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Abstract
A brain tumor occurs when abnormal cells form within the brain. Glioblastoma (GB) is an aggressive and fast-growing

type of brain tumor that invades brain tissue or spinal cord. GB evolves from astrocytic glial cells in the central nervous

system. GB can occur at almost any age, but the occurrence increases with advancing age in older adults. Its symptoms

may include nausea, vomiting, headaches, or even seizures. GB, formerly known as glioblastoma multiforme, currently has

no cure with a high rate of resistance to therapy in clinical treatment. However, treatments can slow tumor progression or

alleviate the signs and symptoms. In this paper, a fractional order brain tumor model was considered. The optimal solution

of the model was obtained using an optimization method based on operational matrices. The solution to the problem under

study was expanded in terms of generalized Laguerre polynomials (GLPs). The study problem was shifted to a system of

nonlinear algebraic equations by the use of Lagrange multipliers combined with operational matrices based on GLPs. The

analysis of convergence was discussed. In the end, some numerical examples were presented to justify theoretical state-

ments along with the patterns of biological behavior.
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1 Introduction

Glioblastoma multiform (GBM) is the most frequent

malignant brain tumor which accounts for 16% of primary

central nervous system (CNS) tumors (Thakkar et al.

2014). Although GBM mainly occurs in the brain, it can

rarely appear in the brain stem, cerebellum, or spinal cord

(Blissitt 2014). GBMs are derived from glial cells in the

CNS; however, other neural stem cells may serve as the

cell of origin for gliomas (Phillips et al. 2006).

The median age of GBM is diagnosed at 64 years

(Thakkar et al. 2014), but it can also affect patients at

different ages even children. Except for higher proliferative
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activity of glioma cells in childhood, other morphological

features do not differ between adults and children. The

incidence rate of this tumor is 1.6 times higher in adult men

than women (Ellor et al. 2014; Urbańska et al. 2014).

Some environmental risk factors associated with brain

tumors are assumed to be ionizing radiation, smoking,

synthetic rubber manufacturing, petroleum refining, air

pollution, and toxic agents such as vinyl chloride and

pesticides (Alifieris and Trafalis 2015). Furthermore, a

group of specific genetic disorders such as retinoblastoma,

neurofibromatosis type 1 and 2, Li-Fraumeni syndrome,

tuberous sclerosis, and Turcot syndrome may increase the

risk of GBM (Ellor et al. 2014).

Clinical presentations of the tumor are highly dependent

on the size and the location of the tumor. The most com-

mon reasons patients present to primary care centers are

symptoms of focal weakness, speech impairment, ataxia,

visual disturbances, memory loss, seizure, or increased

intracranial pressure and headache (Nelson and Cha 2003;

Perry et al. 2006).

Computed tomography (CT) scans or magnetic reso-

nance imaging (MRI) are useful examination techniques

for brain tumor diagnosis. In MRI, gadolinium enhance-

ment helps doctors diagnose abnormal tissues and monitor

the progress of glioblastomas. The irregular hypodense

center of necrosis and heterogenous enhancement of

periphery are of frequent features of GBM. Necrosis is an

important diagnostic feature for a malignant brain tumor to

be recognized as a case of GBM under the classification

system of World Health Organization (WHO) (Blissitt

2014). Surrounding vasogenic edema, marked mass effect,

intratumoral hemorrhage, and ventricular extension may

also be seen on imaging (Ellor et al. 2014). Some GBMs

may appear multifocal (multiple lesions at different loca-

tions), distant (lesions far from the primary focus), and

diffuse or may represent microscopic infiltration, or lep-

tomeningeal dissemination (Johnson et al. 2015).

For definitive diagnosis of GBM, examination of the

neurosurgical tumor sample is done based on traditional

histological, cytological, and histochemical methods and in

case of no access to tumor resection, fine needle aspiration

biopsy is carried out (Urbańska et al. 2014).

Fractional order calculus deals with the generalization of

derivatives and integrals of arbitrary orders to non-integer

orders (Podlubny 1999). In a series of papers (Agrawal

et al. 2004; Hassani et al. 2022; Singh et al. 2022; Ham-

mad et al. 2021; Wang et al. 2022; Karthikeyan et al.

2021; Rashid et al. 2022; Hajiseyedazizi et al. 2021;

Rashid et al. 2022; Radmanesh and Ebadi 2020; He et al.

2022; Abdollahi et al. 2021; Jaros and Kusano 2014;

Kumar et al. 2018; Odibat 2019), the authors have inves-

tigated the fractional differential equations in different

branches of sciences including mathematics, physics,

bioscience, and engineering. Xu et al. (2019) analyzed

Legendre-Gauss collocation method for the fractional dif-

ferential equation of nonlinear distributed-order. They first

proved the unique existence of the exact solution and then

the high accuracy of the proposed method. Cong et al.

(2020) compared solution properties of ordinary and frac-

tional differential equations (FDEs) and proposed some

distinct features and a new notion of stability for systems of

fractional-order. Singla (2021) used power series expan-

sion technique to investigate the existence of series solu-

tions for some nonlinear systems of time fractional partial

differential equations. Garrappa and Kaslik (2020) studied

the initial conditions for fractional delay differential

equations (FDDEs). They discussed the initialization of

FDDEs on both the solution and the fractional operator and

found some inconsistencies in the process of incorporating

the initial function leading to the fractional derivative.

Vargas (2022) presented a finite difference approach to

solving a class of fractional differential equations at

irregular meshes. The approach was followed on the base

of moving least squares method and on the existence of a

fractional Taylor polynomial for Caputo fractional

derivatives. Bavi et al. (2022) developed a meshless algo-

rithm regarding moving least squares (MLS) shape func-

tions for solving time fractional equation of coronavirus

diffusion in different mediums of soil, water, and tissue.

Heydari and Atangana (2022) defined a hybrid of Cheby-

shev and piecewise Chebyshev cardinal functions to solve

nonlinear equations of fractional reaction-advection-diffu-

sion. Roohi et al. (2021) simulated the behavior of the

generalized Couette flow of fractional Jeffrey nanofluid

subjected to porous medium of fluctuating thermochemical

effects based on the second kind Chebyshev polynomials.

Hosseininia and Heydari (2019) proposed a meshless MLS

method for the numerical solution of nonlinear equations of

2D telegraph involving Mittag-Leffler non-singular kernel

in the Atangana–Baleanu–Caputo sense using variable-

order time fractional derivatives. Heydari et al. (2014)

proposed a novel computational approach for solving

fractional biharmonic equations based on the combination

of operational matrix of fractional derivatives and shifted

polynomials of Chebyshev. Sabermahani et al. (2020)

achieved a new operational Tau-Collocation method on the

Lagrange polynomial basis to find the solution of fractional

differential equations of variable order. Bhrawy et al.

(2014) used generalized Laguerre orthogonal functions of

fractional order to approximate a system of fractional dif-

ferential equations via a new spectral method. Hussien

(2019) developed a collocation operational matrix method

for two common delay differential equations of fractional

order on generalized Laguerre polynomial basis. Zaky

(2020) provided an adaptive spectral collocation method to

approximate the solution of a general nonlinear system of
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fractional differential equations and non-smooth solutions

of related integral equations. Zaky (2019) derived an

exponentially accurate approach of Jacobi spectral-collo-

cation for non-smooth solutions to nonlinear terminal value

problems. Abo-Gabal et al. (2022) proposed Romanovski-

Jacobi-Gauss-type quadrature formulae for spectral tau

approximation of non-smooth solutions of time-fractional

partial differential equations.

Laguerre polynomials (LPs) are widely used as basis

functions to numerically solve various types of differential

equations. Bhrawy et al. (2014) proposed a formula to express

any of Caputo fractional order derivatives in terms of frac-

tional order generalized Laguerre functions. In addition, a

fractional order generalized tau technique was proposed for

solving Caputo type fractional differential equations.

Daşcıoǧlu and Varol (2021) used LPs to develop an approx-

imation method for the numerical solutions of linear fractional

Fredholm–Volterra integro-differential equations. Yu et al.

(2019) employed the generalized associated Laguerre func-

tions of the first kind as basis functions to numerically solve

time-fractional sub-diffusion equations in two-dimensional

space on an unbounded domain. Shiralashetti and Kumbina-

rasaiah (2020) developed a numerical algorithm to find a

numerical solution for the system of differential equations

based on the Laguerre wavelets exact Parseval frame. Hussien

(2019) proposed a collocation method for an approximation of

two common delay differential equations of fractional order

with generalized LPs basis. Hajimohammadi and Parand

(2021) applied a new learning approximation method of

generalized Laguerre least squares support vector regression

(GLLSSVR) to obtain the solution of time-fractional sub

diffusion model (TFSDM) over a semi-infinite domain. Their

new method was a combination of collocation/Galerkin

method and a kernel of LSSVR method. Chi and Jiang (2021)

proposed Laguerre-Legendre spectral method to approximate

time direction for the flow of two-dimensional generalized

Oldroyd-B model in semi-infinite intervals. Shahni and Singh

Shahni and Singh (2022) proposed three computational

algorithms based on Taylor-wavelet, Gegenbauer-wavelet,

and Laguerre-wavelet collocation methods to solve the inte-

gral form of Emden-Fowler equations with a kernel of Green’s

functions. Chen et al. Chen et al. (2021) used a novel Laguerre

neural network with three layers of neurons for solving Black–

Scholes equations and proved its high accuracy and superi-

ority over other existing algorithms. Zhang and Miao (2017)

applied weighted LPs to an unconditionally stable scheme for

solving one-dimensional telegraph equation.

This paper proposes and applies a fractional order model

of glioblastoma brain tumor. The interesting feature of this

work is that the LPs are extended to the generalized

Laguerre polynomials (GLPs) as a new class of basis

function which enables easy approximation of the unknown

function and its derivatives. The solution methodology is

based on the operational matrices of GLPs and the

Lagrange multipliers which reduces solving the model into

a nonlinear system of algebraic equations. The proposed

model is thus simple and easy to implement for the prob-

lem under study whose optimal solution is obtained by

solving a system of nonlinear equations. The convergence

analysis is also presented for the study model. Furthermore,

some test examples are given to verify the validity as well

as the applicability of the model.

The distinction between other spectral methods and our

proposed approach must be highlighted from the numerical

point of view. The error between the exact and numerical

solutions must be minimized from an ideal point of view.

Accordingly, coefficients must be determined in line with

the underlying idea of spectral methods such as Chebyshev,

Jacobi, Legendre, and Lagrange polynomials, expressing

the solution of a differential equation as a sum of basis

functions. There are three common techniques of tau,

Galerkin, and collocation used to determine the coeffi-

cients. Here, the residual function and the 2-norm of the

residual are utilized to transform the study problem into an

optimization one and to obtain unknown parameters opti-

mally. Therefore, optimality conditions are found in the

form of a nonlinear system of algebraic equations with

unknown coefficients. On the other hand, any arbitrary

smooth function can be spectrally approximated by sin-

gular Sturm–Liouville eigenfunctions such as Chebyshev,

Legendre, Jacobi, Lagrange, Hermite, or Laguerre poly-

nomials. In other words, the truncation error tends to zero

in a faster way than the potential number of basis functions

approaches infinity in the approximation. In conclusion,

these basis functions are not most optimally suited to non-

analytic function approximation. For this purpose, the use

of GLPs is much more efficient.

This work is prepared as follows. In Sect. 2, formulation of

fractional order glioblastoma tumor (FGT) and some defini-

tions of fractional calculus are given in the sense of Caputo.

In Sect. 3, GLPs are constructed and used to provide opera-

tional matrices of derivative, function approximation, and

convergence analysis. In Sect. 4, description and analysis of

the presented method are made. In Sect. 5, application of the

GLPs algorithm is investigated for three examples. In Sect. 6,

some concluding remarks are finally drawn.

2 Fractional Order Glioblastoma Tumor
in the Caputo Derivative Sense

Glioblastoma multiforme (GBM), also known as a grade

IV astrocytoma, starts in brain cells called glial cells. The

grading system of gliomas from I to IV indicates the likely

progress and growth of brain tumor. Grade IV tumor as the

most aggressive type grows rapidly. The tumor may
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display central necrosis and the tumors cells divide

actively. There are more areas of dead tissue and abnormal

blood vessel growth. Many researchers have simulated the

original two-dimensional model of brain tumor to predict

the equation of tumor growth (Cruywagen et al. 1995;

Tracqui et al. 1995; Woodward et al. 1996). They have

described the effect of therapy on the spatiotemporal

growth of tumor by using models that can be read as,

Rate of change of tumor cell density

¼ Diffusion of tumor cells þ Growth of tumor cells

in mathematical terms,

oUðx; tÞ
ot

¼ Dr2Uðx; tÞ þ .Uðx; tÞ

¼ D
1

x2

o

ox
x2 oUðx; tÞ

ox

� �
þ .Uðx; tÞ:

ð2:1Þ

Here, U(x, t) shows the concentration of tumor cells at

location x at time tr2 indicates the Laplacian operator, and

D represents diffusion coefficient as a measure of the

spread of invading glioblastoma cells per day in terms of

cm2. The reproduction rate of glioblastoma cells is

expressed by . as a decimal fraction per day. Some authors

have added a term of killing rate to investigate the effects

of chemotherapy as,

Rate of change of tumor cell density

¼ Diffusion of tumor cells þ Growth of tumor cells

� Killing rate of tumor cells;

Mathematically,

oUðx; tÞ
ot

¼D
1

x2

o

ox
x2 oUðx; tÞ

ox

� �

þ .Uðx; tÞ � jtUðx; tÞ:
ð2:2Þ

where jt is the killing rate of of tumor cells. Equation (2.2)

can be rewritten as

oUðx; tÞ
ot

¼ D
o2Uðx; tÞ

ox2
þ 2

x

oUðx; tÞ
ox

� �

þð.� jtÞUðx; tÞ:
ð2:3Þ

Assume s ¼ 2Dt and Vðx; sÞ ¼ xUðx; tÞ, then

os ¼ 2Dot ) ot

os
¼ 1

2D
: ð2:4Þ

From (2.4), we get

oVðx; sÞ
os

¼x
oUðx; tÞ

os

¼x
oUðx; tÞ

2Dot
¼ x

2D

oUðx; tÞ
ot

;

ð2:5Þ

and

oVðx; sÞ
ox

¼ x
oUðx; tÞ

ox
þ Uðx; tÞ;

o2Vðx; sÞ
ox2

¼ x
o2Uðx; tÞ

ox2
þ 2

oUðx; tÞ
ox

:

ð2:6Þ

In view of (2.5) and (2.6), we can write

oUðx; tÞ
ot

¼ 2D

x

oVðx; sÞ
os

;

oUðx; tÞ
ox

¼ 1

x

oVðx; sÞ
ox

� Uðx; tÞ
� �

;

o2Uðx; tÞ
ox2

¼ 1

x

o2Vðx; sÞ
ox2

� 2
oUðx; tÞ

ox

� �
:

ð2:7Þ

Using this, the Eq. (2.2) becomes

oVðx; sÞ
os

¼ 1

2

o2Vðx; sÞ
ox2

þ .� jt
D

Vðx; sÞ: ð2:8Þ

Now, suppose Wðx; sÞ ¼ .�jt
D Vðx; sÞ and Vðx; s0Þ is initial

growth-profile, then

oVðx; sÞ
os

¼ 1

2

o2Vðx; sÞ
ox2

þWðx; sÞ;

Vðx; s0Þ ¼ tðxÞ:
ð2:9Þ

Memory properties have been broadly applied to many

complex phenomena in applied sciences. The use of frac-

tional derivatives, for their extra degree of freedom, com-

pared to the use of integer ones may achieve better results.

Concerning intrinsic properties of nonlocal operators,

fractional differential equations are more helpful in

explaining phenomena or processes related to hereditary or

memory properties in areas of biology, chemistry, econ-

omy, and physics. Readers can refer to Lorenzo and

Hartley (2000); Sun et al. (2011).

C
0 D

h
sVðx; sÞ ¼

1

2

o2Vðx; sÞ
ox2

þWðx; sÞ;

Vðx; s0Þ ¼ tðxÞ:
ð2:10Þ

where C
0 D

h
s refers to the fractional derivative operator of

order h in the Caputo sense with 0\h� 1.

Definition 1 The fractional Caputo derivative of order

h 2 ðm� 1;m�, m 2 N of Vðx; sÞ with respect to s is rep-

resented by Hassani et al. (2019, 2020)

C0Dh
sVðx; sÞ ¼

1

C m� hð Þ

Z s

0

s� nð Þm�h�1o
mVðx; nÞ
onm

dn; h 2 ðm� 1;mÞ;

omVðx; sÞ
osm

; h ¼ m;

8>><
>>:

ð2:11Þ

where Cð�Þ implies the gamma function.

Corollary 1 The definition 1 for k 2 N
S
f0g results in
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C0Dh
ss

k ¼
Cðk þ 1Þ

Cðk � hþ 1Þ s
k�h; k�m;

0; k\m;

8<
: ð2:12Þ

where h 2 ðm� 1;m�.

Definition 2 The two-parameter Mittag-Leffler function

Ea;fðzÞ is defined as Hassani et al. (2019, 2020)

Ea;fðzÞ ¼
X1
j¼0

z j

C jaþ fð Þ ;

where a and f are positive constants.

3 Required Tools

In this section, we first introduce GLPs and operational

matrices to solve FGT, then provide function approxima-

tion and convergence analysis.

3.1 Description of the GLPs

In this subsection, the main concepts of the GLPs are

introduced to make some approximation of the given

function.

Definition 3 (see Aizenshtadt et al. 1966 and references

therein) The Laguerre polynomials (LPs), LnðsÞ, are solu-

tions to linear differential equation of second order

xy00 þ ð1 � xÞy0 þ ny ¼ 0; n 2 N.

Definition 4 (see Aizenshtadt et al. 1966 and references

therein) The representation of power series for LPs, LnðsÞ,
is provided by

LnðsÞ ¼
Xn
k¼0

ð�1Þk

k!

ðnÞ!
ðk!Þðn� kÞ! s

k: ð3:1Þ

The first LPs are given by:

L0ðsÞ ¼ 1;

L1ðsÞ ¼ �sþ 1;

L2ðsÞ ¼
1

2
ðs2 � 4sþ 2Þ;

L3ðsÞ ¼
1

6
ð�s3 þ 9s2 � 18sþ 6Þ:

The given function uðsÞ can be approximated generally

with the first nþ 1 LPs terms as

uðsÞ ’ PT Q WnðsÞ; ð3:2Þ

where

Q ¼

q00 q01 � � � q0n

q10 q11 � � � q1n

..

. ..
. . .

. ..
.

qn0 qn1 � � � qnn

0
BBBB@

1
CCCCA;

PT ¼ ½p0 p1 . . . pn�;WnðsÞ ¼ ½1 s s2 . . . sn�T ;

ð3:3Þ

and

qij ¼
ð�1Þ j

j!

ðiÞ!
ðj!Þði� jÞ! ; i� j;

0; i\j:

8<
: ð3:4Þ

Definition 5 The GLPs, LmðsÞ, are formed with a change

of variable. Accordingly, si is changed to siþbi ,

ðiþ bi [ 0Þ, on the LPs and defined as

LmðsÞ ¼
Xm
k¼0

ð�1Þk

k!

ðmÞ!
ðk!Þðm� kÞ! s

kþbk ; ð3:5Þ

where bk indicate control parameters. If bk ¼ 0, then GLPs

fully coincide with classical LPs.

The expansion of vðsÞ functions in terms of GLPs can be

shown in the form of matrices

vðsÞ ¼ RT S UmðsÞ; ð3:6Þ

where

S ¼

s0;0 s0;1 s0;2 � � � s0;m

s1;0 s1;1 s1;2 � � � s1;m

s2;0 s2;1 s2;2 � � � s2;m

..

. ..
. ..

.
� � � ..

.

sm;0 sm;1 sm;2 � � � sm;m

0
BBBBBBB@

1
CCCCCCCA
;

RT ¼ ½r0 r1 . . . rm�;UmðtÞ ¼ ½1 s1þb1 s2þb2 . . . smþbm �T ;
ð3:7Þ

and

sij ¼
ð�1Þ j

j!

ðiÞ!
ðj!Þði� jÞ! ; i� j;

0; i\j;

8<
: ð3:8Þ

where bk, k ¼ 1; 2; . . .;m, are control parameters.

The following matrices can explain the expansion of

given functions Vðx; sÞ by means of GLPs:

Vðx; sÞ ’ Um1
ðxÞT AWm2

ðsÞ; ð3:9Þ

where A ¼ ½aij� are ðm1 þ 1Þ � ðm2 þ 1Þ unknown matri-

ces of free coefficients, that must be computed. The vectors

Um1
ðxÞ and Wm2

ðsÞ are defined as:
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Um1
ðxÞ ¼ CFm1

ðxÞ;Wm2
ðsÞ ¼ DGm2

ðsÞ; ð3:10Þ

where

Fm1
ðxÞ ¼ ½f0ðxÞ f1ðxÞ . . . fm1

ðxÞ�T ;
Gm2

ðsÞ ¼ ½g0ðsÞ g1ðsÞ . . . gm2
ðsÞ�T ;

ð3:11Þ

A ¼

a0;0 a0;1 � � � a0;m2

a1;0 a1;1 � � � a1;m2

..

. ..
.

� � � ..
.

am1;0 am1;1 � � � am1;m2

0
BBBB@

1
CCCCA; ð3:12Þ

C ¼

1 0 0 � � � 0

0 1 0 � � � 0

c2;0 c2;1 c2;2 � � � c2;m1

..

. ..
. ..

.
� � � ..

.

cm1;0 cm1;1 cm1;2 � � � cm1;m1

0
BBBBBBB@

1
CCCCCCCA
;

D ¼

1 0 0 � � � 0

d1;0 d1;1 d1;2 � � � d1;m2

d2;0 d2;1 d2;2 � � � d2;m2

..

. ..
. ..

.
� � � ..

.

dm2;0 dm2;1 dm2;2 � � � dm2;m2

0
BBBBBBB@

1
CCCCCCCA
;

ð3:13Þ

cij ¼

ð�1Þ j

j!

ðiÞ!
ðj!Þði� jÞ! ; i� j;

0; i\j;

: i ¼ 2; 3; . . .;m1;

j ¼ 0; 1; . . .;m1;

8>>>><
>>>>:

ð3:14Þ

dij ¼

ð�1Þ j

j!

ðiÞ!
ðj!Þði� jÞ! ; i� j;

0; i\j;

: i ¼ 1; 2; . . .;m2;

j ¼ 0; 1; . . .;m2;

8>>>><
>>>>:

ð3:15Þ

fiðxÞ ¼
xi; i ¼ 0; 1;

xiþki ; i ¼ 2; 3; . . .;m1;

�

gjðsÞ ¼
1; j ¼ 0;

sjþsj ; j ¼ 1; 2; . . .;m2;

� ð3:16Þ

where ki and sj are control parameters.

3.2 Operational Matrix

The fractional derivative of order 0\h� 1, of Gm2
ðsÞ can

be written as

C
0 D

h
sGm2

ðsÞ ¼ D hð Þ
s Gm2

ðsÞ; ð3:17Þ

where D hð Þ
s denotes the ðm2 þ 1Þ � ðm2 þ 1Þ operational

matrix of fractional derivative, defined by:

D hð Þ
s ¼

s�h

0 0 0 0 � � � 0

0
C 2 þ s1ð Þ

C 2 � hþ s1ð Þ 0 0 � � � 0

0 0
C 3 þ s2ð Þ

C 3 � hþ s2ð Þ 0 � � � 0

..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 � � � C m2 þ 1 þ sm2
ð Þ

C m2 þ 1 � hþ sm2
ð Þ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

;

ð3:18Þ

The second order derivatives of Fm1
ðxÞ is given by:

d2Fm1
ðxÞ

dx2
¼ Dð2Þ

x Fm1
ðxÞ; ð3:19Þ

where Dð2Þ
x denotes ðm1 þ 1Þ � ðm1 þ 1Þ operational

matrix of derivative:

Dð2Þ
x ¼
0 0 0 � � � 0

0 0 0 � � � 0

0 0
ð2 þ k2Þð1 þ k2Þ

x2
� � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � ðm1 þ km1
Þðm1 � 1 þ km1

Þ
x2

0
BBBBBBBBB@

1
CCCCCCCCCA
;

ð3:20Þ

where ki, ði ¼ 2; 3; . . .;m1Þ and sj, ðj ¼ 1; 2; . . .;m2Þ are

control parameters, Cð�Þ is the gamma function, m1 and m2

are numbers of basis functions and h is the fractional order.

3.3 Function Approximation

Let X ¼ L2½0; 1� � ½0; 1� and Y ¼ xkissj ; 0� i�m1;
�

0� j�m2i. Then, Y suggests a subspace of finite

dimensional vector space of X dimY�ðm1 þ 1Þð ðm2 þ
1Þ\1Þ with each ~V ¼ ~Vðx; sÞ 2 X converging to a unique

best approximation V0 ¼ V0ðx; sÞ 2 Y, given by:

8 V̂ 2 Y; k ~V � V0 k2 � k ~V � V̂ k2 :

More details are evident in Theorem 6.1-1 of Kreyszig

(1987). The V0 2 Y and Y finite dimensional vector sub-

space of X provide us with unique coefficients aij 2 R.

From an elementary argument in linear algebra, we obtain

coefficients such that V0ðx; sÞ dependent variable can be

expanded in terms of polynomials of

V0ðx; sÞ ’ Um1
ðxÞT AWm2

ðsÞ;

where Um1
ðxÞT and Wm2

ðsÞ are defined in Eq. (3.10).

506 Iranian Journal of Science (2023) 47:501–513

123



3.4 Convergence Analysis

Theorem 1 Suppose f : Q ! R is ðm1 þ m2 þ 1Þ times

continuously differentiable, say for i ¼ 1; 2; . . .;m1

þm2 þ 1, om1þm2þ1

onþm�i f ðx; tÞ
��� ����M2. Let Y ¼ xkissj : 0

�
� i�m1; 0� j�m2; ki; sj � 0i, where Y is a linear sub-

space with finite dimension of L2ðQÞ. If UT
m1

is a unique

best approximation of f out of Y where Um1
ðxÞ and Wm2

ðsÞ
are given in (3.9) and A ¼ ½ai;j� : i ¼ 1; 2; . . .;m1, j ¼
1; 2; . . .;m2 is the coefficient matrix, then the following

holds:

k ~Vðx; sÞ � Um1
ðxÞAWm2

ðsÞk2

� Cðk þ 1ÞM2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M3ðm1 þ m2 þ 2Þ

p
l!ðm1 þ m2 þ 1 � lÞ! ;

ð3:21Þ

where M3 ¼ max
Cð2iþkþ1ÞCð2m1þ2m2þ3�2iþsÞ

Cðkþsþ2iþ2ÞCðkþsþ2m1þ2m2þ4�2iÞ :
n

i ¼
1; 2; . . .;m1 þm2 þ 1g.

Proof Given Maclaurin’s expression for ~Vðx; sÞ
~Vðx; sÞ ¼ pðx; sÞ

þ 1

ðm1 þ m2 þ 1Þ! x
o

ox
þ s

o

os

� �m1þm2þ1

~Vðn0x; n0sÞ; n 2 ð0; 1Þ

ð3:22Þ

where pðx; sÞ ¼
Pm1þm2

r¼0
1
r! x o

ox þ s o
os

� 	r ~Vð0; 0Þ. This

implies that

j ~Vðx; sÞ � pðx; sÞj

¼ 1

ðm1 þ m2 þ 1Þ! x
o

ox
þ s

o

os

� �m1þm2þ1

~Vðn0x; n0sÞ
�����

�����; n 2 ð0; 1Þ

ð3:23Þ

On the other hand, since Um1
ðxÞAWm2

ðsÞ is the best

approximation of ~Vðx; sÞ we obtain

k ~Vðx; sÞ � Um1
ðxÞAWm2

ðsÞk2 �k ~Vðx; sÞ � pðx; sÞk2:

Now, in view of definition of L2-norm, we get

k ~Vðx; sÞ � Um1
ðxÞAWm2

ðsÞk2
2

¼
Z 1

0

Z 1

0

1

ðm1 þ m2 þ 1Þ! x
o

ox
þ s

o

os

� �m1þm2þ1
" #2

dxds

¼
Z 1

0

Z 1

0

1

ðm1 þ m2 þ 1Þ!
Xm1þm2þ1

i¼0

m1 þ m2 þ 1

i

� �
xm1þm2þ1�isi

"

om1þm2þ1

oxm1þm2þ1osi
�2dxds

� M2
2

ðm1 þ m2 þ 1Þ!

Z 1

0

Z 1

0

Xm1þm2þ1

i¼0

m1 þ m2 þ 1

r

� �
xm1þm2þ1�isi

" #2

dxds;

where
m1 þ m2 þ 1

r

� �
¼ max

m1 þ m2 þ 1

i

� �
: i ¼

�

1; 2; . . .;m1 þ m2 þ 1g. This implies that

k ~Vðx; sÞ � pk2
2

� M2
2

r!2ðm1 þ m2 þ 1Þ!2
Z 1

0

Z 1

0

Xm1þm2þ1

i¼0

xm1þm2þ1�isi
" #2

dxds

� M2
2

r!2ðm1 þ m2 þ 1Þ!2

Xm1þm2þ1

i¼0

Cð2iþ k þ 1ÞCð2m1 þ 2m2 þ 3 � 2iþ sÞ
Cðk þ sþ 2iþ 2ÞCðk þ sþ 2m1 þ 2m2 þ 4 � 2iÞ

� Cðk þ 1Þ2M3ðm1 þ m2 þ 2ÞM2
2

l!2ðm1 þ m2 þ 1 � lÞ!2
;

which is the desired result. h

4 Solution Procedure

In this section, based on the GLPs, an optimization method

is presented to solve the study problem (2.10). Vðx; sÞ
dependent variable can be expanded in terms of GLPs as

Vðx; sÞ ’ Um1
ðxÞT AWm2

ðsÞ ¼ CFm1
ðxÞð ÞT A DGm2

ðsÞð Þ;
ð4:1Þ

where A ¼ ½aij� is undetermined matrix, and Fm1
ðxÞ and

Gm2
ðsÞ are in obedience to Eq. (3.11). From Eqs. (3.17) and

(3.19), we have

C
0 D

h
sVðx; sÞ ’ CFm1

ðxÞð ÞT A DD hð Þ
s Gm2

ðsÞ

 �

;

Vxxðx; sÞ ’ CDð2Þ
x Fm1

ðxÞ

 �T

A DGm2
ðsÞð Þ:

ð4:2Þ

Replacing Eqs. (4.1) and (4.2) into the initial conditions

yield

KðxÞ, CFm1
ðxÞð ÞT A DGm2

ðs0Þð Þ: ð4:3Þ

Substituting Eqs. (4.1) and (4.2) into Eq. (2.10), we get

Rðx; s;A;K;SÞ, CFm1
ðxÞð ÞT A DD hð Þ

s Gm2
ðsÞ


 �

� 1

2
CDð2Þ

x Fm1
ðxÞ


 �T

A DGm2
ðsÞð Þ �Wðx; sÞ:

ð4:4Þ

Here A stands for unknown free coefficients and K and S

stand for unknown control vectors, respectively, for

Fm1
ðxÞ and Gm2

ðsÞ, defined as

K ¼ k2 k3 . . . km1
½ �; S ¼ s1 s2 . . . sm2

½ �: ð4:5Þ

The two-norm of the residual vectors can be given by

MðA;K;SÞ ¼
Z l2

0

Z l1

0

R2ðx; s;A;K;SÞdxds: ð4:6Þ

To find the optimal solution, control parameters K and S
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and undetermined matrix A must be evaluated. The opti-

mization problem is therefore considered as

min MðA;K;SÞ; ð4:7Þ

subject to

K
i

m1

� �
¼ 0; i ¼ 0; 1; . . .;m1: ð4:8Þ

To solve the minimization problem, the Lagrange multi-

pliers method is used.

J �½A;K;S; k� ¼ MðA;K;SÞ þ kK; ð4:9Þ

where the vector k corresponds to unknown Lagrange

multipliers and K express a known column vector with

entries of equality constraints in accordance to Eq. (4.8).

The following nonlinear system of algebraic equations

presents necessary conditions for local extremum.

oJ �

oA
¼ 0;

oJ �

oK
¼ 0;

oJ �

oS
¼ 0;

oJ �

ok
¼ 0: ð4:10Þ

This nonlinear system of algebraic equations can be solved

using software packages of MAPLE or MATLAB. The

approximate solutions of the problem can be determined

using control parameters and unknown free coefficients

from Eq. (4.1). In the following, a brief description of the

algorithm is made.

5 Numerical Experiments

Now, the proposed scheme is applied for the solution of

FGT to assess the method effectiveness. The results are

then examined through calculation of both absolute error

(AE) and convergence order (CO) as follows:

e1 xi; sið Þj j ¼ CFm1
ðxiÞð ÞT A DGm2

ðsiÞð Þ � V xi; sið Þ
�� ��;
ðxi; siÞ 2 ½0; l1� � ½0; l2�;

CO ¼ log AE2ð Þ
log AE1ð Þ

����
����;

where AE1 and AE2, respectively, are the first and the

second AE values.

Example 1 Consider the following FGT:

C
0 D

h
sVðx; sÞ ¼

1

2

o2Vðx; sÞ
ox2

þ
C

8

3

� �
s�h

C
8

3
� h

� �� 35

8
x�2

0
BB@

1
CCAVðx; sÞ; ðx; sÞ 2 ½0; 1� � ½0; 1�;

Vðx; 0Þ ¼ 0:

:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð5:1Þ

The exact solution is given by

Vðx; sÞ ¼ x
7
2 s

5
3: ð5:2Þ

The proposed scheme is implemented to obtain the optimal

solution when m1 ¼ 3, m2 ¼ 1 and h ¼ 0:80. The obtained

solution is expanded as

Vðx; sÞ ’ U3ðxÞT AW1ðsÞ ¼ CF3ðxÞð ÞT A DG1ðsÞð Þ;

where

F3ðxÞ, ½1 x x2þk2 x3þk3 �T ;
G1ðsÞ, ½1 s1þs1 �T ;

and k2, k3 and s2 are control parameters. Moreover, the
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matrix of unknown coefficients A, and matrices of

Laguerre coefficients C and D are given by

A ¼

a00 a01

a10 a11

a20 a21

a30 a31

0
BBB@

1
CCCA;

C ¼

1 0 0 0

1 � 1 0 0

1 � 2
1

2
0

1 � 3
3

2

�1

6

0
BBBBBB@

1
CCCCCCA
;

D ¼
1 0

1 � 1

� �
:

Control parameters and free coefficients are hence obtained

with m1 ¼ 3, m2 ¼ 1 and h ¼ 0:80 as follows

k2 ¼ 1:500124; k3 ¼ 0:500788;

s1 ¼ 0:666666; a00 ¼ 1:248848; a01 ¼ �1:248848;

a10 ¼ �1:370970;

a11 ¼ 1:370970; a20 ¼ �1:004605;

a21 ¼ 1:004605; a30 ¼ 1:126727; a31 ¼ �1:126726:

The plots of the optimal solution and AE with m1 ¼ 3,

m2 ¼ 1 and h ¼ 0:80 are shown in Fig. 1. The GLPs

method values of AE and CO are listed in Table 1 for

m1 ¼ 3, m2 ¼ 1 and different values of h at various

points ðx; sÞ. The GLPs method solves the problem with

m1 ¼ 3, m2 ¼ 3 and h ¼ f0:34; 0:95g. The AE obtained

by the GLPs method with m1 ¼ 3, m2 ¼ 3, h ¼ 0:34 (left

side) and h ¼ 0:95 (right side) are illustrated in Fig. 2.

The runtime of the proposed method is reported for

different choices of m1 and m2 in Table 2. The observed

results in Table 1 and Figs. 1 and 2 are indicative of a
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Fig. 1 The optimal solution and AE for the proposed method with m1 ¼ 3, m2 ¼ 1 and h ¼ 0:80 for Example 1

Table 1 The AE and CO with m1 ¼ 3, m2 ¼ 1 and h ¼ f0:70; 0:80; 0:90; 1g at various points ðx; sÞ in Example 1

h ¼ 0:70 h ¼ 0:80 h ¼ 0:90 h ¼ 1

ðx; sÞ AE CO AE CO AE CO AE CO

(0.1, 0.1) 4.0261E-08 – 2.3800E-10 – 3.0528E-11 – 1.9781E-12 –

(0.2, 0.2) 1.0585E-07 0.9432 6.3768E-10 0.9555 7.7924E-11 0.9612 4.7226E-12 0.9677

(0.3, 0.3) 1.7645E-07 0.9681 1.1014E-09 0.9741 1.2658E-10 0.9791 6.8791E-12 0.9855

(0.4, 0.4) 2.4984E-07 0.9776 1.6389E-09 0.9807 1.7497E-10 0.9857 8.1036E-12 0.9936

(0.5, 0.5) 3.2699E-07 0.9822 2.2939E-09 0.9833 2.2414E-10 0.9889 8.1912E-12 0.9995

(0.6, 0.6) 4.0568E-07 0.9855 2.9978E-09 0.9865 2.6146E-10 0.9930 6.7029E-12 1.0078

(0.7, 0.7) 4.7946E-07 0.9886 3.7744E-09 0.9882 2.8132E-10 0.9966 2.9390E-12 1.0320

(0.8, 0.8) 5.4132E-07 0.9916 4.6782E-09 0.9889 2.8095E-10 1.0000 3.8135E-12 0.9901

(0.9, 0.9) 5.9205E-07 0.9937 5.5788E-09 0.9908 2.4275E-10 1.0066 1.3748E-11 0.9512

(1, 1) 6.5383E-07 0.9930 6.2896E-09 0.9936 1.5272E-10 1.0209 2.5673E-11 0.9750
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good agreement between two solutions of exact and

approximate. The results also suggest that an increase in

the number of basis functions can make improvement in

the approximate solution.

Example 2 Consider the following FGT:

C
0 D

h
sVðx; sÞ ¼

1

2

o2Vðx; sÞ
ox2

þ expð�Vðx; sÞÞ þ 1

2
expð�2Vðx; sÞÞ; ðx; sÞ 2 ½0; 1� � ½0; 1�:

ð5:3Þ

The initial condition is selected in a way that the ana-

lytical solution is Vðx; sÞ ¼ logðxþ sþ 2Þ when h ¼ 1.

The problem is solved by the GLPs method for param-

eters m1 ¼ 3, m2 ¼ 3 and h ¼ f0:70; 0:80; 0:90; 1g, and

the obtained results are shown in Table 3. Graphs of

approximate solution and AE with m1 ¼ 3, m2 ¼ 3 and

h ¼ 0:90 are given in Fig. 3. The AE obtained by the

GLPs method with m1 ¼ 3, m2 ¼ 4, h ¼ 0:76 (left side)

and h ¼ 0:87 (right side) are represented in Fig. 4. The

runtime of the proposed method with different choices of
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Fig. 2 The AE for the proposed method with m1 ¼ 3, m2 ¼ 3, h ¼ 0:34 (left side) and h ¼ 0:95 (right side) for Example 1

Table 2 The runtime (in

seconds) of the proposed

method with different choices of

m1 and m2 for Example 1

case m1 m2 CPU times

1 3 1 8.24

2 3 2 10.39

3 3 3 13.56

4 4 4 17.81

5 4 5 19.64

Table 3 The AE and CO with m1 ¼ 3, m2 ¼ 3 and h ¼ f0:70; 0:80; 0:90; 1g at various points ðx; sÞ in Example 2

ðx; sÞ h ¼ 0:70 h ¼ 0:80 h ¼ 0:90 h ¼ 1

AE CO AE CO AE CO AE CO

(0.1, 0.1) 5.1716E-02 – 3.1793E-03 – 1.4399E-05 – 2.6448E-07 –

(0.2, 0.2) 6.0666E-02 0.9461 3.9706E-03 0.9613 1.8992E-05 0.9751 6.8120E-07 0.9375

(0.3, 0.3) 6.0913E-02 0.9985 4.1473E-03 0.9921 2.0616E-05 0.9924 1.1443E-06 0.9634

(0.4, 0.4) 5.7605E-02 1.0199 4.0438E-03 1.0046 2.0908E-05 0.9986 1.8270E-06 0.9657

(0.5, 0.5) 5.2831E-02 1.0303 3.8030E-03 1.0111 2.0650E-05 1.0011 2.8765E-06 0.9656

(0.6, 0.6) 4.7639E-02 1.0351 3.4952E-03 1.0151 2.0261E-05 1.0017 4.3972E-06 0.9667

(0.7, 0.7) 4.2619E-02 1.0365 3.1569E-03 1.0179 1.9966E-05 1.0013 6.4471E-06 0.9689

(0.8, 0.8) 3.8157E-02 1.0350 2.8076E-03 1.0203 1.9872E-05 1.0004 9.0425E-06 0.9716

(0.9, 0.9) 3.4573E-02 1.0302 2.4613E-03 1.0224 2.0029E-05 0.9992 1.2170E-05 0.9744

(1, 1) 3.2221E-02 1.0209 2.1344E-03 1.0237 2.0468E-05 0.9979 1.5809E-05 0.9768
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m1 and m2 are reported in Table 4. Table 3 as well as

Figs. 3 and 4 are suggestive of an acceptable accuracy of

the proposed method for approximate solutions of the

proposed problem.

6 Conclusion

In this paper, we proposed an optimization technique

based on GLPs coupled with Lagrange multipliers for the

study of FGT. The scheme was applied to two test

problems and the results were recorded in related tabular

and graphical forms. From Figs. 1, 2, 3 and 4, and

Tables 1 and 3, we verify that only a few number of

basis functions are needed in the GLPs method to obtain

a satisfactory result. The results of our algorithm pave

the way for conducting further research on similar

problems in this field to improve theoretical analysis and

practical performance of algorithms and achieve addi-

tional results in future. In our future works, our new
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Fig. 3 The optimal solution and AE for the proposed method with m1 ¼ 3, m2 ¼ 3 and h ¼ 0:90 for Example 2
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Fig. 4 The AE for the proposed method with m1 ¼ 3, m2 ¼ 4, h ¼ 0:76 (left side) and h ¼ 0:87 (right side) for Example 2

Table 4 The runtime (in

seconds) of the proposed

method with different choices of

m1 and m2 for Example 2

case m1 m2 CPU times

1 3 3 17.54

2 3 4 19.80

3 4 4 24.61

4 5 4 27.19

5 5 5 31.53
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method can be applied to other nonlinear partial differ-

ential equations such as fractional diffusion-wave equa-

tion, fractional telegraph equation, fractional Klein–

Gordon equation, and fractional optimal control prob-

lems. Finally, from the numerical results, the biological

behavior of the tumor is predicted and the theoretical

statements are justified.
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