
þ 3fFR

�

pc ¼
1

ðjþ 2fÞðjþ 4fÞ

�
ðjþ 4fÞ Cð1�KÞ

K
þ ðjþ fÞFR

�

with, FR ¼ 2
ðK�1Þ

f1Rf2Rþf3R
ðaþbYÞf2R. Here qc and pc are, respectively,

the central density and central pressure of the compact star

in f ðR; T Þ gravity.
By differentiating Eqs. (25) and (26) with respect to r,

we get the density gradient and pressure gradient for the

proposed model as follows:

dq
dr

¼ C3=2 ffiffiffi
x

p

ðjþ 2fÞðjþ 4fÞ

"
ðjþ 5fÞ 2ð1�KÞð5þ xÞ

Kð1þ xÞ3
þ

(
2Y2HðxÞ

ðK� 1Þ2f2ðxÞðaþ bYÞ
þ 2 1� F ðxÞYð Þ

ð1þ xÞ

�

3f

KðY2 � 1Þ
þ ðj� 2fÞ

ð1þ xÞ2



ð1� xÞ
Kð1þ xÞGðxÞ þ

x

4Kð1�KÞ�
5

ð1� Y2Þ2
� 8a

Y2ðaþ bYÞ
�

4að1� Y2Þð2aþ 3bYÞ
Y4ðaþ bYÞ2

���

dp

dr
¼ C3=2 ffiffiffi

x
p

ðjþ 2fÞðjþ 4fÞ

�
� 2f

ð1�KÞð5þ xÞ
Kð1þ xÞ3

þ



2Y2HðxÞ
ðK� 1Þ2f2ðxÞðaþ bYÞ

þ 2 1� F ðxÞYð Þ
ð1þ xÞ

�

ðjþ fÞ
KðY2 � 1Þ

þ jþ 2f

ð1þ xÞ2



ð1� xÞ
Kð1þ xÞGðxÞ þ

x

4Kð1�KÞ�
5

ð1� Y2Þ2
� 8a

Y2ðaþ bYÞ
�

4að1� Y2Þð2aþ 3bYÞ
Y4ðaþ bYÞ2

���

where HðxÞ ¼ Y2f1ðxÞþa
YðaþbYÞ2 �

YðaþbYÞþðbþaYÞ
2YðY2�1Þ

� �
f2ðxÞ�

ðK�1ÞY
2ðaþbYÞ �

bf2
2Y

� �
F ðxÞ.

We see that q0ð0Þ ¼ p0ð0Þ ¼ 0. Also, q00ð0Þ ¼
C2

ðjþ2fÞðjþ4fÞ 10ðjþ 5fÞ ð1�KÞ
K þ 3fðK�1Þ

K n� ðjþ 2fÞ Gð0ÞK

h i
,

and, p00ð0Þ ¼ C2

ðj�2fÞðjþ4fÞ �10f ð1�KÞ
K þ ðjþfÞðK�1Þ

K nþ
h

ðjþ 2fÞ Gð0ÞK

i
, where n ¼ 2

ffiffiffiffiffiffiffiffiffi
jK�1j

p
�Fð0Þ

ffiffiffiffiffi
jKj

p� �
ffiffiffiffiffiffiffiffiffi
jK�1j

p þ
2KHð0Þ

jK�1j5=2f2ð0Þða
ffiffiffiffiffiffiffiffiffi
jK�1j

p
þb

ffiffiffiffiffi
jKj

p
Þ
.

For an acceptable model, within the configuration of a

stellar object, the matter density and pressure should have

positive values, and therefore qc; pc [ 0. Also, qc should

strictly dominate pc (Zeldovich and Novikov 1971). The

pressure should vanish at the configuration’s surface. Fur-

thermore, for a compact star’s density and pressure to
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decrease monotonically from the core to the surface, the

gradient of density and gradient of pressure must have

negative values throughout the configuration, which sug-

gests that at the center, q0, and, p0 must be zero and q00 and
p00 must have a negative value.

5.3 Causality Condition

The square of velocity of sound v2 is given by

where J 1 ¼ 2Y2HðxÞ
ðK�1Þ2f2ðxÞðaþbYÞ þ

2 1�gðxÞYð Þ
ð1þxÞ and J 2 ¼

x
4Kð1�KÞ

5

ð1�Y2Þ2 �
8a

Y2ðaþbYÞ �
4að1�Y2Þð2aþ3bYÞ

Y4ðaþbYÞ2
� �

þ ð1�xÞ
Kð1þxÞGðxÞ.

To fulfill the physical requirements for realistic models,

it is necessary to examine the causality condition of the

present self gravitating system, which says that the velocity

of sound must be less than the velocity of light throughout

the interior of the stellar object. Along with this, it should

decrease toward the surface.

5.4 Pressure-Density Relationship

The relationship between matter density and pressure can

be described by a dimensionless quantity known as ’the

equation of state (EoS) parameter, denoted by the symbol

x. Several works can be found in literature that suggest

that the EoS, p ¼ pðqÞ, should be well approximated by a

linear function of the energy density. Furthermore, a linear

relationship between the energy density and the pressure

ensures that the conservation of causality condition holds

(Rahaman et al. 2020).

The equations of state parameter x for our model is

obtained as,

The equations of state parameter should lie in the range

0\x\1, which corresponds to the radiation era (Sharif

and Waseem 2016). Fulfillment of this condition implies

that, everywhere within the configuration, density is dom-

inating over the corresponding pressures, which suggests

that the underlying matter distribution is not exotic

(Rahaman et al. 2010).

5.5 Electric Field Intensity

Electric field intensity produces considerable effects on the

structure and the stability of compact stars. The expression

of the electric field in f ðR; T Þ gravity can be obtained as,

E2ðrÞ ¼ q2

r4
¼ Cx

8KðK� 1Þ2

�8aþ 4KY2ð1� Y2Þðaþ bYÞ þ 2Y2ð7a� bYÞ þ Y2ð7bY � aÞ
Y2ð1� Y2Þ3ðaþ bYÞ

" #

ð31Þ

For a physically viable model it is required that Eð0Þ ¼ 0.

The intensity of the electric field within a compact star

configuration should increase toward the configuration’s

surface.

5.6 Energy Conditions

Energy conditions in the cosmological model are crucial

for understanding various features of the cosmos, espe-

cially its current accelerating expansion. These condi-

tions are very helpful in constraining the constant

v2ðrÞ ¼ dp

dq
¼ �2fð1�KÞð5þ xÞ þ ðjþ fÞðK� 1Þð1þ xÞ2J 1 þ ðjþ 2fÞKð1þ xÞJ 2

2ðjþ 5fÞð1�KÞð5þ xÞ þ 3fðK� 1Þð1þ xÞ2J 1 þ ðj� 2fÞKð1þ xÞJ 2

x ¼ p

q
¼

�2fðK� 1ÞCð3þ xÞ � 2ðjþ fÞðK� 1ÞCð1þ xÞ 1� Y2FðxÞ
� �

þ ðjþ 2fÞCxGðxÞ
2ðjþ 5fÞðK� 1ÞCð3þ xÞ � 6fðK� 1ÞCð1þ xÞ 1� Y2F ðxÞ

� �
� ðjþ 2fÞCxGðxÞ

ð30Þ
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parameters used in the solutions so that to get a viable

model in the underlying framework.

The energy-momentum tensor Tng describes the energy-

momentum distribution and stress due to matter or any

other non-gravitational field. A realistic matter source must

meet certain requirements to be fulfilled by all states of

matter and non-gravitational fields. There are different

types of these conditions, including averaged energy con-

ditions and point-wise energy conditions. The average

stress-energy tensor along a desirable curve determines

averaged energy conditions, whereas point-wise energy

conditions are determined by the stress-energy tensor at a

specific point in space. Null energy condition (NEC),

dominant energy condition (DEC), weak energy condition

(WEC), and strong energy condition (SEC) are the standard

point-wise energy conditions. The ‘‘Raychaudhuri equa-

tion’’, which describes the behavior of timelike, lightlike,

or spacelike curves of congruence and attractiveness of the

gravity, is used to formulate these conditions (Kar and

Sengupta 2007; Carroll 2004).

• The NEC is the consequence of Tngk
nkg � 0, which

leads to the well-known form qþ p� 0. The NEC

implies that as the universe expands its density

decreases; the violation of it could result in a Big Rip

of the universe. NEC is a guarantee of the applica-

bility of the second law of thermodynamics.

• In addition to NEC, the WEC requires that energy

density be positive for an observer at any point, i.e.,

q� 0, qþ p� 0.

• The SEC is produced by the positivity condition for the

timelike vector un, which in the effective field reduces

to qþ p� 0, qþ 3p� 0.

• The constraint on energy that it cannot move faster than

light yields one of the DEC inequality, the complete set

of which is q� 0, q	 p� 0.

Since the violation of NEC and WEC leads to the violation

of other energy conditions, these two are the most

important.

5.7 Mass Function and Compactness Factor

The gravitational mass m(r) within the radius r of the

charged compact star in f ðR; T Þ gravity is given by Murad

and Fatema (2015)

mðrÞ ¼ j
2

Z r

0

qr2dr þ 1

2

Z r

0

q2

r2
dr þ q2

2r

¼ j2

2ðjþ 2fÞðjþ 4fÞ

ðjþ 5fÞ
Z r

0

c2qEr
2dr þ 3f

Z r

0

pEr
2dr

� �

þ 1

2

Z r

0

q2

r2
dr þ q2

2r

¼ j
2ðjþ 2fÞðjþ 4fÞ ðjþ 5fÞ

Z r

0

ðK� 1Þxð3þ xÞ
Kð1þ xÞ2

dr

"

þ3f
Z r

0

x 1� Y2F ðxÞ
� �
Kð1� Y2Þ

dr � ðjþ 2fÞ
Z r

0

x2GðxÞ
2Kð1þ xÞ2

dr

#

þ 1

2

Z r

0

x2GðxÞ
2Kð1þ xÞ2

dr þ x
5
2GðxÞ

4K
ffiffiffi
C

p
ð1þ xÞ2

¼ j
2ðjþ 2fÞðjþ 4fÞ ðjþ 5fÞ

Z r

0

ðK� 1Þxð3þ xÞ
Kð1þ xÞ2

dr

"

þ3f
Z r

0

x 1� Y2F ðxÞ
� �
Kð1� Y2Þ

dr � ðjþ 2fÞ
Z r

0

x2GðxÞ
2Kð1þ xÞ2

dr

#

þ 1

2

Z r

0

x2GðxÞ
2Kð1þ xÞ2

dr þ x
5
2GðxÞ

4K
ffiffiffi
C

p
ð1þ xÞ2

ð32Þ

The mass for stellar structures should be zero in the core

and maximum at the boundary surfaces. Along with this,

the mass function should be an increasing function of r that

is regular and monotonic.

The compactness of the relativistic compact structure

can be found as U ¼ mðrÞ
r . The compactness factor plays a

significant role in the classification of compact objects. For

normal stars U 
 10�5, for white dwarfs: U 
 10�3, for

neutron star: 10�1\U\ 1
4
, for ultra-compact star:1

4
\U\ 1

2
,

and, for Black hole: U ¼ 1
2
. Also, there is a lower bound

and upper bound is defined on the compactness factor of a

charged compact object as follows (Böhmer and Harko

2007; Andréasson 2009):

Q2

R2

Q2 þ 18R2

12R2 þ Q2

� �
� 2U � 2

R

ffiffiffi
R

p

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 3Q2

9R

r" #2
: ð33Þ

5.8 Redshifts

Gravitational redshift is the phrase used to describe the

phenomena in which electromagnetic waves or photons

appear to lose energy when they leave a gravitational well.

As electromagnetic radiation travels out of a gravitational
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well, its wavelength lengthens and photons expand their

energy to escape. Since the photons have to travel at the

speed of light, it loses their energy through a change of

frequency which corresponds to a decrease in the wave

frequency and an increase in the wavelength of the photon,

i.e., a shift to the red end of the electromagnetic spectrum,

known as a redshift.

In comparison to when a photon emerges from near the

surface when it emerges from the center, it has to travel a

greater distance through a denser zone. As a result, there is

more dispersion, which causes more energy loss in the first

scenario. Hence, the surface and the center have the lowest

and highest interior gravitational redshift, respectively.

It is the surface gravity (i.e., overall mass and radius) of

stellar objects which determines the surface redshift. As an

increase in mass and radius results in more surface gravity,

in contrast with gravitational redshift, surface redshift

increases toward the surface. However, both of these red-

shifts coincide at the surface of the compact star’s

configuration.

The interior gravitational redshift zgðrÞ and surface

redshift zsðrÞ for a the charged compact star in f ðR; T Þ
gravity is given by

zgðrÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
jemðrÞj

p � 1 ð34Þ

zsðrÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2U þ q2

r2

q � 1 ð35Þ

In General Relativity, surface redshift has a maximum limit

zsðRÞ ð¼ zgðRÞÞ� 2 for isotropic distributions.

6 Conditions for Stability and Equilibrium
of the Model

Here our main interest is discussing the conditions for

equilibrium as well as stability of the compact star model

in f ðR; T Þ gravity. For a non-collapsing compact object,

the equilibrium position and stable state are most important

situations. The stability of any stellar structure ensures that

the system’s equilibrium is not disturbed.

6.1 Equilibrium Under Various Forces

It is important to examine whether the stellar system is in a

stable equilibrium stage under hydrostatic force Fh, grav-

itational force Fg, electric force Fe, and, force due to the

modified (f ðR; T Þ) gravity Fm. This can be analyzed using

the generalized TOV equation in f ðR; T Þ gravity, given as,

Fg þ Fh þ Fe þ Fm ¼ 0 ð36Þ

where Fg ¼ � m0
2
ðqþ pÞ, Fh ¼ � dp

dr, Fe ¼ 1
ðjþ2fÞr4

dq2

dr , and,

Fm ¼ �f
jþ2f ðq0 þ 3p0Þ. For our model, these forces can be

obtained as,

Fg ¼ � C3=2 ffiffiffi
x

p

2ðjþ 2fÞFðxÞ

2

KðK� 1ÞðY2 � 1Þ2
þ Y2

KðY2 � 1Þ
FðxÞ

" #

Fh ¼ � C3=2
ffiffiffi
x

p
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�
� 2f

ð1�KÞð5þ xÞ
Kð1þ xÞ3

þ



2Y2HðxÞ
ðK� 1Þ2f2ðxÞðaþ bYÞ

þ 2 1� FðxÞYð Þ
ð1þ xÞ

�

ðjþ fÞ
KðY2 � 1Þ

þ jþ 2f

ð1þ xÞ2



x

4Kð1� KÞ�
5

ð1� Y2Þ2
� 8a

Y2ðaþ bYÞ
� 4að1� Y2Þð2aþ 3bYÞ

Y4ðaþ bYÞ2
�

þ ð1� xÞ
Kð1þ xÞGðxÞ

��

Fe ¼
C3=2 ffiffiffi

x
p

ðjþ 2fÞ
3þ x

Kð1þ xÞ3
GðxÞ þ x

4Kð1�KÞ

"

5

ð1� Y2Þ2
� 8a

Y2ðaþ bYÞ
� 4að1� Y2Þð2aþ 3bYÞ
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 !#

Fm ¼ C3=2 ffiffiffi
x

p
f

ðjþ 2fÞ2ðjþ 4fÞ

�
2ðj� fÞð1�KÞð5þ xÞ

Kð1þ xÞ3
þ



2Y2HðxÞ

ðK� 1Þ2f2ðxÞðaþ bYÞ
þ 2 1� FðxÞYð Þ
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�

3ðjþ 2fÞ
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x

4Kð1�KÞ�
5

ð1� Y2Þ2
� 8a

Y2ðaþ bYÞ
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þ ð1� xÞ
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6.2 Adiabatic Index and Stability Condition

For a relativistic isotropic fluid configuration, the stability

is related to the adiabatic index C, the ratio of two specific

heats, defined by Chandrasekhar (1964a, b),

C ¼
� qþ p

p

�� dp
dq

�
ð37Þ

To be stable in Newtonian gravity, the adiabatic index C of

an isotropic star must be strictly greater than 4
3
(Bondi

1964). For a relativistic isotropic compact star, this con-

dition changes due to the regenerative effect of pressure. In
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the post-Newtonian approximation, the condition for sta-

bility of isotropic configuration takes the form Chan

(1993):

C[
4

3
þmax

�
j
3

rqp
jp0j

�
ð38Þ

However, relativistic correction to the adiabatic index may

introduce some instabilities within the configuration. As a

result, Moustakidis Moustakidis (2017) proposed a more

stringent condition on the adiabatic index. He asserted that

the critical value of the adiabatic index (Ccritcal) is deter-

mined by the amplitude of the Lagrangian displacement

from equilibrium and compactness, which is calculated as

Ccritical ¼
4

3
þ 19

21

M

R
; ð39Þ

and the condition for stability became C�Ccritical.

6.3 Harrison–Zeldovich–Novikov Static Stability
Criterion

Harrison et al. (1965) and Zeldovich and Novikov (1971)

demonstrated that the adiabatic index of a pulsating star is

the same as that of a slowly deformed matter. This results

in a stable configuration only if the star’s mass increases

with central density, i.e., oM
oqc

[ 0 and an unstable configu-

ration if oM
oqc

\0.

7 Physical Features and Stability Analysis
of the Presented Compact Stars Model
in f(R; T Þ Gravity

We present a physical and stability analysis of our model in

this section, with a focus on regularity and stability related

to f(R, T) Gravity. Compact stars, the most fundamental

objects in galaxies, have attracted the interest of

researchers studying their ages, structures, and evolutions

in Cosmology and Astrophysics. It is worthwhile to

investigate the structure of astrophysical objects within the

framework of a theory to test it. For this purpose, we have

discussed the physical analysis of rotating neutron stars

‘Hercules X-1’, observed mass and radius of which are

0:85	 0:15M� and 8:1	 0:41 km, respectively (Gan-

gopadhyay et al. 2013). Hercules X-1 (Her X-1) is a

moderately strong X-ray binary source composed of neu-

tron star accreting matter that was discovered by the Uhuru

satellite. We choose some real values for the constants used

in the solutions as a ¼ �2:87, b ¼ 0:9499, C ¼
0:004344307 and K ¼ 1:99 and estimate the value of M

R for

the model as 0.15478, which is consistent with Buchdahl

limit. This value of M
R suggests that for studying the

compatibility of the model, ‘Hercules X-1’ might be a

suitable choice. The estimated mass and radius of ‘Her-

cules X-1’ through our model are M ¼ 0:85 and R ¼ 8:1,

respectively, which are within the range of their corre-

sponding observed values. To examine the effect of cou-

pling constant f, we consider the range � j
8p � f� j

8p. For

the different values of f, the calculated numerical values of

electric field intensity at the surface, central density, sur-

face density, central pressure, surface redshift, and central

adiabatic index of Hercules X-1 are given in Table 1.

In our model, the metric potential ek and the electric

field is unaffected by the value of f. As a result, for all f
considered, the total mass of the configuration at the sur-

face remains the same, resulting in the same value for

gravitational redshift at the compact star’s surface. We use

the graphical representation to describe the physical

acceptability of the presented stellar model in f ðR; T Þ
Gravity.

The profile of metric potentials ek and em is plotted in

Fig. 1. The figure shows that the metric potentials are

regular and finite within the Hercules X-1 configuration.

Also, e�k and em coincides at the boundary of the compact

star configuration, which confirms the fulfillment of

matching condition (28). Hence, the chosen metric poten-

tials are appropriate for generating the model for the neu-

tron star ’Hercules X-1’.

As can be seen in Fig. 2 (Left), the density profile is a

decreasing function of the scaled radial coordinate (r/R).

The behavior of pressure is depicted in Fig. 2 (Right). The

calculated value of central density of ‘Hercules X-1’, using

this model, is of order 1014 (g/cc), which is consistent with

its observed value. The pressure is found to be a mono-

tonically decreasing function of the scaled radial coordi-

nate. It vanishes for some finite radius denoting the

boundary between the interior spacetime and the vacuum

exterior described by the Reissner-Nördstrom solution.

For geometrized units, G ¼ c ¼ 1, the causality condi-

tion get reduced to 0� v\1. It can be verified from Fig. 3

(Left) that our system is consistent with the causality

condition. The EoS of dense matter has great significance

in various physical objects, including compact astrophysi-

cal objects. The nature of the variation of pressure with

respect to the density has been graphically shown in Fig. 3

(Right). Despite the complex relationship between radial

pressure and energy density, the behavior of an object from

its surface to its core is roughly linear. The figure shows

that the EoS parameter x takes the maximum value at the

center of the star and decreases toward the boundary.

Furthermore, it is in the range 0\x\1, which corresponds

to the radiation era.

The estimated electric charge, which has a significant

impact on the structure of neutron stars, generates a surface
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electric field of the order of 1020 (in V/m). Fig. 4 (Left)

depicts the behavior of the electric field E for various

values of f. The electric field begins at zero in the center

and increases toward the star’s surface. Fig. 4 (Right)

depicts the expressions on the left-hand side of the

inequalities in energy conditions. The figure clearly shows

that all of the energy conditions have been satisfied. The

fulfillment of all these conditions confirms the existence of

ordinary matter in the configuration. SEC is satisfied in our

study of the charged compact star, implying that gravity

will be attractive and the matter-energy density will always

be positive.

The variation in redshift of Hercules X-1 for each f
within the range is depicted graphically in Fig. 5. The

Table 1 Numerical values of

electric field intensity at surface

Es, central density qc, surface
density qs, central pressure pc,
maximum value of surface

redshift Zs, and adiabatic index

at the core Cc of ‘Hercules X-1’

8p
j f Es (in V/m) qc (in g/cc) qs (in g/cc) pc (in Pa) Zs Cc

–1 1:63683� 1020 9:48175� 1014 6:42277� 1014 7:6231� 1033 0.194455 4.125541

�0.8 1:63683� 1020 9:71483� 1014 6:36995� 1014 7:23833� 1033 0.194455 4.079228

�0.6 1:63683� 1020 9:66016� 1014 6:31795� 1014 6:88872� 1033 0.194455 4.037452

�0.4 1:63683� 1020 9:60384� 1014 6:26697� 1014 6:5687� 1033 0.194455 3.999529

�0.2 1:63683� 1020 9:54649� 1014 6:21662� 1014 6:27458� 1033 0.194455 3.9649

0 1:63683� 1020 9:48833� 1014 6:16729� 1014 6:00636� 1033 0.194455 3.933103

0.2 1:63683� 1020 9:42955� 1014 6:11858� 1014 5:75848� 1033 0.194455 3.903758

0.4 1:63683� 1020 9:37015� 1014 6:07048� 1014 5:5291� 1033 0.194455 3.876544

0.6 1:63683� 1020 9:31054� 1014 6:02342� 1014 5:31822� 1033 0.194455 3.851194

0.8 1:63683� 1020 9:19133� 1014 5:97696� 1014 5:12214� 1033 0.194455 3.827482

1 1:63683� 1020 9:13172� 1014 5:93113� 1014 4:94086� 1033 0.194455 3.805217

Fig. 1 Behavior of metric potentials of Hercules X-1 model for � j
8p � f� j

8p

Fig. 2 Density (Left) and pressure (Right) profiles within the configuration of Hercules X-1 for � j
8p � f� j

8p
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figures confirm that the redshift evolution from the core to

the surface is within the limit.

For different values of f, all the forces acting on the

system are shown in Fig. 6 (Left). The figure shows that

gravitational force is attractive as well as dominating in

nature. The hydrostatic and electric forces are repellent in

nature. Among all the forces, the effect of modified gravity

is comparatively less. The figures show that the combined

effect of all forces equals zero, and thus, the charge com-

pact star’s equilibrium condition in f ðR; T Þ gravity is

obtained. Fig. 6 (Right) shows that our models satisfy the

Chandrasekhar stability criterion. Also, the critical value of

the adiabatic index (Ccritcal) for the neutron star ‘Hercules

X-1’ is calculated as 1.473375. The adiabatic index C is

increasing and more than 3 throughout the compact star

configuration, which surpasses the Ccritcal.

The figures also show the effect of varying the f ðR; T Þ
coupling constant f. Fig. 1 shows that the ek profile is the

same for all values of f, whereas a decrement in the em

profile with an increase in f value can be seen. Even though
the basic nature of density and pressure within the con-

figuration is not violated, a decrease in density and pressure

is accompanied by an increase in f (see Fig. 2). When we

move in the negative direction from f ¼ 0, which repre-

sents the same in Einstein’s gravity, we see an increase in

these profiles, and when we move in the positive direction,

we see a decrease in these profiles. Similar behavior for the

velocity of sound (v) and the equation of state parameter

(x) can be seen in Fig. 3. Fig. 4 reveals that f doesn’t

have any impact on the electric field intensity. Gravita-

tional redshift increases as the magnitude of the positive

coupling constant increases, while it decreases with the

increment in the magnitude of the negative coupling

Fig. 3 Nature of the velocity of sound (Left) and equation of state parameter (Right) within the configuration of Hercules X-1 for � j
8p � f� j

8p

Fig. 4 Graphical representation of electric field intensity (Left) and energy conditions (Right) for the neutron star Hercules X-1 with

� j
8p � f� j

8p
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constant (see Fig. 5). With increase in magnitude with rise

in f from � j
8p to

j
8p gravitational force remain attractive in

nature for all values of f. With an increase in f, there is an
increase in hydrostatic force and electric force, both of

which are repulsive in nature for all f. But, as the magni-

tude of the force corresponding to modified gravity, Fm,

changes, the nature of the force changes as well. The nature

of Fm, however, is determined by the sign of f. Positive f
makes the Fm attractive, while negative f makes it repul-

sive in nature (See Fig. 6 (Left)). In both cases, an

increment in the magnitude of Fm is accompanied by an

increment in the magnitude of f. It’s worth noting that with

an increase in f adiabatic indices decreases (See, Table 1

and Fig. 6 (Right)), i.e., increasing the coupling constant f
tends to make the configuration less stable. An interesting

observation is that the positive decoupling constant reduces

stability, while the negative decoupling constant increases

it.

8 Conclusion

Modified theories of gravity provide a substantial possi-

bility for resolving or avoiding certain issues that appear

when general theory of relativity is considered. This fas-

cinating theory has several significant advantages. The

model based on the modified theory of gravity can describe

both the inflationary and accelerated expansion periods. In

this regard, we have worked in f ðR; T Þ theory background.
To depict the complete solution of field equations for the

distribution filled of charged isotropic matter subject to

f ðR; T Þ gravity, we used the simplified linear and sepa-

rable form for the arbitrary function f ðR; T Þ as

Fig. 5 Redshift profile of the neutron star Hercules X-1 for � j
8p � f� j

8p

Fig. 6 Behavior of different forces acting on the Hercules X-1 configuration (Left) and Adiabatic Indices of Hercules X-1 (Right) for

� j
8p � f� j

8p
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f ðR; T Þ ¼ Rþ 2fT , with f a coupling constant, and

specific matter Lagrangian as LM ¼ q. Our research is

dedicated to generating a completely new class of gener-

alized solutions for charged isotropic spherically symmet-

ric relativistic neutron stars. We have obtained a singularity

free spacetime in the background of f ðR; T Þ gravity by

employing the Buchdahl ansatz ekðrÞ ¼ Kð1þxÞ
ðKþxÞ for the metric

potential paired with em ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j 1� Y2 j

q
ðaþbYÞ2

Y2�
A a

b3
gðxÞ þ B

�2
, with gðxÞ ¼ bY � a2

aþbY � a ln ðaþ

bYÞ2, Y ¼
ffiffiffiffiffiffiffi
Kþx
K�1

q
and x ¼ Cr2. As testing candidates for

our model, we have taken a rotating neutron star with

charged isotropic configuration, namely ’Hercules X-1’.

We present our results for various parametric values of f in
the range �j

8p � f� j
8p, to examine the effect of f on

physical properties of the studied compact stars. We have

investigated the variation of structural variables of the

considered compact stars to radial distance from the core to

the surface of stars. Through graphical analysis, we have

demonstrated that our model complies with the require-

ments for the acceptability of physical systems. A stability

analysis using the Chandrasekhar adiabatic index revealed

that our models are stable, and the negative coupling

constants enhance the stability. Finally, we conclude that in

the context of f ðR; T Þ gravity; a viable model to describe

relativistic charged isotropic compact stars, particularly

neutron stars, has been obtained.
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