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Abstract
This paper introduces a flexible discrete transmuted record type discrete Burr–Hatke (TRT-DBH) model that seems

suitable for handling over-dispersion and equi-dispersion in count data analysis. Further to the elegant properties of the

TRT-DBH, we propose, in the time series context, a first-order integer-valued autoregressive process with TRT-DBH

distributed innovations [TRBH-INAR(1)]. The moment properties and inferential procedures of this new INAR(1) process

are studied. Some Monte Carlo simulation experiments are executed to assess the consistency of the parameters of the

TRBH-INAR(1) model. To further motivate its purpose, the TRBH-INAR(1) is applied to analyze the series of the

COVID-19 deaths in Netherlands and the series of infected cases due to the Tularaemia disease in Bavaria. The proposed

TRBH-INAR(1) model yields superior fitting criteria than other established competitive INAR(1) models in the literature.

Further diagnostics related to the residual analysis and forecasting based on the TRBH-INAR(1) model are also discussed.

Based on modified Sieve bootstrap predictors, we provide integer forecasts of future death of COVID-19 and infected of

Tularemia.

Keywords Transmuted record type � INAR(1) model � Modified empirical likelihood � COVID-19 disease �
Tularemia disease

1 Introduction

Count data are commonly encountered in everyday life

phenomena, including insurance, economics, social sci-

ences, medicines, transport and among an unlimited

number of areas. In these applications, the count observa-

tions are normally expressed as positive integers that are

collected on a daily, weekly, or monthly sequential basis.

Hence, such repeated observations are more likely serially

correlated. On the other side, these series of counts are

commonly over-dispersed due to some outliers or presence

of physical or latent effects and, in some cases, can be equi-

dispersed or under-dispersed as well. Thus, there is an

important need to appropriately model the series of counts

via the suitable distribution that can accommodate as fully

as possible different statistical features.

The prevalent probability models in the literature

include the geometric, Poisson, Poisson mixtures (Karlis

and Xekalaki 2005), Conway–Maxwell Poisson (Shmueli

et al. 2005; Sellers and Shmueli 2010; Sellers et al. 2012)

distributions. However, owing to the complex nature and

some unique properties of the natural phenomena, such as

skewness, dispersion, monotone or unimodal failure rate,

inflation or deflation, these conventional density functions

may not be fully relevant, as similarly argued in El-Mor-

shedy et al. (2020), Eliwa and El-Morshedy (2021) and the
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references therein. This leads to introducing some other

more flexible distributions for positive counts that emerge

from discretizing some continuous functions. Examples of

such distributions have been comprehensively studied by

Gómez-Déniz and Calderı́n-Ojeda (2011), Chakraborty and

Chakravarty (2012), Nekoukhou et al. (2013), Bakouch

et al. (2014), Hussain et al. (2016), Bahti and Bakouch

(2019), Altun (2020) and references therein.

In this same sense, this paper introduces a modified

discrete Burr–Hatke (BH) model, based on the transmuted

record type (TRT) constructor introduced by Shakil and

Ahsanullah (2011). The discrete version of BH model has

been recently proposed by El-Morshedy et al. (2020) to

model count events exhibiting huge over-dispersion with

various skewness features. The discrete version of BH

stands out as a main competitor to the traditional count

models as it yields far more superior fitting criteria. This

paper focuses on the TRT construction strategy because it

leads to skewed distributions and is compatible with one

side long-tailed data. The transmuted distributions are

special cases of extremal distributions (Kozubowski and

Podgórski 2016).

Further to the choice of the probability model, there is a

need to investigate the relevant time series structures

related to the counts of correlated nature. For repeated

count observations, McKenzie (1986), McKenzie (1988)

and Al-Osh and Alzaid (1987) introduced the thinning-

based INAR(1) processes. The classical INAR(1) model

consists of two important components: a survival part that

relates the current observation with its previous lagged via

the thinning, in particular, the binomial thinning operation

(Steutel and van Harn 1979) and a random innovation or

error component. In the original INAR(1) model, the

innovation was allowed to follow the benchmark Poisson,

while the binomial thinning was defined with the fixed or

random coefficient.

Over the years, in view of obtaining better fitting criteria

or information criteria in severely over-dispersed or zero

inflated data series, several authors have proposed a vast

number of alterations to either the innovation terms. The

INAR(1) model based on the geometric innovations was

introduced by Jazi et al. (2012), which can handle the over-

dispersed count data sets. The INAR(1) model with the

binomial thinning operator and Poisson–Lindley innova-

tion was established by Lı́vio et al. (2018), and several

estimation methods, including the conditional least

squares, Yule–Walker and conditional maximum likeli-

hood, were used for estimating the parameters.

Recently, to cover some unique properties of real data

sets, other distributions were designated for innovation of

the IANR(1) models, such as power series (Bourguignon

and Vasconcellos 2015), Poisson-transmuted exponential

(Altun and Mamode Khan 2021) and Bell (Huang and Zhu

2021).

Borges et al. (2017) introduced a new operator called q-
negative binomial thinning operator and provided a new

INAR(1) process with geometric marginals that can be

applied for phenomena with excess zeros. Liu and Zhu

(2021) introduced a new flexible thinning operator named

extended binomial that has two parameters. Considering

the extended binomial operator, they defined a new

INAR(1) model and estimated the unknown parameters

through the two-step conditional least squares and condi-

tional maximum likelihood methods.

Ristić et al. (2013) were the first to propose the INAR(1)

process having a dependent count series. Shirozhan et al.

(2019) combined the Pegram operator with the dependent

thinning operator. A new dependent negative binomial

thinning operator based on the inflated geometric counting

series is introduced by Shamma et al. (2020).

In classical models, the counting series are expected to

be independent, which is not often the case in real-world

situations like contagious diseases. Also, the binomial

thinning operator is not suitable for zero inflated demands.

After an outbreak has gone, we occasionally come across

data sets with too many zeros. As a result, we need a count

model that can deal with zero inflation. All earlier draw-

backs stimulate us to introduce a new INAR(1) model

based on the generalized negative binomial (GNB) thin-

ning operator with flexible discrete innovations. The most

notable feature of the utilized thinning operator is that it

may be used for data sets with additional observations. The

principal aim of this paper is devoted to introducing an

INAR(1) model with dependent counting series with flex-

ible innovations, where the dependency of the count series

makes the thinning operator more suitable for modeling

practical count data sets. Some clinical data sets demon-

strate the applicability of the suggested model.

The following is the outline of the paper. Section 2

introduces a distribution using the TRT approach and the

discrete BH baseline distribution. Also, the survival, hazard

rate, probability generating functions and non-central

moments of the proposed distribution are provided. The

GNB thinning operator is reviewed in Sect. 3. With the

proposed discrete innovations, the INAR(1) process is

developed, which is based on the GNB thinning operator,

and some properties of the process are investigated,

including the conditional mean and variance. Several

parametric and nonparametric estimation methods for the

proposed INAR(1) process are reported in Sect. 4. Finally,

in Sect. 5, two real-life count data are utilized to analyze

the application of the introduced INAR(1) model, demon-

strating our model’s suitability in contrast to several rele-

vant INAR(1) models.

122 Iran J Sci Technol Trans Sci (2023) 47:121–136

123



2 A Modified Version of Discrete Burr–Hatke
Distribution

In this section, we provide a modified discrete distribution

based on transmuted record type method and discrete Burr–

Hatke baseline distribution. The survival and hazard rate

function, along with some statistical properties of the dis-

tribution, are also given.

First, we consider the DBH distribution, which is

introduced by El-Morshedy et al. (2020). The cumulative

distribution function (CDF) and probability mass function

(PMF) of DBH distribution are represented, respectively,

as

H
Y
ðy; kÞ ¼ 1� kyþ1

yþ 2
; 0\k\1; y ¼ 0; 1; 2; . . .;

h
Y
ðy; kÞ ¼

� 1

yþ 1
� k
yþ 2

�
ky:

Now, we review the TRT method, which is defined as

Z¼d
YUð1Þ w.p. 1� c

YUð2Þ w.p. c

(
; 0\c\1;

where YUð1Þ and YUð2Þ are, respectively, the first and second

upper records [for more details, see Shakil and Ahsanullah

(2011)].

Hence, the CDF of TRT distribution is shown as

F
Z
ðz; k; cÞ ¼ H

Y
ðzÞ þ cð1� H

Y
ðzÞÞ lnð1� H

Y
ðzÞÞ;

where H
Y
ðzÞ is an arbitrary CDF baseline distribution.

Consider the DBH baseline distribution, the CDF of the

proposed distribution is represented as

F
Z
ðz; k; cÞ ¼ 1� kzþ1

zþ 2
þ c

� kzþ1

zþ 2

�
ln
� kzþ1

zþ 2

�

¼ 1� kzþ1

zþ 2

h
1� c ln

� kzþ1

zþ 2

�i
;

and the PMF is

f
Z
ðz; k; cÞ ¼ F

Z
ðz; k; cÞ � F

Z
ðz� 1; k; cÞ

¼ kz
�

1

zþ 1
� k
zþ 2

� c

�
1

zþ 1
ln
� kz

zþ 1

�

� k
zþ 2

ln
� kzþ1

zþ 2

���
:

We call this distribution as the transmuted record type-

discrete Burr–Hatke.

The survival and hazard rate functions (HRF) of the

TRT-DBH are demonstrated as below

Sðz; k; cÞ ¼ kzþ1

zþ 2

h
1� c ln

� kzþ1

zþ 2

�i
;

HRF ðz; k; cÞ ¼ f
Z
ðz; k; cÞ

Sðz� 1; k; cÞ

¼ 1�
kðzþ 1Þ

�
1� c ln

� kzþ1

zþ 2

��

ðzþ 2Þ
�
1� c ln

� kz

zþ 1

�� :

The PMF and HRF plots of TRT-DBH distribution are

depicted in Figs. 1 and 2, for different combinations of the

parameters.

It is clear that the HRF of TRT-DBH distribution has

different shapes, including decreasing and unimodal, which

dedicate the capability of TRT-DBH distribution to model

different types of data sets.

Fig. 1 The PMF plots for TRT-

DBH distribution with different

combinations of parameters

ðk; cÞ
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2.1 Some Statistical Properties of TRT-DBH
Distribution

Now, some properties of the TRT-DBH distribution are

investigated, such as the probability generating function, r-

th non-central moments, and so on.

Let Z follow the TRT-DBH distribution with the

parameters ðk; cÞ, then its probability generating function is

obtained as follows

G
Z
ðsÞ ¼ EðSZÞ

¼
X1
z¼0

sz
h kz

zþ 1
� kzþ1

zþ 2

i
� c

X1
z¼0

sz

�
kz

zþ 1
ln
� kz

zþ 1

�
� kzþ1

zþ 2
ln
� kzþ1

zþ 2

��

¼ 1

Sk

�
1� 1

s

�X1
z¼0

ðskÞzþ1

zþ 1
þ 1

s

� c lnðkÞ
�
1� 1

s

�X1
z¼0

�
1� 1

zþ 1

�
ðSkÞz

þ c
�
1� 1

s

�X1
z¼0

lnðzþ 1ÞðskÞz

zþ 1

¼
�
1� 1

s

���1

sk
lnð1� skÞ � c lnðkÞ

h 1

1� sk
� 1

sk
lnð1� skÞ

i

� cSkU0ðsk; 1; 2Þ
	
þ 1

s
; jsj\1

where Uða; b; cÞ ¼
P1

n¼0

an

ðnþ cÞb
; jaj\1 is the LerchPhi

function and we denote its derivative as

U
0 ða; b; cÞ ¼ o

ob
Uð0;1;0Þða; b ¼ b0; cÞ jb¼b0 :

Noted that both k and s are restricted ð0\k\1; jsj\1Þ;
hence, the condition of the LerchPhi function is satisfied.

The r-th non-central moments of TRT-DBH distribution

are represented as

EðZrÞ ¼
X1
z¼0

zrf
Z
ðz; k; cÞ

¼
X1
z¼0

�
zr � ðz� 1Þr

� kz

zþ 1

� c
X1
z¼0

�
zr � ðz� 1Þr

� kz

zþ 1
ln
� kz

zþ 1

�
:

It is concluded that the first and second moments of the

TRT-DBH distribution are as follows

l
Z
¼ EðZÞ ¼ �1� lnð1� kÞ

k
� c

h
lnðkÞ

� 1

1� k
þ lnð1� kÞ

k

�
þ kU0ðk; 1; 2Þ

i
;

EðZ2Þ ¼ 3� k
1� k

þ 3 lnð1� kÞ
k

� c lnðkÞ
�

5k� 3

ð1� kÞ2
� 3 lnð1� kÞ

k

�

� c
�
2U0ðk; 0; 1Þ � 3kU0ðk; 1; 2Þ

�
:

ð1Þ

Accordingly, based on the first and second moments, the

variance of TRT-DBH distribution can be obtained in

closed form. The Fisher dispersion index (FDI) is defined

as the variance to mean ratio, which indicates whether a

certain distribution is suitable for under or over-dispersed

data sets. If FDI \ð[ Þ1, the distribution is under-dis-

persed (over-dispersed).

The numerical mean, variance, skewness, kurtosis and

FDI of TRT-DBH distribution are provided in Table 1, for

different combinations of the parameters. Based on

Fig. 2 The HRF plots for TRT-

DBH distribution with different

combinations of parameters

ðk; cÞ
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Table 1, the mean and variance of TRT-DBH are increased

by increasing values of parameters k and c. Also, for small

values of k and large values of c, the FDI measure is near to

one, which indicates the equi-dispersion of TRT-DBH

distribution. For other combinations of ðk; cÞ, the FDI

measure is more than one, so the TRT-DBH distribution is

over-dispersion. The TRT-DBH distribution is severely

skewed to right and leptokurtic. So, TRT-DBH distribution

also has a perfect fit for right long-tailed data.

Based on Fig. 3, the values of VarðZÞ � EðZÞ are

always positive, which confirms the results of Table 1 and

the over-dispersion nature of the TRT-DBH model.

3 Formulation of the INAR(1) Model
with TRT-DBH Innovation

The purpose of this section is to introduce an INAR(1) time

series model based on the TRT-DBH distribution. First, we

review the definition of the GNB thinning operator defined

by Shamma et al. (2020), and then, an INAR(1) model with

TRT-DBH innovation is constructed.

Definition 1 (Shamma et al. 2020) Consider a sequence of

independent identically distributed (iid) geometric random

variables fVigi2N with parameter h
1þh and Bernoulli random

variableW with parameter a
h, 0� a� h� 1, where Vi andW

are independent for all i 2 N. Define a sequence of

dependent random variables fUigi2N as Ui ¼ ViW ; i 2 N.

It can be verified Ui has a mixture distribution as follows

PðUi ¼ uÞ ¼
1� a

1þ h
u ¼ 0

ða
h
Þ hu

ð1þ hÞuþ1
u ¼ 1; 2; . . .

8>><
>>:

; ð2Þ

denoted as zero inflated geometric distribution

ZIGð1� a

h ;
h

1þhÞ
�
.

Also,

EðUiÞ ¼ a;VarðUiÞ ¼ að2h� aþ 1Þ;
CovðUi;UjÞ ¼ aðh� aÞ; i 6¼ j:

The random variable
Pn

i¼1 Ui is a mixture of zero and

negative binomial ðn; h
1þhÞ distributed random variables

with proportions 1� a
h and a

h, respectively, and the zero

inflated negative binomial distribution is the name given to

it.

Definition 2 (GNB thinning operator) Let X be a non-

negative integer valued random variable and Ui; i 2 Nf g
as noted above by (2). The operator ‘‘a�h’’; 0� a� h� 1,

defined as a �h Xt�1 ¼
PXt�1

i¼1 Ui;t is called the GNB thin-

ning operator.

Shamma et al. (2020) outlined the properties of the

GNB thinning operator

3.1 The Proposed INAR(1) Model

The following recursive equation introduces the proposed

stationary INAR(1) process fXtg as

Xt ¼ a �h Xt�1 þ Zt; a\h\1; t� 1; ð3Þ

Table 1 Some statistical properties of the TRT-DBH distribution

Measures ðk; cÞ

(0.1, 0.1) (0.1, 0.5) (0.1, 0.9) (0.5, 0.1) (0.5, 0.5) (0.5, 0.9) (0.9, 0.1) (0.9, 0.5) (0.9, 0.9)

Mean 0.07072 0.13916 0.20761 0.46341 0.77189 1.08036 1.86500 3.09126 4.31753

Variance 0.07830 0.15151 0.21535 0.87540 1.49050 1.91528 14.5526 27.2993 37.0385

Skewness 4.34336 3.03405 2.34709 3.05341 2.39579 1.98291 4.55818 3.60665 3.07481

Kurtosis 26.2771 15.3736 11.2771 23.3821 20.0279 20.3337 47.7409 35.8777 32.8224

FDI 1.10723 1.08872 1.03728 1.88904 1.93099 1.77282 7.80303 8.83112 8.57865

Fig. 3 The VarðZÞ � EðZÞ plots for TRT-DBH distribution with

different combinations of parameters ðk; cÞ
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where ‘‘�h’’ is the GNB thinning operator, fZtg be a

sequence of TRT-DBH random variables with parameters

ðk; cÞ and given Xt�1, the random variables a �h Xt�1 and Zt
are independent of each other. We shall refer to this model

as TRBH-INAR(1).

The one-step transition probabilities are

P0j ¼ P Xt ¼ jjXt�1 ¼ 0ð Þ ¼ PðZt ¼ jÞ;

and for i� 1, we get

Pij ¼ P Xt ¼ jjXt�1 ¼ ið Þ ¼ ð1� a
h
ÞPðZt ¼ jÞ

þ a
h

Xj

k¼0

i� 1

iþ k � 1

� �
hk

ð1þ hÞiþk
PðZt ¼ j� kÞ;

ð4Þ

where

PðZt ¼ jÞ ¼ k j

�
1

jþ 1
� k
jþ 2

� c

�
1

jþ 1
ln
� k j

jþ 1

�

� k
jþ 2

ln
� kjþ1

jþ 2

���
:

This model may be fitted to infectious illness data and can

be used to describe the disease’s transmission as follows:

In the case of the INAR(1) model, if Xt�1 represents the

number of new patients throughout the time span

ðt � 2; t � 1�, a �h Xt�1 will be the number of surviving

patients from the previous month, which may stimulate

new patients or likely cure, and fZtg will be the number of

new patients infected in the current period.

Remark 1 Shamma et al. (2020) provided several prop-

erties of the GNB thinning operator as follows

(i) E a �h X j Xð Þ ¼ aX,
(ii) Var a �h X j Xð Þ ¼ aðh� aÞX þ aðhþ 1ÞX,
(iii) E a �h Xð Þ ¼ aEðXÞ,
(iv) E a �h Xð Þ

¼ aðh� aÞE2ðXÞ þ aðhþ 1ÞEðXÞ þ ahVarðXÞ.

The expectation and variance of the process fXtg is

obtained as

EðXÞ ¼
l

Z

1� a
;

VarðXÞ ¼
al

Z
ð1þ hÞ

ð1� aÞð1� ahÞ þ
aðh� aÞl2

Z

ð1� aÞ2ð1� ahÞ

þ r2Z
1� ah

;

where l
Z
and r2Z are the mean and variance of TRT-DBH

distribution, respectively.

Proposition 1 The Fisher dispersion index of fXtg is

obtained as

IX ¼ VarðXÞ
EðXÞ

¼
aðh� aÞl2

Z
þ aðhþ 1Þð1� aÞl

Z
þ ð1� aÞ2r2Z

ð1� ahÞð1� aÞl
Z

:

This readily demonstrates that IX is more than one and

obviously is over-dispersed.

Proof In order to confirm IZX� 1, it is required to show

VarðXÞ � EðXÞ� 0. Hence, we show the following

inequality always holds

aðh� aÞl2
Z
þ ð1� aÞð2ah� 1þ aÞl

Z
þ ð1� aÞ2r2Z � 0;

which can be rewritten as

aðh� aÞl2
Z
þ ð1� aÞ2

�
r2Z � l

Z

�
þ 2ahð1� aÞl

Z
� 0:

Since the TRT-DBH model is over-dispersed or equi-dis-

persed, so IZ [ 1 (i.e., r2
Z
� l

Z
� 0), and the proof is con-

cluded. h

Proposition 2 Suppose fXtg is a stationary process

defined by (3), then for a\h\1 and t� 1,

(i) The conditional expectation is

E Xt j Xt�kð Þ ¼ akXt�k þ
1� ak

1� a
l

Z
: ð5Þ

When k ! 1, then limk!1 E Xt j Xt�kð Þ ¼
l

Z

1� a
,

which is the process’s unconditional expectation.

(ii) The conditional variance is

VarðXt j Xt�1Þ ¼ aðh� aÞX2
t�1

þ aðhþ 1ÞXt�1 þ r2Z ;
ð6Þ

and

Var Xt jXt�kð Þ¼ak hk�ak

 �

X2
t�kþak

ð1þhÞð1�hkÞ
1�h

Xt�k

þ 2l
Z
ak
�1�hk

1�h
�1�ak

1�a

�
Xt�k

þ
al

Z
ð1þhÞ
1�h

�1�ak�1

1�a
�hð1�ðahÞk�1Þ

1�ah

�

þ l2
Z

�1�ðahÞk�1

1�ah
�1�a2k�2

1�a2

�

þ 2al2
Z

�
h

1�h

�að1�ak�1Þ
1�a

�ahð1�ðahÞk�1Þ
1�ah

�

� a
1�a

�að1�ak�1Þ
1�a

�ahð1�a2k�2Þ
1�a2

��

þ r2Z
1�ðahÞk

1�ah
:

hence,
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lim
k!1

Var Xt j Xt�kð Þ ¼
al

Z
ð1þ hÞ

ð1� aÞð1� ahÞ

þ
aðh� aÞl2

Z

ð1� aÞ2ð1� ahÞ
þ r2Z
1� ah

;

which is the process’s unconditional variance.

(iii) The autocorrelation function of the process Xtf g is

represented as

qðkÞ ¼ CorrðXt;Xt�kÞ ¼ ak:

Proof See Appendix A. h

3.2 Different Estimation Method

The conditional maximum likelihood, modified conditional

least square, modified maximum empirical likelihood, and

Yule–Walker estimation procedures for the parameters of

the TRBH-INAR(1) model are discussed in this section.

3.2.1 Conditional Maximum Likelihood Estimation

The log-likelihood function is maximized in terms of the

model parameters d ¼ ða; h; k; cÞ in order to produce con-

ditional maximum likelihood (CML) estimators. The log-

likelihood function for sample observation X1; . . .;Xn from

the TRBH-INAR(1) model can be written as

‘ dð Þ ¼ log L d j X2; . . .;Xnð Þ

¼
Xn
t¼2

logP Xt ¼ j j Xt�1 ¼ ið Þ;

where P Xt ¼ j j Xt�1 ¼ ið Þ is transition probability given

by (4). The CML estimator of the unknown parameters are

numerically obtained by maximizing the log-likelihood

function with commands ‘‘nlm’’ or ‘‘optim’’ from statistical

package ‘‘R’’.

3.2.2 Modified Conditional Least Square Estimation

The modified conditional least squares (MCLS) estimators

of the parameters a; l
Z

are found by minimizing the

expression below

Qða; l
Z
Þ ¼

Xn
t¼2

Xt � EðXt j Xt�1Þð Þ2

¼
Xn
t¼2

Xt � aXt�1 � l
Z


 �2
;

ð7Þ

where l
Z
is a function of the parameters ðk; cÞ. The esti-

mators are given by

â
MCLS

¼ ðn� 1Þ
Pn

t¼2 XtXt�1 �
Pn

t¼2 Xt

Pn
t¼2 Xt�1

ðn� 1Þ
Pn

t¼2 X
2
t�1 � ð

Pn
t¼2 Xt�1Þ2

;

and

Table 2 Results of simulations of the TRBH-INAR(1) model’s parameter estimations

n CML MMEL

â ĥ k̂ ĉ R.Time â ĥ k̂ ĉ R.Time

a; h; k; cð Þ ¼ 0:4; 0:8; 0:7; 0:3ð Þ
100 0.43075 0.81661 0.76381 0.28297 134.69 0.41534 0.77461 0.69378 0.31683 97.01

MSE (0.01358) (0.03378) (0.00858) (0.00355) (0.01301) (0.03197) (0.00928) (0.00232)

200 0.42209 0.82608 0.74652 0.31603 311.03 0.41129 0.78035 0.70572 0.31138 153.86

MSE (0.00874) (0.01564) (0.00618) (0.00309) (0.00975) (0.01652) (0.00839) (0.00187)

500 0.42182 0.81377 0.72775 0.30616 857.82 0.41028 0.81293 0.70374 0.30929 493.41

MSE (0.00312) (0.00602) (0.00509) (0.00219) (0.00428) (0.00943) (0.00625) (0.00138)

1000 0.41721 0.80927 0.70715 0.30123 2115.21 0.41112 0.79797 0.69651 0.30199 652.44

MSE (0.00218) (0.00259) (0.00477) (0.00166) (0.00235) (0.00479) (0.00439) (0.00104)

a; h; k; cð Þ ¼ 0:2; 0:4; 0:9; 0:6ð Þ
100 0.23824 0.45879 0.89641 0.61591 112.15 0.23941 0.36262 0.94042 0.63544 65.74

MSE (0.00799) (0.03091) (0.00082) (0.03401) (0.00952) (0.04456) (0.00398) (0.04425)

200 0.22906 0.44981 0.89978 0.60062 266.47 0.25133 0.37088 0.93545 0.62737 124.34

MSE (0.00527) (0.01183) (0.00036) (0.02152) (0.00553) (0.03457) (0.00259) (0.01327)

500 0.22899 0.43896 0.90223 0.59378 763.11 0.22391 0.42868 0.92714 0.62215 460.02

MSE (0.00356) (0.00559) (0.00014) (0.01337) (0.00526) (0.01953) (0.00189) (0.00761)

1000 0.21661 0.41588 0.90277 0.60904 1932.19 0.21868 0.41706 0.91664 0.61247 557.86

MSE (0.00275) (0.00354) (0.00071) (0.01015) (0.00331) (0.01366) (0.00092) (0.00285)
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l̂
Z;MCLS

¼
Pn

t¼2 Xt � â
MCLS

Pn
t¼2 Xt�1

n� 1
:

It is worth mention that the MCLS estimation of parame-

ters ðk; cÞ is obtained by finding the root of the equation (1)

equal to the estimation of the l̂
Z;MCLS

.

The one-step conditional expectation of the process

depends only on the parameters a and l
Z
and is not possible

to use it for the estimation of the parameter h. Hence, the
parameter h can be estimated under the modified method

proposed by Karlsen and Tjøstheim (1988). The parameter

h can be estimated by minimizing the following expression

TðhÞ ¼
Xn
t¼2

Vt � VarðXtjXt�1Þð Þ2; ð8Þ

where

Vt ¼ ðXt � EðXtjXt�1ÞÞ2

¼ Xt � â
MCLS

Xt�1 � l̂
Z;MCLS

� �2

;

and VarðXtjXt�1Þ is defined in (6) with estimated values of

the parameters ða; k; cÞ as below

VarðXt j Xt�1Þ ¼ â
MCLS

ðh� â
MCLS

ÞX2
t�1

þ â
MCLS

ðhþ 1ÞXt�1 þ r̂2
Z;MCLS

;

where r2Z is a function of the parameters ðk; cÞ and can be

estimated easily by ðk̂
MCLS

; ĉ
MCLS

Þ.

3.2.3 Modified Maximum Empirical Likelihood Estimation

The nonparametric modified empirical likelihood (MEL)

technique for the TRBH-INAR(1) model is discussed in

this section, which comprises two phases. In the first step,

we obtain the maximum MEL estimators for the parame-

ters a and l
Z
as follows. By taking the derivative of

Qða; l
Z
Þ defined in (7) with respect to b ¼ ða; l

Z
Þ, we have

the estimating equation

�1

2

oQðbÞ
ob

¼
Xn
t¼2

mtðbÞ ¼ 0;

where mtðbÞ ¼ ðm1;tðbÞ;m2;tðbÞÞ0 with

m1;tðbÞ ¼ Xt�1ðXt � aXt�1 � l
Z
Þ,

m2;tðbÞ ¼ Xt � aXt�1 � l
Z
. Following Qin and Lawless

(1994), we can define the log MEL function as

LMEðbÞ ¼
Xn
t¼1

log


1þ d0ðbÞmtðbÞ

�
;

where dðbÞ satisfies

Table 3 Results of simulations of the TRBH-INAR(1) model’s parameter estimations

n MCLS YW

â ĥ k̂ ĉ R.Time â ĥ k̂ ĉ R.Time

a; h; k; cð Þ ¼ 0:4; 0:8; 0:7; 0:3ð Þ
100 0.34643 0.76204 0.80737 0.30327 273.25 0.38488 0.76703 0.78856 0.28814 60.14

MSE (0.02229) (0.37431) (0.01459) (0.00854) (0.01532) (0.28766) (0.01158) (0.00813)

200 0.36568 0.78433 0.75426 0.29853 420.77 0.39773 0.76522 0.77414 0.29876 102.7

MSE (0.012535) (0.10733) (0.01279) (0.00822) (0.00978) (0.01932) (0.01058) (0.00769)

500 0.38148 0.78581 0.72288 0.29787 847.28 0.39588 0.79944 0.75931 0.29683 199.61

MSE (0.00591) (0.03619) (0.01158) (0.00726) (0.00441) (0.01024) (0.01088) (0.00621)

1000 0.39085 0.79011 0.71332 0.295236 1324.41 0.39865 0.80364 0.75087 0.29504 258.23

MSE (0.00299) (0.01821) (0.01136) (0.00602) (0.00379) (0.00823) (0.01009) (0.00589)

a; h; k; cð Þ ¼ 0:2; 0:4; 0:9; 0:6ð Þ
100 0.26071 0.32083 0.91666 0.63862 218.46 0.23588 0.36791 0.91948 0.56604 56.23

MSE (0.01159) (0.05267) (0.00919) (0.06116) (0.01272) (0.06227) (0.00721) (0.07331)

200 0.24713 0.34577 0.91059 0.62406 387.89 0.21343 0.44966 0.92816 0.55631 94.93

MSE (0.00761) (0.05147) (0.00825) (0.06111) (0.00628) (0.05396) (0.00606) (0.06303)

500 0.22984 0.35921 0.91424 0.62141 756.62 0.20261 0.43879 0.91098 0.54532 128.81

MSE (0.00685) (0.05224) (0.00717) (0.05103) (0.00587) (0.03977) (0.00402) (0.06297)

1000 0.20334 0.36305 0.92775 0.59396 1251.96 0.19814 0.43378 0.93276 0.53304 160.28

MSE (0.00649) (0.04271) (0.00623) (0.04092) (0.00558) (0.02375) (0.00294) (0.04302)
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Fig. 4 The sample path, ACF and PACF of both data sets

Table 4 The CML estimates and some IC measures of COVID-19 data

Model CML AIC BIC HQIC CAIC RMS

PINAR(1) k̂ ¼ 2:13186; â ¼ 0:40172 211.27 214.92 212.64 213.84 2.34

GINAR(1) p̂ ¼ 0:73919; â ¼ 0:35818 218.04 221.69 219.41 220.61 2.41

NGINAR(1) p̂ ¼ 4:16264; â ¼ 0:95784 204.74 208.41 206.11 207.31 2.55

NBRCINAR(1) n̂ ¼ 3:60698; p̂ ¼ 0:50657; q̂ ¼ 0:47929 203.32 208.81 205.38 206.29 2.32

NBIINAR(1) n̂ ¼ 3:07621; p̂ ¼ 1:86301; q̂ ¼ 0:53645 201.83 207.32 203.89 204.81 2.31

GPQINAR(1) k̂ ¼ 1:43165; ĥ ¼ 0:25134; q̂ ¼ 0:4607 204.38 209.86 206.43 207.35 2.48

NDCINAR(1) â ¼ 0:34853; ĥ ¼ 0:99957; l̂ ¼ 3:70577 213.90 219.38 215.95 214.47 2.38

q�NGINAR(1) â ¼ 0:68822; q̂ ¼ 3:73767; l̂ ¼ 0:29627 200.14 205.62 202.19 200.71 2.58

DCGINAR(1) â ¼ 0:51582; ĥ ¼ 0:66611; l̂ ¼ 3:10469 210.16 215.65 212.22 210.73 2.32

GADCINAR(1) â ¼ 0:44552; ĥ ¼ 0:80996; l̂ ¼ 3:56932 207.75 213.24 209.81 208.32 2.33

GNBINAR(1) â ¼ 0:92765; ĥ ¼ 0:96184; l̂ ¼ 3:98312 201.61 207.09 203.66 202.17 2.52

TRBH-INAR(1) â ¼ 0:58847; ĥ ¼ 0:80592; k̂ ¼ 0:66448; 196.94 204.26 199.68 200.44 2.27

ĉ ¼ 0:53178
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1

n

Xn
t¼1

mtðbÞ
1þ d0ðbÞmtðbÞ

¼ 0:

The maximum MEL estimator (MMELE) for the parameter

b is defined by minimizing the above equation, i.e.,

b̂
mmel

¼ argmin
b

LMEðbÞ:

The MMEL estimation of the parameters ðk; cÞ can be

easily obtained based on the l̂
Z;mmel

and finding the root of

the Eq. (1).

The maximum MEL estimator for the parameter h is

obtained in the second phase. By considering the function

TðhÞ which is defined in (8), we have

�1

2

oTðhÞ
oh

¼
Xn
t¼2

mtðhÞ;

Fig. 5 The Pearson residuals ACF for the two data sets

Table 5 The CML estimates and some IC measures of Tularemia data

Model CML AIC BIC HQIC CAIC RMS

PINAR(1) k̂ ¼ 1:54083; â ¼ 0:27962 195.36 199.11 196.78 197.91 2.13

GINAR(1) p̂ ¼ 0:64816; â ¼ 0:34085 184.05 187.80 185.47 186.60 2.14

NGINAR(1) p̂ ¼ 2:15417; â ¼ 0:54857 180.33 184.07 181.75 182.88 2.18

NBRCINAR(1) n̂ ¼ 2:42637; p̂ ¼ 0:52029; q̂ ¼ 0:38773 183.13 188.74 185.25 186.06 2.13

NBIINAR(1) n̂ ¼ 1:84523; p̂ ¼ 1:60513; q̂ ¼ 0:46674 181.54 187.15 183.66 184.47 2.15

GPQINAR(1) k̂ ¼ 1:07131; ĥ ¼ 0:26666; q̂ ¼ 0:35176 183.52 189.14 185.65 186.46 2.18

NDCINAR(1) â ¼ 0:77226; ĥ ¼ 0:99999; l̂ ¼ 13:75551 237.51 243.12 239.63 238.05 3.48

q�NGINAR(1) â ¼ 1:19804; q̂ ¼ 8659:928; l̂ ¼ 0:31496 177.04 182.65 179.16 177.58 4.41

DCGINAR(1) â ¼ 0:62351; ĥ ¼ 0:53917; l̂ ¼ 2:10281 178.49 184.11 180.61 179.04 2.23

GADCINAR(1) â ¼ 0:37802; ĥ ¼ 0:39667; l̂ ¼ 1:93569 185.42 191.03 187.54 185.96 2.14

GNBINAR(1) â ¼ 0:34240; ĥ ¼ 0:41512; l̂ ¼ 2:04136 182.49 188.11 184.61 183.04 2.13

TRBH-INAR(1) â ¼ 0:33436; ĥ ¼ 0:48157; k̂ ¼ 0:58878 173.45 180.94 176.28 176.88 2.08

ĉ ¼ 0:79411
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where mtðhÞ ¼ â
mmel

Xt�1ðXt�1 þ 1Þ
h
Vt � â

mmel
ðh�

â
mmel

ÞX2
t�1 � â

mmel
ðhþ 1ÞXt�1 � r̂2

Z;mmel

i
; and Vt ¼ Xt�ð

â
mmel

Xt�1 � l̂
Z;mmel

Þ2. The MMELE for the parameter h will

be obtained by minimizing log MEL function.

3.2.4 Yule–Walker Estimation

The Yule–Walker (YW) estimators of the unknown vector

d are obtained as follows. Using the fact that EðXtÞ ¼
l

Z

1� a
and CorrðXt;Xt�1Þ ¼ a, the YW estimations of the

parameters ða; l
Z
Þ are generated using the sample mean

and sample autocorrelation function as follows:

Fig. 7 The acceptance areas and the bootstrap ACF

Fig. 6 The Pearson residuals cumulative periodogram for the two data sets

Iran J Sci Technol Trans Sci (2023) 47:121–136 131

123



âYW ¼
Pn

t¼2ðXt � XÞðXt�1 � XÞPn
t¼1ðXt � XÞ2

;

l̂
Z;YW

¼ Xð1� âYWÞ:

Similarly, the YW estimation of the parameters ðk; cÞ is

performed using the l̂
Z;mmel

, and finding the equation’s root

(1).

We utilize the second moment of the procedure to

estimate the parameter h as follows:

EðX2
t Þ ¼ ahEðX2

t Þ þ að1þ hÞEðXtÞ
þ EðZ2

t Þ þ 2al
Z
EðXtÞ

¼ að1þ hÞ
1� ah

EðXtÞ þ
EðZ2

t Þ
1� ah

þ
2al

Z
EðXtÞ

1� ah
;

which is obtained based on Remark 1. Let X2 ¼ 1
n

Pn
t¼1 X

2
t ,

then

X2 ¼ âYWð1þ hÞ
1� âYWh

X þ
l̂2

Z;YW
þ r̂

Z;YW

1� âYWh
þ
2âYW l̂Z;YW

X

1� âYWh
; ð9Þ

as a result, estimate of the parameter h is determined by

computing the root of the Eq. (9) numerically.

4 Simulation Approach

We examine the efficiency of the parameter estimate

approaches for the TRBH-INAR(1) model using Monte

Carlo simulation, under different sample sizes n ¼
ð100; 200; 500; 1000Þ over h ¼ 1000 iterations. Two dis-

tinct parameter combinations are evaluated as a; h; kð Þ ¼
0:4; 0:8; 0:7; 0:3ð Þ and 0:2; 0:4; 0:9; 0:6ð Þ. We use the mean

squared error (MSE) metric to assess the estimators’

performance. The results are summarized in Tables 2 and

3, where represent that all estimates of the parameters are

convergent to their actual values. Furthermore, when the

sample size grows larger, the MSE decreases. Among

different kinds of estimation methods, the CML and

MMEL provide better performance than MCLs and YW

estimations, since they have small MSE for all parameters.

In comparison among the CML and MMEL methods, we

provide the computer running time (R.time), which indi-

cates that the MMEL method is faster than CML and as

well as CML in MSE measure. As a result, the nonpara-

metric MMEL technique outperforms other methods of

estimation.

5 Application of Real-World Data

In this section, we investigate the application of the TRBH-

INAR(1) process by using two types of clinical count data.

The first data set is devoted to daily counts of death from

the COVID-19 disease, reported from Netherland and

consists of 46 observations, from second July until 16-th

August at 2021, by the World Health Organization (https://

covid19.who.int).

The second data set represents the weekly counts of

Tularemia disease, reported from Bavaria, and it consists of

48 observations, from first week until 48-th week on 2020,

from the Robert Koch Institute: SurvStat@RKI 2.0 (https://

survstat.rki.de) site.

Figure 4 depicts the sample path, autocorrelation func-

tion (ACF), and partial autocorrelation function (PACF) of

the two data series, indicating that the data sets should be

modeled using a first-order autoregressive model.

Table 6 The k-step ahead predictions of clinical data series

k COVID-19 Tularemia

Actual data Bootstrap Classical Actual data Bootstrap Classical

1 8 10 7.75761 1 1 2.28751

2 9 10 5.99219 2 2 1.61879

3 2 0 6.58066 3 1 1.95315

4 2 2 2.46137 2 1 2.28751

5 7 7 2.46137 3 7 1.95315

6 9 7 5.40372 2 1 2.28751

7 7 6 6.58066 12 13 1.95315

8 6 4 5.40372 3 2 5.29675

9 6 5 4.81525 4 4 2.28751

10 3 3 4.81525 5 3 2.62187

SMAPE 0.33131 0.43131 0.41133 0.52701
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Furthermore, the augmented Dickey–Fuller test is used to

justify stationarity of the two clinical data sets, where the

p-value of augmented Dickey–Fuller test for COVID-19

data is less than 0.01 and for Tularemia data is equal 0.022,

which confirm the stationarity of both data sets.

The mean, variance and autocorrelation of the two data

sets are (3.565, 7.717, 0.557) and (2.125, 5.047, 0.310),

respectively. Both data series are empirically over-dis-

persed with dispersion indices ÎX ¼ ð2:164; 2:375Þ,
respectively.

We compare the TRBH-INAR(1) model to some com-

petitive INAR(1) models as:

PINAR(1) (Al-Osh and Alzaid 1987), GINAR(1)

(Alzaid and Al-Osh 1988), NBIINAR(1) (Al-Osh and Aly

1992), GPQINAR(1) (Alzaid and Al-Osh 1993), NBRCI-

NAR(1) (Weiß 2008), NGINAR(1) (Ristić et al. 2009),

DCGINAR(1) (Ristić et al. 2013), NDCINAR(1) (Miletić

Ilić 2016), q-NGINAR(1) (Borges et al. 2017), GADCI-

NAR(1) (Nastić et al. 2017) and GNBINAR(1) (Shamma

et al. 2020).

We reported the CML estimates, the information crite-

rion (IC) statistics as AIC, BIC, HQIC and CAIC, and the

root mean squares of differences of observations and pre-

dicted values (RMS) for each INAR model. Tables 4 and 5

show the results for two different data series. Regarding

Tables 4 and 5, the values of the IC and RMS are the

smallest for the TRBH-INAR(1) model. Therefore, we can

conclude that the TRBH-INAR(1) model provides the best

loss information among other competitive INAR(1)

models.

5.1 The Clinical Data Sets’ Residual Analysis

We provide the results of a residual analysis of clinical data

sets, which confirmed the suitability of the proposed

model. The Pearson residuals are defined as

et ¼
Xt � EðXt j Xt�1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXt j Xt�1Þ
p ;

where EðXt j Xt�1Þ and VarðXt j Xt�1Þ are defined in (5)

and (6), respectively. Note that, estimation of the param-

eters of the TRBH-INAR(1) model are substituted in each

EðXt j Xt�1Þ and VarðXt j Xt�1Þ to compute the Pearson

residuals.

The Pearson residuals ACF of both data sets is shown in

Fig. 5. The residuals are non-correlated, as shown in

Fig. 5, and the results are supported by the Ljung-Box test

p-values (0.679, 0.935). Figure 6 shows the Pearson

residuals cumulative periodogram, which shows how

residuals are distributed randomly and without trend.

Figure 7 shows the result of the parametric re-sampling

method. First, 5000 data sets with bootstrap sample size

n ¼ ð46; 48Þ are obtained using the fitted TRBH-INAR(1)

model (with CML estimates of the parameters of each data

set). Second, using the bootstrap samples, the ACF of each

specific lag is calculated. The acceptance bounds

100ð0:975Þ% and 100ð0:025Þ% quantiles are shown as

‘‘þ’’, and the samples ACF are presented by ‘‘�’’ symbols,

in Fig. 7. According to Fig. 7, all of the sample autocor-

relations were assigned between the acceptance bound-

aries, indicating that the model was adequate.

5.2 Methods of Forecasting

To test the TRBH-INAR(1) model’s appropriateness and

predictability, we present forecasts of the specified data

sets using both the traditional and modified Sieve bootstrap

approaches.

The k-step ahead classical predictor of the TRBH-

INAR(1) model is represented as

X̂t ¼ E Xt j Xt�kð Þ ¼ akXt�k þ
1� ak

1� a
l

Z
;

where unknown parameters a and l
Z
are substituted by the

related CML estimates.

5.2.1 Modified Sieve Bootstrap Approach

The integer nature of the count data is not preserved by the

classical predictor, despite the fact that the count time

series is an integer. The Sieve bootstrap technique is a

distribution-free predictor that preserves the integer nature

of the count data. Hence, we modified the bootstrap

approach proposed by Pascual et al. (2004) to apply for the

TRBH-INAR(1) model via the following steps. Since

a �h a �h Xð Þ6¼
d

a2 �h X, we can only provide the one-step

modified Sieve bootstrap prediction.

1. The thinning parameters ða; hÞ are estimated based on

the YW estimation approach.

2. Compute residuals Ẑt ¼ Xt � âXt�1; for t ¼ 2; :::; n.

3. The empirical distribution of the modified residuals ~Zt

is provided, where ~Zt ¼ Ẑt


 �
, and ½�� shows the nearest

integer value.

4. The bootstrap series Xb
t is given by

Xb
t ¼ â �ĥ X

b
t�1 þ Zb

t ; b ¼ 1; . . .;B;

where B is the bootstrap sample size that was chosen

to be B ¼ 500, and Zb
t is generated from the empirical

distribution in step 3, for t ¼ 1; 2; :::; n.

5. The YW estimation of the parameters ðâYW ; ĥYWÞ is

obtained by inserting the sample mean, variance, and

solving the following equations
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E Xtð Þð1� aÞ ¼ E Ztð Þ

VarðXtÞ ¼
aðh� aÞl2

Z

ð1� aÞ2ð1� ahÞ

þ
aðhþ 1Þl

Z

ð1� aÞð1� ahÞ þ
r2Z

1� ah
:

6. Based on the sample means â ¼ 1
B

PB
i¼1 âi;YW

and

ĥ ¼ 1
B

PB
i¼1 ĥi;YW

, the parameters a; hð Þ are estimated.

7. The recursion method is used to acquire future

bootstrap observations by the expression

X̂
b

tþ1 ¼ â �ĥ X
b
t þ Zb

tþ1:

The traditional and modified Sieve bootstrap predictions of

the relevant data series, for which we know the observed

values, are provided in Table 6 as a result of evaluating two

prediction approaches. When there are zero or near-zero

data demands, the symmetric mean absolute percent error

(SMAPE) is applied to compare the forecast systems. The

less SMAPE value leads to a better forecasting scheme.

According to Table 6, the modified Sieve bootstrap pre-

dictors’ SMAPE values are lower than classical, and the

modified Sieve bootstrap predictors are integers, which are

consistent with the nature of actual data.

6 Conclusions

We provide a first-order integer-valued autoregressive

[INAR(1)] time series model based on the transmuted

record type-discrete Burr–Hatke (TRT-DBH) distribution,

which is a more flexible version of the discrete Burr–Hatke

distribution. The TRT-DBH distribution is proved to over-

dispersed, asymmetric and leptokurtic. The hazard rate

function of the proposed distribution has different shapes as

monotone and unimodal. The applicability of the TRT-

DBH distribution is demonstrated in time series modeling

based on an INAR(1) model with TRT-DBH distributed

innovations. Properties of the model are studied as well as

different estimation approaches for the model parameters.

The assessment of the properties and estimation approa-

ches is conducted via some simulation studies. The ade-

quacy of fit of the proposed INAR(1) model is checked via

two clinical data sets, including the Covid-19 series and is

compared with other competitive models. For both clinical

data sets, we perform the residual analysis (Pearson

residuals), as well as traditional and modified Sieve boot-

strap forecasting methods.

Appendix A: The Proof of Proposition 2

(i) The model’s conditional expectation is calculated

as follows:

EðXt j Xt�1Þ ¼ aXt�1 þ l
Z
;

EðXt j Xt�2Þ ¼ EðEðXt j Xt�1Þ j Xt�2Þ
¼ a2Xt�2 þ ð1þ aÞl

Z
:

So, it is induced via the induction that

EðXt j Xt�kÞ ¼ akXt�k þ
ð1� akÞl

Z

1� a
;

which is a linear function of Xt.

(ii) Based on Remark 1, the conditional variance of

the TRBH-INAR(1) process is computed as

Var Xt j Xt�1ð Þ ¼ Var a �h Xt�1 j Xt�1ð Þ þ VarðZtÞ
¼ aðh� aÞX2

t�1 þ aðhþ 1ÞXt�1 þ r2Z ;

and

Var Xt j Xt�2ð Þ ¼ E Var Xt j Xt�1ð Þ j Xt�2ð Þ
þ Var E Xt j Xt�1ð Þ j Xt�2ð Þ

¼ aðh� aÞE


X2
t�1 j Xt�2

�

þ aðhþ 1ÞE


Xt�1 j Xt�2

�

þ r2Z þ a2Var Xt�1 j Xt�2ð Þ
¼ ahVar Xt�1 j Xt�2ð Þ
þ aðh� aÞE2



Xt�1 j Xt�2

�

þ aðhþ 1ÞE


Xt�1 j Xt�2

�
þ r2Z

¼ a2ðh2 � a2ÞX2
t�2 þ a2ðhþ 1Þ2Xt�2

þ 2a2ðh� aÞl
Z
Xt�2

þ aðhþ 1Þl
Z

þ aðh� aÞl2
Z
þ ð1þ ahÞr2Z ;

subsequently

Var Xt jXt�3ð Þ¼a3ðh3�a3ÞX2
t�3

þ a3ðhþ1Þð1þhþh2ÞXt�3

þ 2a3
�
ðh�aÞþðh2�a2Þ

�
l

Z
Xt�3

þ aðhþ1Þ
�
1það1þhÞ

�
l

Z

þ
h
aðh�aÞþa2ðh2�a2Þ

i
l2

Z

þ 2a2ðh�aÞl2
Z
þð1þahþa2h2Þr2Z :

By induction, we can conclude that
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VarðXt j Xt�kÞ ¼ ak hk � ak

 �

X2
t�k

þ akð1þ hÞ
Xk�1

i¼0

hiXt�k

þ 2l
Z
ak

Xk�1

i¼0

�
hi � ai

�
Xt�k

þ l
Z
ð1þ hÞ

Xk�1

i¼1

ai
Xi�1

j¼0

hj

þ l2
Z

Xk�1

i¼0

ai
�
hi � ai

�

þ 2al2Z
Xk�1

i¼1

ai
Xi

j¼1

�
hj � aj

�

þ r2Z
Xk�1

i¼0

ðahÞi:

After some elementary calculations, the proof is

complete.

(iii) The proof is unimportant and may be ignored.
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